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Abstract: The nutraceutical potential of microalgae boomed with the exploitation of new
species and sustainable extraction systems of bioactive compounds. Thus, a laboratory-made
continuous pressurized solvent extraction system (CPSE) was built to optimize the extraction
of antioxidant compounds, such as carotenoids and PUFA, from a scarcely studied prokaryotic
microalga, Gloeothece sp. Following “green chemical principles” and using a GRAS solvent (ethanol),
biomass amount, solvent flow-rate/pressure, temperature and solvent volume—including solvent
recirculation—were sequentially optimized, with the carotenoids and PUFA content and antioxidant
capacity being the objective functions. Gloeothece sp. bioactive compounds were best extracted at
60 ◦C and 180 bar. Recirculation of solvent in several cycles (C) led to an 11-fold extraction increase
of β-carotene (3C) and 7.4-fold extraction of C18:2 n6 t (5C) when compared to operation in open
systems. To fully validate results CPSE, this system was compared to a conventional extraction
method, ultrasound assisted extraction (UAE). CPSE proved superior in extraction yield, increasing
total carotenoids extraction up 3-fold and total PUFA extraction by ca. 1.5-fold, with particular
extraction increase of 18:3 n3 by 9.6-fold. Thus, CPSE proved to be an efficient and greener extraction
method to obtain bioactive extract from Gloeothece sp. for nutraceutical purposes—with low levels of
resources spent, while lowering costs of production and environmental impacts.
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1. Introduction

A nutraceutical, has been defined as a food or a food product obtained from a natural source
that, beyond nutrition, can also provide medicinal or health benefits in prevention or/and treatment
of disease [1]. Both prokaryotic (cyanobacteria) and eukaryotic microalgae have gained a lot of
attention in this regard in the last decade. They have been used in the human diet as nutritional
supplements for hundreds of years but only in 1974 was the microalga Spirulina declared a potential
food for the future by the United Nations World Food Conference [2]. Nowadays, Chlorella and
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Spirulina spp. are the species allowed for human consumption and widely traded, in Europe,
being considered one of the most nutritious foods known to man [3]. Nonetheless, there are still
hundreds of microalgal species that may serve as a potential source of valuable bioactive compounds,
such as carotenoids and polyunsaturated fatty acids (PUFAs) [4]. Such compounds can be extracted
from non-conventional microalgal species and applied directly in the nutraceutical industry, namely,
in extracts form, thus circumventing the high costs associated with downstream purification processes
required for pharmaceutical applications [5,6]. Additionally, interest in microalgal carotenoids and fatty
acids has recently boomed, due to their potential therapeutic application in disease prevention—arising
chiefly from recognized antioxidant properties [6–9]. As reviewed previously, said compounds have
been described to possess antitumor, anti-inflammatory and antimicrobial features [10].

In microalgae, carotenoids and PUFA are generally located in the intracellular space,
or accumulated in organelles (e.g., thylakoids), vesicles or in the cytoplasm itself. Hence, the presence
of a cell wall surrounding the cells and a cytoplasmic membrane—both acting as semipermeable
barriers—hinders extraction processes and thus increases the cost of extract production [11,12]. In fact,
extraction of bioactive metabolites from microalgae may reach 40–60% of the final costs of production,
depending on the biochemical characteristics and degree of purity intended [13]—and this may
constrain economic exploitation of microalgae as feedstock for bioactive compound production.
Thereof, optimization of extraction of microalgal compounds is urged, not only from an economic
view but also from an ecological and environmental perspective.

Usually, the extraction of microalgal bioproducts is chiefly conducted from dried biomass with
organic or aqueous solvents, depending on the polarity of the target compound [14,15]. Traditional
solvent extraction methods are common in the chemical industry; however, they resort to large
amounts of organic solvents, are labour-intensive and may expose extracts to excessive heat, light and
oxygen—thus inducing isomerization and oxidation of labile compounds. Moreover, they require
extra energy input to recover solvents and may even contaminate the algal extract, thus reducing
and restricting options for their end uses [16]. In this regard, such new technologies as pressurized
liquid extraction (PLE) have emerged and possess a number of advantages [17,18]. Moreover, typical
PLE systems pressurize and accelerate passage of solvent through the matrix, hence improving
speed and extraction efficiency of desired compounds. PLE also resorts to conventional solvents,
at controlled temperature and pressure, entail less solvent and shorter extraction times and preserves
samples in an oxygen- and light-free environment—so this method appears particularly suitable for
the nutraceutical industry [19,20]. Moreover, application of pressure allows use of temperatures above
solvent (atmospheric) boiling point, while reducing solvent surface tension and allowing a better
penetration into matrix pores. This leads to matrix disruption that enhances compound mass transfer
from sample to solvent, thus improving extraction efficiency [20]. Several studies have demonstrated
the advantage of using high pressure and temperature with forced flow of solvent for extraction
of natural compounds from solid and semi-solid matrices by PLE [21–26]. However, PLE still is
expensive and requires dedicated infrastructure and operation that limit its application in natural
product extraction. Additionally, most commercial equipment only allows static extraction; in other
words, once equilibria between compounds bounded to the matrix and those that solubilized in
solvent is reached, the extraction process efficiency drops dramatically [27]. Furthermore, the use of
extreme temperatures in PLE—up to 135–200 ◦C—and pressures up to 200 bar or even higher [28],
in photosynthetic organism materials, may promote the formation of pyropheophytins, a chlorophyll
derivative not originally present in the source matrix but possessing antimutagenic features as reported
for Chlorella vulgaris extracts [27].

Thereof, the focus of this study was the development of a prototype for continuous pressurized
solvent extraction (CPSE), designed to improve microalgal bioactive compound extraction in
an economical and environmental-friendly manner, essentially compatible with use by nutraceutical
industry. Biomass from a scarcely studied prokaryotic microalga—Gloeothece sp.—was used as
the model; recent advances have shown that its lipidic component exhibits interesting antioxidant
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capacity [29], as well as in previous studies [30,31]. The CPSE system was developed for moderate
temperatures (30–70 ◦C) and pressures (70–260 bar), thus framing the range of operational temperatures
and pressures targeted in large scale-up operation systems [16]. Moreover, this lab-scale prototype was
built for flexibility, low cost and possible to scaled-up, in order to maximize extraction of compounds
with known antioxidant capacity (namely carotenoids and fatty acids) from microalgal biomass.

2. Results and Discussion

The selection of extraction technique of bioactive metabolites is crucial for industrial purposes.
Thus, establishing a profitable fast, efficient economic and green process is the ideal scenario. A way by
which may be possible, is by following “Green Analytical Chemistry” (GAC) principles. This principal
requires: (1) reduction of sample amount; (2) simultaneous extraction of several compounds;
and (3) increase of automation [32]. An ideal pressurized liquid extraction for bioactive metabolites in
the food industry, should use the minimum amount of food grade solvents and achieve a selective
extraction of bioactive compounds—while preserving chemical structure. Furthermore, it should
also display great versatility and efficiency, by modifying the physicochemical properties of solvents
(e.g., density, diffusivity, viscosity and dielectric constant) through manipulation of pressure and/or
temperature of solvent, thus leading to changes in solvating power [27]. Hence, the main purpose
of our extraction system was to obtain a bioactive extract with the maximum content of carotenoids
and/or fatty acids, with minimum use of such resources such as energy, solvents and feedstock.

