Supplementary Material

Defining and enhancing the biosynthesis of astaxanthin and Docosahexaenoic acid in Aurantiochytrium sp. SK4

Jingrun $\mathrm{Ye}^{\mathrm{a}, \mathrm{b}}$, Mengmeng Liu ${ }^{\mathrm{a}, \mathrm{b}}$, Mingxia He ${ }^{\mathrm{a}}$, Ying Ye ${ }^{\mathrm{a}, \mathrm{b}}$, Junchao Huang ${ }^{\mathrm{a} *}$
${ }^{\text {a Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory }}$ for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201
${ }^{\text {b }}$ University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

*Corresponding author

Email: huangjc@mail.kib.ac.cn.

Phone: +86-875-65228058

Figure S1. Uni-gene length distribution.

Figure S2. Functional annotation of assembled uni-genes in Aurantiochytrium sp. SK4. (A)
GO classification, (B) COG classification, (C) KEGG pathway.

Figure S3. KEGG pathway enrichment analysis of differentially expressed genes (DEGs).

Figure S4. Genes encoding enzymes of the polyketide synthase (PKS pathway) in Aurantiochytrium sp.SK4. Dark gray areas indicate proposed enzymatic domains. KS, 3ketoacyl synthase; KR, 3-ketoacyl-ACP reductase; ER, enoyl reducatase; DH, dehydrase/isomerase; PPTase, phosphopantetheine transferase; MAT, malonyl-CoA:ACP acyltransferase. aa, amino acid.

Figure S5. The growth curve of Aurantiochytrium sp.SK4 of Figure 1 and Figure 2.

List of domain hits				$?$
+ Name	Accession	Description	Interval	E-value
[+] crti_fam	TIGR02734	phytoene desaturase; Phytoene is converted to lycopene by desaturation at four (two ...	55-551	$1.36 \mathrm{e}-87$
[+] COG1233	COG1233	Phytoene dehydrogenase-related protein [Secondary metabolites biosynthesis, transport and ...	50-553	7.44e-61
[H] SQS_PSY	pfam00494	Squalene/phytoene synthase;	597-856	2.57e-52
[H] Trans_IPPS_HH	cd00683	Trans-Isoprenyl Diphosphate Synthases, head-to-head; These trans-Isoprenyl Diphosphate ...	590-857	$8.87 \mathrm{e}-50$
[+] ERG9	COG1562	Phytoene/squalene synthetase [Lipid transport and metabolism];	597-865	$7.36 \mathrm{e}-45$
$[+] \mathrm{HpnD}$	TIGR03465	squalene synthase HpnD; The genes of this family are often found in the same genetic locus ...	610-860	1.12e-33
[H] PLN02632	PLN02632	phytoene synthase	587-861	$1.68 \mathrm{e}-27$
[+] Amino_oxidase	pfam01593	Flavin containing amine oxidoreductase; This family consists of various amine oxidases, ...	61-546	$3.38 \mathrm{e}-23$
[+] CarR_dom_SF	TIGR03462	lycopene cyclase domain; This domain is often repeated twice within the same polypeptide, as ...	910-1004	$9.66 \mathrm{e}-17$
[H] CarR_dom_SF	TIGR03462	lycopene cyclase domain; This domain is often repeated twice within the same polypeptide, as ...	1051-1141	$2.98 \mathrm{e}-12$
[H] PRK07233	PRK07233	hypothetical protein; Provisional	52-97	$2.05 \mathrm{e}-07$

B

Figure S6. The conserved domains of CrtIBY and alignment of amino acid sequences of different CrtIBY. The conserved domains of CrtIBY from Aurantiochytrium sp.SK4 were analyzed by CDD/SPARCLE (A) and alignment of amino acid sequences of possible trifunctional β-carotene synthases, $\mathrm{CrtIBY}(\mathbf{B})$. Sequences of CrtIBY of Aurantiochytrium sp. SK4 are compared with those of Aurantiochytrium sp. FCC1311, Aurantiochytrium sp. KH105, Schizochytrium sp. CCTCC M209059, Aurantiochytrium sp. T66, and Thraustochytrium sp. ATCC 26185.

Table S1

Comparison of Aurantiochytrium sp. SK4 genome statistics to other five algae and the Arabidopsis thaliana genome.