2.1. Biomass Amount Optimization

The first step was to establish the minimum amount of biomass of Gloeothece sp. to be used.
Three amounts of freeze-dried biomass were accordingly tested: 50, 100 and 150 mg. The ideal biomass
amount should maintain the proportionality between biomass and targeted compounds in extract.
Hence, such parameters such as extract mass yield, carotenoids content, PUFA content and antioxidant
capacity were determined. For that, average values of flow and temperature were used—2 mL·min−1

and 40 ◦C, respectively. At this stage of optimization, (and until optimization of the ethanol volume
was done at stage 4) and excess solvent volume was used. However, to establish that excess solvent
volume, a kinetic assay was performed using average operational conditions of flow and temperature
(2 mL·min−1 and 40 ◦C, respectively) and the maximum biomass tested—150 mg. Under a continuous
solvent flow, several samples were collected in batches of 25 mL; and, after 2 consecutive batches
deprived of material extracted, was found that a 150 mL was the solvent volume to be employed till in
optimization of stages 1, 2 and 3 (data not shown).

Results of extract yield obtained at stage 1, expressed as mass ratio between extract/biomass,
showed that there were not significant differences between the biomass amounts tested (p < 0.05).
All amount of biomass attained ca. of 23 ± 0.7% of extraction, thus unfolding proportionality
between biomass and mass of extract generated. In general, the same proportionality was observed
in fatty acids and carotenoids content and antioxidant capacity—see Table 1. Note that for both
carotenoids and PUFA quantification, only the most representative and bioactive ones were taken in
consideration when comparing extraction performance, as listed in Table 1. To characterize extracts
total antioxidant capacity, two total scavenging assays were performed: ABTS+• and DPPH•. These
two assays were chosen based on earlier experience [29], namely due to their different sensitivities to
assay compounds—i.e., ABTS+• for carotenoids and DPPH• for PUFA. Upon inspection of Table 1,
is clear that 50 mg of biomass is the most appropriate amount of biomass to be used, thus avoiding
unnecessary wastage.
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Table 1. Average extract content (mean ± standard deviation) in fatty acids (µgFattyAcids·mgBiomass
−1)

(n = 6), carotenoids expressed in equivalent of PI (trans-β-Apo-8′-carotenal), mgPI·mgBiomass
−1 (n = 6)

and antioxidant capacity expressed in the trolox equivalent (TE), mgTE·mgExtract
−1. mgBiomass

−1 (n = 9),
obtained at each amount of biomass tested (50, 100 and 150 mg), at 40 ◦C and under an ethanol flow-rate
of 2 mL·min−1 (P = 142 bar). Better results pertaining to extraction of each particular compound are
marked in bold.

Biomass (mg)

50 100 150

Fatty acids
(µgFA·mgB

−1)

14:0 5.4 ± 0.6 a 4.9 ± 1.0 a 4.4 ± 0.5 a

16:0 24.6 ± 3.9 a 23.0 ± 0.7 a 23.3 ± 2.2 a

18:0 0.3 ± 0.0 a 0.5 ± 0.1 a 0.1 ± 0.0 a

18:1 n9 17.6 ± 3.0 a 12.3 ± 3.7 a 13.3 ± 2.5 a

18:2 n6 t 19.8 ± 3.6 a 14.6 ± 1.0 a 18.8 ± 2.0 a

18:2 n6 c 0.3 ± 0.0 a 0.0 ± 0.0 a 0.3 ± 0.0 a

18:3 n6 0.9 ± 0.1 0.5 ± 0.0 a 0.4 ± 0.0 a

18:3 n3 36.6 ± 5.4 a,b 27.1 ± 2.7 b 39.3 ± 3.3 a

Carotenoids
(mgPI·mgB

−1)
Lutein 2.16 ± 0.14 1.15 ± 0.06 1.39 ± 0.18

β-carotene 0.16 ± 0.00 a 0.13 ± 0.02 a 0.12 ± 0.01 a

Antioxidant capacity
(mgTE·mgE

−1. mgB
−1)

ABTS+• 129.4 ± 2.6 102.7 ± 8.0 70.1 ± 5.5
DPPH• 3.1 ± 0.1 1.9 ± 0.4 a 1.9 ± 0.5 a

a–b Means within the same row, without a common superscript, are significantly different (p < 0.05).

2.2. Solvent Flow-Rate Optimization

As stated before, the next stage was to optimize the solvent flow-rate—and 1 mL·min−1 (Q1),
2 mL·min−1 (Q2), 3 mL·min−1 (Q3) and 4 mL·min−1 (Q4) were tested. System pressure increased as
flow increased and changed with temperature, so pressures of 72, 142, 210 and 260 bar were indeed
reached, respectively, at 40 ◦C. Higher pressures facilitate transport of solvent to hard-to-reach corners,
pores, surfaces and matrices [16,33]; this causes in matrix disruption, thus enhancing mass transfer
of the target compound from the matrix to the solvent [20]. However, in terms of crude extract yield,
there were no significant differences in the mass of extract obtained at the various solvent flows tested,
17.1 ± 0.95% (mE/mB) at Q1; 21.2 ± 2.1% (mE/mB) at Q2; 18.9 ± 1.3% (mE/mB) at Q3 and 19.5 ± 1.8%
(mE/mB) at Q4.

Several studies focusing on bioactive natural product extraction have pointed at the nil influence
of extraction pressure; however, the only reason they set high pressure for extraction was to maintain
its liquid state due the high solvent temperatures used (100–160 ◦C) with further influence not
addressed [27,34]. Due to the existence of thermolabile compounds, only lower temperatures were
tested in our study. Upon analysis of the biochemical profile of extracts obtained from 50 mg-biomass
at the several solvent ethanol flows tested, at 40 ◦C (see Figure 1), it appears that flow-rate/pressure
exerts a positive effect: this is particularly the case of Q3, in terms of fatty acid extraction (Figure 1A)
and Q4 in terms of carotenoids (namely lutein)—when compared to Q1, about 3-fold and 1.3-fold
increase, respectively, were observed (Figure 1B). Although selection of solvent is probably the most
important stage in optimization of microalgal metabolite extraction by PLE [16], the use of higher
pressure seems to increase extraction of lutein, as observed before [35]. With regard to β-carotene, our
results showed that solvent flow rate (Q) did not cause any relevant effect (Figure 1B). A decreasing
trend upon PUFA extraction was observed using Q4 (P of 260 bar) [35]. This can probably be explained
by the increase of fluid density induced by pressure increases. A double effect was actually at stake:
an increase in solvent solvating power and a reduced interaction between solvent and matrix—thus
decreasing diffusion coefficient at higher density. This phenomenon has been previously described for
other microalgae and metabolites [34,36].
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superscript, are significantly different, p < 0.05). (A) Fatty acid profile expressed as μgFA·mgE−1, (n = 6) 
obtained in  Q1 (1 mL·min−1);  Q2 (2 mL·min−1);  Q3 (3 mL·min−1) and  Q4 (4 mL·min−1); (B) 
Carotenoids content expressed in equivalent of PI (trans-β-Apo-8′-carotenal), mgPI·mgE−1 (n = 6)  
Lutein and  β-carotene; and (C) Antioxidant capacity expressed in trolox equivalent (TE) per 
extract mass, μTE·mgE−1 (n = 9), obtained in  ABTS+• and  DPPH• assays. 
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concentration in antioxidant compounds, probably reflecting its higher lutein content. In terms of 
DPPH• assay, Q3 and Q1 extracts attained the best results, probably for being richer in fatty acids. 
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of, while molecular interactions associated with hydrogen bonds, van der Waals forces and dipole 
interactions concomitantly decreases—thus resulting in faster and easier extraction [33]. 

Our Results revealed that only at 70 °C was observed an increase of 8% in terms of mass extract 
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As expected, the antioxidant capacity of the extracts obtained varied according to their content 
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Figure 1. Biochemical profile of extracts (mean ± standard deviation) obtained from 50 mg-biomass 
in the various ethanol flows tested at 40 °C (bars for a common compound acid, without a common 
superscript, are significantly different, p < 0.05). (A) Fatty acid profile expressed as μgFA·mgE−1, (n = 6) 
obtained in  Q1 (1 mL·min−1);  Q2 (2 mL·min−1);  Q3 (3 mL·min−1) and  Q4 (4 mL·min−1); (B) 
Carotenoids content expressed in equivalent of PI (trans-β-Apo-8′-carotenal), mgPI·mgE−1 (n = 6)  
Lutein and  β-carotene; and (C) Antioxidant capacity expressed in trolox equivalent (TE) per 
extract mass, μTE·mgE−1 (n = 9), obtained in  ABTS+• and  DPPH• assays. 

As expected, the antioxidant capacity of the extracts obtained varied according to their content 
in carotenoids and fatty acids—see Figure 1. Hence, the antioxidant capacity as assessed by the 
ABTS•+ revealed no differences between extracts—except for Q4, which exhibited a higher 
concentration in antioxidant compounds, probably reflecting its higher lutein content. In terms of 
DPPH• assay, Q3 and Q1 extracts attained the best results, probably for being richer in fatty acids. 

According to effect upon compound extraction, Q3 flow rate was selected to proceed. 
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increases extraction potential of the solvent by accelerating diffusion rates [22]. Thermal energy also 
aids in overcoming the cohesive (solute-solute, i.e., lipid-lipid) interactions and adhesive (solute-
matrix, i.e., lipids-cell matrix) interactions [16,33]. Increasing thermal energy also increases motion 
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DPPH• assays.

As expected, the antioxidant capacity of the extracts obtained varied according to their content in
carotenoids and fatty acids—see Figure 1. Hence, the antioxidant capacity as assessed by the ABTS•+

revealed no differences between extracts—except for Q4, which exhibited a higher concentration in
antioxidant compounds, probably reflecting its higher lutein content. In terms of DPPH• assay, Q3 and
Q1 extracts attained the best results, probably for being richer in fatty acids.

According to effect upon compound extraction, Q3 flow rate was selected to proceed.

2.3. Temperature Optimization

Once biomass amount and solvent flow rate defined, the next stage was testing the influence of
temperature on carotenoids and PUFA extraction.

Solvent pressure changes with increasing of temperature due a decrease of viscosity. Therefore,
using 50 mg of biomass, at a solvent flow rate of Q3 (3 mL·min−1), pressures of 212, 210, 195,
180 and 168 bar were observed at solvent temperatures of 30, 40, 50, 60 and 70 ◦C, respectively.
Temperature increases extraction potential of the solvent by accelerating diffusion rates [22]. Thermal
energy also aids in overcoming the cohesive (solute-solute, i.e., lipid-lipid) interactions and adhesive
(solute-matrix, i.e., lipids-cell matrix) interactions [16,33]. Increasing thermal energy also increases
motion of, while molecular interactions associated with hydrogen bonds, van der Waals forces and
dipole interactions concomitantly decreases—thus resulting in faster and easier extraction [33].

Our Results revealed that only at 70 ◦C was observed an increase of 8% in terms of mass extract
yield, that is, 52% mE/mB at 70 ◦C and average of 44.4± 2.8% mE/mB at other temperatures (Figure S1).
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Analysing the biochemical profile of extracts obtained from 50 mg biomass, with an ethanol flow
of Q3, at the several temperatures tested and in what concerns to fatty acid extraction (Figure 2A),
extraction at 60 ◦C produced a better yield compared to the other temperatures tested. Comparing
PUFA content results with those obtained at the lowest temperature tested, an increase of an average
of 2.6-fold was observed in extraction of C16:0, 3.3-fold in C18:1 n9, 3.5-fold in C18:2 n6 trans, 2.7-fold
in C18:3 n6 cis and 16-fold in C18:3 n3. As seen before by Iqbal et al. [16], diffusion rates increased
roughly from about 2- to 10-fold when the temperature increased from 25 up to 100 ◦C. [16]. However,
a linear extraction rate of lipids with temperature increase was not observed, indeed, at 70 ◦C, lipids
extraction was significantly lower than at 60 ◦C. Although the use of higher temperatures has been
claimed to enhance fatty acids extraction [16,25], the pressures used in said studies were lower than
those in our work. The increase of temperature at 70 ◦C apparently reduced the solvent density
considerably at 168 bar, thus decreasing the solvent-lipids contact—and resulting in net lower lipid
mass transfer rates [37]. Lipids may also deteriorate by cleavage of carbon-oxygen bonds in fatty acids,
due to sensitivity to temperature at the pressure used [16,38]. At 50 ◦C, an unexpected low extraction
yield was attained. This may have been due to a complex interaction of non-equilibrium phenomena
involving mass transfer due a change in solvent density because pressure, as observed before with
microalgal carotenoid extraction [35].
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Results of carotenoid recovery yield indicated that maximum extraction occurred within the 
range 50–60 °C for lutein, thus unfolding an increase in mass transfer rate with temperature—and 
indicating that 60 °C is the most appropriate temperature, as reported previously [35,36,39]. 
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Figure 2. Extracts biochemical profile (mean ± standard deviation) obtained from 50 mg biomass,
at ethanol flow of Q3, in the various extraction temperatures tested (bars without a common superscript
are significantly different, p < 0.05). (A) Fatty acid profile expressed as µgFA·mgE

−1 (n = 6) obtained at
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extraction at 60 °C produced a better yield compared to the other temperatures tested. Comparing 
PUFA content results with those obtained at the lowest temperature tested, an increase of an average 
of 2.6-fold was observed in extraction of C16:0, 3.3-fold in C18:1 n9, 3.5-fold in C18:2 n6 trans, 2.7-
fold in C18:3 n6 cis and 16-fold in C18:3 n3. As seen before by Iqbal et al. [16], diffusion rates increased 
roughly from about 2- to 10-fold when the temperature increased from 25 up to 100 °C. [16]. However, 
a linear extraction rate of lipids with temperature increase was not observed, indeed, at 70 °C, lipids 
extraction was significantly lower than at 60 °C. Although the use of higher temperatures has been 
claimed to enhance fatty acids extraction [16,25], the pressures used in said studies were lower than 
those in our work. The increase of temperature at 70 °C apparently reduced the solvent density 
considerably at 168 bar, thus decreasing the solvent-lipids contact—and resulting in net lower lipid 
mass transfer rates [37]. Lipids may also deteriorate by cleavage of carbon-oxygen bonds in fatty 
acids, due to sensitivity to temperature at the pressure used [16,38]. At 50 °C, an unexpected low 
extraction yield was attained. This may have been due to a complex interaction of non-equilibrium 
phenomena involving mass transfer due a change in solvent density because pressure, as observed 
before with microalgal carotenoid extraction [35]. 
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in trolox equivalent (TE) per extract mass, μTE·mgE−1 (n = 9), obtained in  ABTS+• and  DPPH• 
assays. 