Organism	Aurantioc hytrium sp. SK4	Arabidops is thaliana	Chlamydo monas reinhardti \boldsymbol{i}	Chlorella sp. NC64 A	Chromoc hloris zofingiens is	Coccomyxa subellipsoid ea C-169	Monorap hidium neglectum
Sequenced genome size Percent G+C in	49 Mbp	119 Mbp	107 Mbp	42 Mbp	58 Mbp	49 Mbp	67 Mbp
sequenced genome	56.7%	36%	64%	67%	51%	53%	65%
Coding sequence in sequenced genome	63.0%	28%	37%	32%	39%	25%	26%
Percent G+C in coding sequence	56.9%	44%	70%	69%	53%	61%	70%
Average number of exons Average exon length Percentage transcript with at least one intron	2.4	903 nt	55.5%	237 nt	261 nt	166 nt	291 nt

Table S2

The expression of genes associated with carotenoids and fatty acid biosynthesis in transcriptome.

Pathway	Gene	RPKM	
		24h	96h
Astaxanthin pathway	HMGS	293.68	2.67
	HMGR	141.10	1.42
	MK	194.72	10.42
	PMK	21.56	12.61
	PPMD	60.02	1.11
	IDI	29.57	1.29
	Crtiby	9.10	19.95
	Crtz	3.87	12.66
FAS pathway	Crto	14.94	28.95
	Type 1 fatty acid synthase	613.72	247.47
	$\Delta 12$ desaturase	377.4	2.0
	$\triangle 5$ desaturase	18.2	29.1
	$\omega-3$ desaturase	0	0.6
	44 desaturase	114.4	19.7
	$\triangle 6$ desaturase	0.7	0
	$\triangle 9$ desaturase	1.08	0
PKS pathway	PKS pfaA	754.56	1.95
	PKS pfaB	193.79	9.46
	PKS pfaC	381.54	4.38

Table S3

Contents of squalene in wild-type SK4 and the transformant AT26 at different stages.

	Sampling time	SK4	AT26
	48 h	10.98 ± 0.13	0.34 ± 0.02
Squalene content $\left(\mathbf{m g} \times \mathbf{g}^{\mathbf{- 1}} \mathbf{D W}\right)$	72 h	21.08 ± 0.06	0.41 ± 0.06
	96 h	13.18 ± 0.05	0.64 ± 0.07

Data are shown as mean $\pm \mathrm{SD}, \mathrm{n}=3$.

Table S4

Primers Used for qRT-PCR and the detection of the $\mathrm{p}^{--V H b-b l e-2 A-I D I-2 A-G P S ~(V B I G) . ~}$

Primer	Sequence
qRT-pcr-Actin-F	GAGGCCATGTTTCAGACCAT
qRT-pcr-Actin-R	ACGAGAGCCGTCATTTCTGT
qRT-pcr-HMGS---	CGCCGGCGTCGACAGCAT
qRT-pcr-HMGS-R	GGGCACGGCGGGCAAGAC
qRT-pcr-HMGR-F	CCGGCGCAAAATGTCGAGTCT
qRT-pcr-HMGR-R	CCGCCGACAGTGCCAACCTC
qRT-pcr-MK-F	CCGCAACCACGAAATCCTCCAAAA
qRT-pcr-MK-R	CGAGAGCGCCGGCAGACTTG
qRT-pcr-PMK-F	GCCGTCTTTGCAGTTGTTGTTGATTC
qRT-pcr-PMK-R	GCCGCCGATCTTCACTCAGCAA
qRT-pcr-crtIBY-F	TGGTGACCTCGATCATGTGT
qRT-pcr-crtIBY-R	CGGCTCTACAGGTAATGAGT
qRT-pcr-FASI-R	GAGAACGTCAGCACCTTTGC
qRT-pcr--FASI--F	AGGCTCGAGAGAGCCTTGAC
qRT-pcr-pfaA-F	TGATCCCTTCGTGAATGACC
qRT-pcr-pfaA-R	GCTCGTTGTGGAACTGAAGG
qRT-pcr-pfaB-F	GTCATTCTGCCCCTCATCATCAACC
qRT-pcr-pfaB-R	GACTGCTTGGCGACCTGGTTCAC
qRT-pCr-pfaC-F	CCGCCCCATCCACGTCATCCTC
qRT-pcr-pfaC-R	CCGGACTGCTTGGCGACCTGGTT
VBIGF	GGCTTTGGCGATGACGGTATTG
VBIGR	CCCCTCCTCATCTCGTCCCTGT