Results of carotenoid recovery yield indicated that maximum extraction occurred within the 
range 50–60 °C for lutein, thus unfolding an increase in mass transfer rate with temperature—and 
indicating that 60 °C is the most appropriate temperature, as reported previously [35,36,39]. 
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extraction at 60 °C produced a better yield compared to the other temperatures tested. Comparing 
PUFA content results with those obtained at the lowest temperature tested, an increase of an average 
of 2.6-fold was observed in extraction of C16:0, 3.3-fold in C18:1 n9, 3.5-fold in C18:2 n6 trans, 2.7-
fold in C18:3 n6 cis and 16-fold in C18:3 n3. As seen before by Iqbal et al. [16], diffusion rates increased 
roughly from about 2- to 10-fold when the temperature increased from 25 up to 100 °C. [16]. However, 
a linear extraction rate of lipids with temperature increase was not observed, indeed, at 70 °C, lipids 
extraction was significantly lower than at 60 °C. Although the use of higher temperatures has been 
claimed to enhance fatty acids extraction [16,25], the pressures used in said studies were lower than 
those in our work. The increase of temperature at 70 °C apparently reduced the solvent density 
considerably at 168 bar, thus decreasing the solvent-lipids contact—and resulting in net lower lipid 
mass transfer rates [37]. Lipids may also deteriorate by cleavage of carbon-oxygen bonds in fatty 
acids, due to sensitivity to temperature at the pressure used [16,38]. At 50 °C, an unexpected low 
extraction yield was attained. This may have been due to a complex interaction of non-equilibrium 
phenomena involving mass transfer due a change in solvent density because pressure, as observed 
before with microalgal carotenoid extraction [35]. 
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in trolox equivalent (TE) per extract mass, μTE·mgE−1 (n = 9), obtained in  ABTS+• and  DPPH• 
assays. 

Results of carotenoid recovery yield indicated that maximum extraction occurred within the 
range 50–60 °C for lutein, thus unfolding an increase in mass transfer rate with temperature—and 
indicating that 60 °C is the most appropriate temperature, as reported previously [35,36,39]. 
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extraction at 60 °C produced a better yield compared to the other temperatures tested. Comparing 
PUFA content results with those obtained at the lowest temperature tested, an increase of an average 
of 2.6-fold was observed in extraction of C16:0, 3.3-fold in C18:1 n9, 3.5-fold in C18:2 n6 trans, 2.7-
fold in C18:3 n6 cis and 16-fold in C18:3 n3. As seen before by Iqbal et al. [16], diffusion rates increased 
roughly from about 2- to 10-fold when the temperature increased from 25 up to 100 °C. [16]. However, 
a linear extraction rate of lipids with temperature increase was not observed, indeed, at 70 °C, lipids 
extraction was significantly lower than at 60 °C. Although the use of higher temperatures has been 
claimed to enhance fatty acids extraction [16,25], the pressures used in said studies were lower than 
those in our work. The increase of temperature at 70 °C apparently reduced the solvent density 
considerably at 168 bar, thus decreasing the solvent-lipids contact—and resulting in net lower lipid 
mass transfer rates [37]. Lipids may also deteriorate by cleavage of carbon-oxygen bonds in fatty 
acids, due to sensitivity to temperature at the pressure used [16,38]. At 50 °C, an unexpected low 
extraction yield was attained. This may have been due to a complex interaction of non-equilibrium 
phenomena involving mass transfer due a change in solvent density because pressure, as observed 
before with microalgal carotenoid extraction [35]. 
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in trolox equivalent (TE) per extract mass, μTE·mgE−1 (n = 9), obtained in  ABTS+• and  DPPH• 
assays. 

Results of carotenoid recovery yield indicated that maximum extraction occurred within the 
range 50–60 °C for lutein, thus unfolding an increase in mass transfer rate with temperature—and 
indicating that 60 °C is the most appropriate temperature, as reported previously [35,36,39]. 
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extraction at 60 °C produced a better yield compared to the other temperatures tested. Comparing 
PUFA content results with those obtained at the lowest temperature tested, an increase of an average 
of 2.6-fold was observed in extraction of C16:0, 3.3-fold in C18:1 n9, 3.5-fold in C18:2 n6 trans, 2.7-
fold in C18:3 n6 cis and 16-fold in C18:3 n3. As seen before by Iqbal et al. [16], diffusion rates increased 
roughly from about 2- to 10-fold when the temperature increased from 25 up to 100 °C. [16]. However, 
a linear extraction rate of lipids with temperature increase was not observed, indeed, at 70 °C, lipids 
extraction was significantly lower than at 60 °C. Although the use of higher temperatures has been 
claimed to enhance fatty acids extraction [16,25], the pressures used in said studies were lower than 
those in our work. The increase of temperature at 70 °C apparently reduced the solvent density 
considerably at 168 bar, thus decreasing the solvent-lipids contact—and resulting in net lower lipid 
mass transfer rates [37]. Lipids may also deteriorate by cleavage of carbon-oxygen bonds in fatty 
acids, due to sensitivity to temperature at the pressure used [16,38]. At 50 °C, an unexpected low 
extraction yield was attained. This may have been due to a complex interaction of non-equilibrium 
phenomena involving mass transfer due a change in solvent density because pressure, as observed 
before with microalgal carotenoid extraction [35]. 
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are significantly different, p < 0.05). (A) Fatty acid profile expressed as μgFA·mgE−1 (n = 6) obtained at 

 30 °C,  40 °C,  50 °C,  60 °C,  70 °C (bars for a common fatty acid, without a common 
superscript, are significantly different, p < 0.05); (B) Carotenoids content expressed in equivalent of PI 
mgPI·mgE−1 (n = 6)  Lutein and  β-carotene; (C) Antioxidant capacity of the extracts expressed 
in trolox equivalent (TE) per extract mass, μTE·mgE−1 (n = 9), obtained in  ABTS+• and  DPPH• 
assays. 

Results of carotenoid recovery yield indicated that maximum extraction occurred within the 
range 50–60 °C for lutein, thus unfolding an increase in mass transfer rate with temperature—and 
indicating that 60 °C is the most appropriate temperature, as reported previously [35,36,39]. 
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extraction at 60 °C produced a better yield compared to the other temperatures tested. Comparing 
PUFA content results with those obtained at the lowest temperature tested, an increase of an average 
of 2.6-fold was observed in extraction of C16:0, 3.3-fold in C18:1 n9, 3.5-fold in C18:2 n6 trans, 2.7-
fold in C18:3 n6 cis and 16-fold in C18:3 n3. As seen before by Iqbal et al. [16], diffusion rates increased 
roughly from about 2- to 10-fold when the temperature increased from 25 up to 100 °C. [16]. However, 
a linear extraction rate of lipids with temperature increase was not observed, indeed, at 70 °C, lipids 
extraction was significantly lower than at 60 °C. Although the use of higher temperatures has been 
claimed to enhance fatty acids extraction [16,25], the pressures used in said studies were lower than 
those in our work. The increase of temperature at 70 °C apparently reduced the solvent density 
considerably at 168 bar, thus decreasing the solvent-lipids contact—and resulting in net lower lipid 
mass transfer rates [37]. Lipids may also deteriorate by cleavage of carbon-oxygen bonds in fatty 
acids, due to sensitivity to temperature at the pressure used [16,38]. At 50 °C, an unexpected low 
extraction yield was attained. This may have been due to a complex interaction of non-equilibrium 
phenomena involving mass transfer due a change in solvent density because pressure, as observed 
before with microalgal carotenoid extraction [35]. 
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superscript, are significantly different, p < 0.05); (B) Carotenoids content expressed in equivalent of PI 
mgPI·mgE−1 (n = 6)  Lutein and  β-carotene; (C) Antioxidant capacity of the extracts expressed 
in trolox equivalent (TE) per extract mass, μTE·mgE−1 (n = 9), obtained in  ABTS+• and  DPPH• 
assays. 

Results of carotenoid recovery yield indicated that maximum extraction occurred within the 
range 50–60 °C for lutein, thus unfolding an increase in mass transfer rate with temperature—and 
indicating that 60 °C is the most appropriate temperature, as reported previously [35,36,39]. 
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Figure 1. Biochemical profile of extracts (mean ± standard deviation) obtained from 50 mg-biomass 
in the various ethanol flows tested at 40 °C (bars for a common compound acid, without a common 
superscript, are significantly different, p < 0.05). (A) Fatty acid profile expressed as μgFA·mgE−1, (n = 6) 
obtained in  Q1 (1 mL·min−1);  Q2 (2 mL·min−1);  Q3 (3 mL·min−1) and  Q4 (4 mL·min−1); (B) 
Carotenoids content expressed in equivalent of PI (trans-β-Apo-8′-carotenal), mgPI·mgE−1 (n = 6)  
Lutein and  β-carotene; and (C) Antioxidant capacity expressed in trolox equivalent (TE) per 
extract mass, μTE·mgE−1 (n = 9), obtained in  ABTS+• and  DPPH• assays. 

As expected, the antioxidant capacity of the extracts obtained varied according to their content 
in carotenoids and fatty acids—see Figure 1. Hence, the antioxidant capacity as assessed by the 
ABTS•+ revealed no differences between extracts—except for Q4, which exhibited a higher 
concentration in antioxidant compounds, probably reflecting its higher lutein content. In terms of 
DPPH• assay, Q3 and Q1 extracts attained the best results, probably for being richer in fatty acids. 

According to effect upon compound extraction, Q3 flow rate was selected to proceed. 

2.3. Temperature Optimization 

Once biomass amount and solvent flow rate defined, the next stage was testing the influence of 
temperature on carotenoids and PUFA extraction. 

Solvent pressure changes with increasing of temperature due a decrease of viscosity. Therefore, 
using 50 mg of biomass, at a solvent flow rate of Q3 (3 mL·min−1), pressures of 212, 210, 195, 180 and 
168 bar were observed at solvent temperatures of 30, 40, 50, 60 and 70 °C, respectively. Temperature 
increases extraction potential of the solvent by accelerating diffusion rates [22]. Thermal energy also 
aids in overcoming the cohesive (solute-solute, i.e., lipid-lipid) interactions and adhesive (solute-
matrix, i.e., lipids-cell matrix) interactions [16,33]. Increasing thermal energy also increases motion 
of, while molecular interactions associated with hydrogen bonds, van der Waals forces and dipole 
interactions concomitantly decreases—thus resulting in faster and easier extraction [33]. 

Our Results revealed that only at 70 °C was observed an increase of 8% in terms of mass extract 
yield, that is, 52% mE/mB at 70 °C and average of 44.4 ± 2.8% mE/mB at other temperatures (Figure S1). 

Analysing the biochemical profile of extracts obtained from 50 mg biomass, with an ethanol flow 
of Q3, at the several temperatures tested and in what concerns to fatty acid extraction (Figure 2A), 
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Figure 1. Biochemical profile of extracts (mean ± standard deviation) obtained from 50 mg-biomass 
in the various ethanol flows tested at 40 °C (bars for a common compound acid, without a common 
superscript, are significantly different, p < 0.05). (A) Fatty acid profile expressed as μgFA·mgE−1, (n = 6) 
obtained in  Q1 (1 mL·min−1);  Q2 (2 mL·min−1);  Q3 (3 mL·min−1) and  Q4 (4 mL·min−1); (B) 
Carotenoids content expressed in equivalent of PI (trans-β-Apo-8′-carotenal), mgPI·mgE−1 (n = 6)  
Lutein and  β-carotene; and (C) Antioxidant capacity expressed in trolox equivalent (TE) per 
extract mass, μTE·mgE−1 (n = 9), obtained in  ABTS+• and  DPPH• assays. 

As expected, the antioxidant capacity of the extracts obtained varied according to their content 
in carotenoids and fatty acids—see Figure 1. Hence, the antioxidant capacity as assessed by the 
ABTS•+ revealed no differences between extracts—except for Q4, which exhibited a higher 
concentration in antioxidant compounds, probably reflecting its higher lutein content. In terms of 
DPPH• assay, Q3 and Q1 extracts attained the best results, probably for being richer in fatty acids. 

According to effect upon compound extraction, Q3 flow rate was selected to proceed. 

2.3. Temperature Optimization 

Once biomass amount and solvent flow rate defined, the next stage was testing the influence of 
temperature on carotenoids and PUFA extraction. 

Solvent pressure changes with increasing of temperature due a decrease of viscosity. Therefore, 
using 50 mg of biomass, at a solvent flow rate of Q3 (3 mL·min−1), pressures of 212, 210, 195, 180 and 
168 bar were observed at solvent temperatures of 30, 40, 50, 60 and 70 °C, respectively. Temperature 
increases extraction potential of the solvent by accelerating diffusion rates [22]. Thermal energy also 
aids in overcoming the cohesive (solute-solute, i.e., lipid-lipid) interactions and adhesive (solute-
matrix, i.e., lipids-cell matrix) interactions [16,33]. Increasing thermal energy also increases motion 
of, while molecular interactions associated with hydrogen bonds, van der Waals forces and dipole 
interactions concomitantly decreases—thus resulting in faster and easier extraction [33]. 

Our Results revealed that only at 70 °C was observed an increase of 8% in terms of mass extract 
yield, that is, 52% mE/mB at 70 °C and average of 44.4 ± 2.8% mE/mB at other temperatures (Figure S1). 

Analysing the biochemical profile of extracts obtained from 50 mg biomass, with an ethanol flow 
of Q3, at the several temperatures tested and in what concerns to fatty acid extraction (Figure 2A), 
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Our Results revealed that only at 70 °C was observed an increase of 8% in terms of mass extract 
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Results of carotenoid recovery yield indicated that maximum extraction occurred within the range
50–60 ◦C for lutein, thus unfolding an increase in mass transfer rate with temperature—and indicating
that 60 ◦C is the most appropriate temperature, as reported previously [35,36,39]. Nevertheless,
temperature had no strong influence upon extraction of β-carotene; its concentration was similar
(p < 0.05) in extracts obtained within of 40–70 ◦C but higher when compared the one obtained at 30 ◦C.
Temperature affects viscosity and solubility of solvents but it may also promote isomerization and
decomposition of labile target chemicals [22] which elucidate the slight decrease in lutein concentration
observed at 70 ◦C (Figure 2B). Several pieces of evidence show that antioxidant capacity measured
by ABTS•+ of such microalga extracts as Haematococcus pluvialis, seems to relate to free carotenoid
content, mainly lutein [24,39,40]; whereas a decrease in antioxidant capacity seems relate to the lower
carotenoid content of the extracts [39]. As expected, the antioxidant profile of ABTS•+ (Figure 2C)
is similar to that obtained for carotenoids (Figure 2B), thus confirming that they are the compounds
mainly responsible for such bioactivity.

On the other hand, fatty acids may contribute to the antioxidant activity, in addition to
carotenoids [41]. This fact could be observed particularly at 60 ◦C, where the extract with higher
content in carotenoids and in achieved also the better best antioxidant results in either DPPH• or
ABTS•+ assay (Figure 2C). However, other compounds with antioxidant capacity (not identified) are
also co-extracted—like chlorophylls, phenolic compounds or other hydrophilic compounds and may
also contribute to the antioxidant activity measured [42].

Therefore, the optimum temperature is ca. 60 ◦C, in agreement with previously studies [26].

2.4. Total Solvent Volume Optimization

The use of low solvent volumes in PLE extraction is one of its key points supporting applicability
at industrial scale [25]—by reducing costs and being more environmental friendly. As stated before, the
volume used so far was in excess; hence, so in a first attempt to reduce solvent volume and thus find the
optimum ethanol volume, 150 mL of extract were collected in distinct and sequential fractions in order
to determine compounds concentration and antioxidant capacity thereof. At the optimized conditions
of temperature and solvent flow, 60 ◦C and Q3, the total extract volume (150 mL) was collected in
3 sequential fractions: 1st fraction of 12.5 mL (1F), 2nd fraction of 12.5 mL (2F) and 3rd fraction of
125 mL (3F). Results showed that total extract mass yields in 1F, 2F and 3F were 17.2 ± 0.1, 4.5 ± 0.4
and 6.9 ± 1.2% mE/mB, respectively. Hence, more than 60% of mass extract was concentrated in
1F—which corresponds to 8.3% of the initial volume of ethanol used so far, in terms of solvent volume.

Biochemical profile of extracts obtained from sequentially collected volume fractions, from 50 mg
biomass, at 60 ◦C and solvent ethanol flow of Q3, are depicted in Figure 3. Analysing 1F fatty acids
content of (Figure 3A), 29% of total fatty acids were herein obtained, as well as 42% of total extracted
carotenoids, particularly β-carotene and lutein—which contained 70% of β-carotene and ca. 41% of
lutein. The 2F composition (Figure 3A), although only 27% of carotenoids being extracted, 96% of it is
lutein. In terms of fatty acids, 2F contain only ca. 23% of total fatty acids but a particular high content
in 18:2 n6 c was extracted in this fraction—ca. 73.5% of total content on this PUFA. The main content of
F3 is fatty acids (Figure 3A), ca. of 47% of the total fatty acids. Also, 3F is particularly rich in PUFA,
with a content superior above 37%. In this fraction, the trans form of 18:2 n6 (ca. 72% of total content of
this PUFA) was preferentially extracted. This observation is particularly interesting because it became
possible to obtain different extracts with particular high content of the different isomers of the same
fatty acid, namely18:2 n6 cis form in 2F and 18:2 n6 trans form in 3F. This may be of relevance due to
the association of pro-inflammatory effects and promotion of coronary disease to intake of trans form
of some PUFA [43]. In terms of carotenoids, F3 contains 30% of total carotenoids, being 94% which
is lutein.
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Figure 3. Extracts biochemical profile (mean ± standard deviation)obtained from 50 mg biomass, at
60 ◦C and ethanol flow of Q3, in the sequentially collected volume fractions (bars for the same assay,
without a common superscript, are significantly different, p < 0.05); (A) Fatty acid profile expressed as

µgFA·mgE (n = 6)
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expressed in equivalent of PI mgPI·mgE−1 (n = 6) of  Lutein and  β-carotene; (C) Antioxidant 
capacity of the extract obtained in  ABTS+• and  DPPH• assays expressed in trolox equivalent 
(TE) per extract mass, μTE·mgE−1 (n = 9). 

In terms of in ABTS•+ assay results, the fraction antioxidant activity was expected to follow 
carotenoid composition, 1F yielding higher results in terms of carotenoids. However, the best 
antioxidant activity in this assay was attained in 3F, being suspected that other compounds beyond 
carotenoids, such as some PUFA and phenolic compounds, may be contributing to total antioxidant 
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is the purpose); and 3F contains particular high antioxidant activity and high content in fatty acid. 
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60 °C and ethanol flow of Q3, in the sequentially collected volume fractions (bars for the same assay, 
without a common superscript, are significantly different, p < 0.05); (A) Fatty acid profile expressed 
as μgFA·mgE (n = 6)  1F (12.5 mL),  2F (12.5 mL),  3F (125 mL); (B) Carotenoid content 
expressed in equivalent of PI mgPI·mgE−1 (n = 6) of  Lutein and  β-carotene; (C) Antioxidant 
capacity of the extract obtained in  ABTS+• and  DPPH• assays expressed in trolox equivalent 
(TE) per extract mass, μTE·mgE−1 (n = 9). 

In terms of in ABTS•+ assay results, the fraction antioxidant activity was expected to follow 
carotenoid composition, 1F yielding higher results in terms of carotenoids. However, the best 
antioxidant activity in this assay was attained in 3F, being suspected that other compounds beyond 
carotenoids, such as some PUFA and phenolic compounds, may be contributing to total antioxidant 
capacity [44]. 

The study of composition of different extract fractions and bioactivity provided a comprehensive 
understanding of the potential application for nutraceutical purposes. This optimization stage 
showed that is possible to obtain extracts with different characteristics and to perform multiple 
compound extractions within the same procedure. The 1F is highly concentrated in lutein and β-
carotene; 2F is particularly rich in lutein and 18:2 n6 c, so it is easier to purify this carotenoid (if that 
is the purpose); and 3F contains particular high antioxidant activity and high content in fatty acid. 
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The extraction process depends on the time needed to reach equilibrium between the compound 
concentration in the sample matrix and the solvent [26]. Therefore, in an attempt to optimize the 
extraction of lipid component and reduce volume of solvent, the contact between solvent and matrix 
was increased by making the recirculation of the 1F for several cycles. Each time the solvent volume 
of 1F (12.5 mL) passes through the column corresponded to 1 cycle of recirculation (1C); and 1C takes 
4 min. Hence, 1F recirculation was tested from 2 to 5 cycles (C). Results of % mass of extract obtained 
per mass of biomass (me/mb) in the former section showed that 1F (=1C) was not saturated. It was 
observed an increase of 21% in terms of mE/mB when recirculation was up to 2 or 3 cycles and an 
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Figure 1. Biochemical profile of extracts (mean ± standard deviation) obtained from 50 mg-biomass 
in the various ethanol flows tested at 40 °C (bars for a common compound acid, without a common 
superscript, are significantly different, p < 0.05). (A) Fatty acid profile expressed as μgFA·mgE−1, (n = 6) 
obtained in  Q1 (1 mL·min−1);  Q2 (2 mL·min−1);  Q3 (3 mL·min−1) and  Q4 (4 mL·min−1); (B) 
Carotenoids content expressed in equivalent of PI (trans-β-Apo-8′-carotenal), mgPI·mgE−1 (n = 6)  
Lutein and  β-carotene; and (C) Antioxidant capacity expressed in trolox equivalent (TE) per 
extract mass, μTE·mgE−1 (n = 9), obtained in  ABTS+• and  DPPH• assays. 

As expected, the antioxidant capacity of the extracts obtained varied according to their content 
in carotenoids and fatty acids—see Figure 1. Hence, the antioxidant capacity as assessed by the 
ABTS•+ revealed no differences between extracts—except for Q4, which exhibited a higher 
concentration in antioxidant compounds, probably reflecting its higher lutein content. In terms of 
DPPH• assay, Q3 and Q1 extracts attained the best results, probably for being richer in fatty acids. 

According to effect upon compound extraction, Q3 flow rate was selected to proceed. 

2.3. Temperature Optimization 

Once biomass amount and solvent flow rate defined, the next stage was testing the influence of 
temperature on carotenoids and PUFA extraction. 

Solvent pressure changes with increasing of temperature due a decrease of viscosity. Therefore, 
using 50 mg of biomass, at a solvent flow rate of Q3 (3 mL·min−1), pressures of 212, 210, 195, 180 and 
168 bar were observed at solvent temperatures of 30, 40, 50, 60 and 70 °C, respectively. Temperature 
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Figure 1. Biochemical profile of extracts (mean ± standard deviation) obtained from 50 mg-biomass 
in the various ethanol flows tested at 40 °C (bars for a common compound acid, without a common 
superscript, are significantly different, p < 0.05). (A) Fatty acid profile expressed as μgFA·mgE−1, (n = 6) 
obtained in  Q1 (1 mL·min−1);  Q2 (2 mL·min−1);  Q3 (3 mL·min−1) and  Q4 (4 mL·min−1); (B) 
Carotenoids content expressed in equivalent of PI (trans-β-Apo-8′-carotenal), mgPI·mgE−1 (n = 6)  
Lutein and  β-carotene; and (C) Antioxidant capacity expressed in trolox equivalent (TE) per 
extract mass, μTE·mgE−1 (n = 9), obtained in  ABTS+• and  DPPH• assays. 

As expected, the antioxidant capacity of the extracts obtained varied according to their content 
in carotenoids and fatty acids—see Figure 1. Hence, the antioxidant capacity as assessed by the 
ABTS•+ revealed no differences between extracts—except for Q4, which exhibited a higher 
concentration in antioxidant compounds, probably reflecting its higher lutein content. In terms of 
DPPH• assay, Q3 and Q1 extracts attained the best results, probably for being richer in fatty acids. 
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As expected, the composition of each fraction affected its antioxidant capacity. The different
assays are sensible to different groups of compounds; the DPPH• activity is better correlated to PUFA
which content mostly contribute to this radical scavenging. Observing results, Figure 3, the profile in
antioxidant capacity of each fraction follows it content in PUFA. 1F and 2F do not present statistical
differences in antioxidant capacity for DPPH• and contain very similar percentages of PUFA (around
35%) and 3F showed the highest antioxidant activity and the highest composition in PUFA, 50% of
total fatty acids.

In terms of in ABTS•+ assay results, the fraction antioxidant activity was expected to follow
carotenoid composition, 1F yielding higher results in terms of carotenoids. However, the best
antioxidant activity in this assay was attained in 3F, being suspected that other compounds beyond
carotenoids, such as some PUFA and phenolic compounds, may be contributing to total antioxidant
capacity [44].

The study of composition of different extract fractions and bioactivity provided a comprehensive
understanding of the potential application for nutraceutical purposes. This optimization stage showed
that is possible to obtain extracts with different characteristics and to perform multiple compound
extractions within the same procedure. The 1F is highly concentrated in lutein and β-carotene; 2F is
particularly rich in lutein and 18:2 n6 c, so it is easier to purify this carotenoid (if that is the purpose);
and 3F contains particular high antioxidant activity and high content in fatty acid.
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Cycles of Solvent Recirculation

The extraction process depends on the time needed to reach equilibrium between the compound
concentration in the sample matrix and the solvent [26]. Therefore, in an attempt to optimize the extraction
of lipid component and reduce volume of solvent, the contact between solvent and matrix was increased
by making the recirculation of the 1F for several cycles. Each time the solvent volume of 1F (12.5 mL)
passes through the column corresponded to 1 cycle of recirculation (1C); and 1C takes 4 min. Hence,
1F recirculation was tested from 2 to 5 cycles (C). Results of % mass of extract obtained per mass of
biomass (me/mb) in the former section showed that 1F (=1C) was not saturated. It was observed an
increase of 21% in terms of mE/mB when recirculation was up to 2 or 3 cycles and an increase of 65% of
mE/mB when recirculation was up to 4 or 5 cycles (Figure S2 of Supplementary Data).

As expected, the fatty acid concentration depicted in Figure 4A seems to increase with the number
of cycles. Compared to 1C, fatty acids had the following average extraction improvement using
5C: 3-fold for 18:1 n9, 5-fold for C 18:2 n6 t and 9-fold for C18:3 n3 (Figure 4A). Although ASE
systems usually work in sequential cycles of static volume, this effect was observed before [25] in fatty
acid recovery.
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Figure 4. Extracts biochemical profile (mean ± standard deviation) obtained from 50 mg biomass,
at 60 ◦C and ethanol flow of Q3, in in tested cycles of recirculation (bars for a common carotenoid,
without a common superscript, are significantly different p < 0.05). (A) Fatty acid profile expressed

as µgFA·mgE (n = 6) obtained in
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extract mass, μTE·mgE−1 (n = 9), obtained in  ABTS+• and  DPPH• assays. 
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The aforementioned phenomenon was also observed in carotenoid extraction: lutein content
increased about 1.4-fold, from 1C to 3C. In the case of β-carotene, the increase was significantly
more pronounced; it had an increase of 10-fold from 1C to 3C. The yield of carotenoids increased at
12 min (3C) of extraction; with additional cycles, the extraction is most likely desorption/diffusion
controlled, as pointed out [20]. A too long extraction may also induce degradation of more sensitive
carotenoids [20], as observed in β-carotene extraction in cycles longer than 3C (Figure 4B).

In terms of antioxidant capacity, using the in ABTS•+ assay, the increase of cycle of recirculation
followed increase of carotenoid content of extracts, more precisely lutein content, thus proving that
these carotenoids had a more pronounced contribution for such a bioactivity. In terms of DPPH•

assay, in general, the profile of antioxidant capacity follows the PUFA profile along the sequence of
cycles of recirculation. However, it was expected that antioxidant activity of 5C be higher due the
high concentration in PUFA. Carotenoids may also have some influence in this antioxidant assay and
degradation of β-carotene may have also contributed to DPPH• results in 5C.

2.5. Comparison of Lab-Made CPSE System with Ultrasound Assisted Extraction

Common PLE has been widely compared to other extraction techniques usually used in the industry
to extract antioxidant compounds such as maceration, ultrasound assisted extraction (UAE) and Soxhlet
extraction [45]. Advantages of PLE arise chiefly from lower volume, shorter extraction time and potential
for automation [27]. In this work, a classic UAE was used for comparison and validation of results obtained
with our CPSE system—carefully conducted to avoid isomerization and degradation of compounds.
Towards this goal, the extraction conditions were the same those optimized in CPSE—both in terms of
biomass amount (50 mg) and solvent volume (12.5 mL). Results presented in Table 2 compare results
of UAE with the ones obtained with optimized CPSE. In overall, it was observed that compound
concentration in CPSE system is generally superior to that obtained in UAE [42,46]. While carotenoids
content is significantly greater when obtained in CPSE (about 2.3-fold for lutein and 15-fold forβ-carotene),
UAE attained the same or better yields of fatty acids extraction. The exception was observed only in
the extraction of C16:0 and two PUFA (C18:1 n9 and C18:3 n3)—with extraction yields of an average of
1.3-fold, 1.4-fold and 9.6-fold higher, respectively. This might in fact be considered as an advantage of
CPSE over UAE, once the system developed with 5C seems to be particular by selective to these two
bioactive PUFA. Their selectivity of extraction, together with the superior results in carotenoids extraction
yields, justifies the better results in terms of antioxidant capacity.

Table 2. Comparison of results (mean ± standard deviation) obtained during optimization of
Continuous pressurized ethanol extraction system (CPSE), with ultrasound-assisted extraction (UAE).
Better results pertaining to extraction of each particular compound are marked in bold.

Extraction Methods Tested

UAE Optimized Conditions of CPSE

Fatty acids
(µgFA·mgE

−1)

14:0 9.9 ± 1.4 a 10.0 ± 1.9 (5C) a

16:0 38.5 ± 4.1 50.8 ± 2.5 (5C)
16:1 2.9 ± 0.2 a 2.9 ± 1.5 (5C) a

18:0 0.9 ± 0.2 a 1.5 ± 0.6 (5C) a

18:1 n9 23.5 ± 0.9 33.8 ± 8.7 (5C) *
18:2 n6 t 18.8 ± 2.0 a 23.8 ± 5.2 (5C) a

18:2 n6 c 4.8 ± 0.1 a 1.8 ± 1.1 (5C) a

18:3 n6 6.1 ± 1.1 3.3 ± 1.3(5C)
18:3 n3 2.9 ± 0.1 27.9 ± 4.2 (5C)

Carotenoids
(mgPI·mgE

−1)
Lutein 1.22 ± 0.18 2.9 ± 0.1 (3C)

β-Carotene 0.10 ± 0.01 a 1.5 ± 0.1 (3C)

Antioxidant capacity
(µgTE·mgE

−1)
ABTS+• 121.6 ± 6.2 168.7 ± 4.3 (3C)
DPPH• 395.1 ± 10.9 423.4 ± 10.6 (3C)

a–c Means within the same row, without a common superscript, are significantly different (p < 0.05; * p < 0.01).



Mar. Drugs 2018, 16, 327 11 of 17

Therefore, CPSE extraction system offers the advantage of allowing better extraction yields,
in a shorter time (about 3.8-fold less) and in a single step.

3. Materials and Methods

3.1. Microalga Source and Biomass Production

Gloeothece sp. (ATCC 27152), obtained from ATCC (American Type Culture Collection,
Manassas, VA, USA), was produced in batch mode in 5 L-flasks containing 4.5 L of Blue Green
medium (BG11) [47] buffered with Tri-(hydroxymethyl)-aminomethane hydrochloride (Tris-HCl)
25 mM, at 25 ◦C and pH 8. Continuous illumination was provided via fluorescent BIOLUX lamps
(250 µmolphoton·m−2·s−1) and air was bubbled at a flow rate of 0.5 L·min−1. To ensure the microalga
was in the exponential growth phase, a pre-inoculum at an initial optical density of 0.1 at 680 nm was
used for 10 days in 800 mL of the same medium. After 14 days of growth, biomass was centrifuged
at 4000 rpm for 10 min and biomass freeze-dried and stored under nitrogen in a desiccator prior
to utilization.

3.2. Continuous Pressurized Solvent Extraction

The lab-made continuous pressurized solvent extraction system (CPSE) was designed (and built)
to allow a pressurized solvent pass through a column containing microalgal biomass, at a pre-set
temperature. As depicted in Figure 5, it is mainly composed of an HPLC solvent injection pump
(Hitachi L-2130, Tokyo, Japan) which pressurizes solvent at a set flow-rate (between 0.1–10 mL·min−1)
and pressure (up to 360 bar); an extraction hollow column filled with microalgal biomass and
an excipient (Ottawa sand); and a temperature-controlled chamber, which allows the system to
be kept at the desired temperature.
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Figure 5. Scheme of the lab continuous pressurized solvent extraction (CPSE) system. This system is
composed by a (A) solvent reservoir; (B) temperature controlled chamber; (C) HPLC solvent injection
pump; (D) pre-heating coil; (E) extraction column; and (F) extract reservoir.

The solvent reservoir was kept at the chosen temperature and pumped, at a set flow rate,
to a stainless pre-heating coil, 1 m-long and 1 mm for internal diameter—which guarantees that
solvent is at the chosen temperature before entering the extraction column. The extraction column
placed inside the temperature-controlled chamber is 15 cm-long and has 50 mm of internal diameter,
being closed with filter end fittings. The exit tube was 2 m-long, with an internal diameter of 50 µm
(which keeps the system pressurized) and ends in the extract reservoir. In order to avoid leaks,
the whole system was tested at the maximum operating pressures and temperatures. Furthermore,
the system allows flushing of solvent in the tubes at the end of each assay, without the need for any
inert gas (e.g., N2). As the entire system is closed, it avoids contact with O2. Between runs, the entire
system was cleaned with fresh solvent to avoid any remaining extract becoming a carryover.

In each assay, the extraction column was filled in consecutive layers with inert Ottawa sand,
Gloeothece sp. freeze-dried biomass and another layer of Ottawa sand. To guarantee a homogeneous
particle size (in order to avoid diffusion paths), Gloeothece sp. freeze-dried biomass was standardized [34].
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To assure that the whole system remains at constant temperature, solvent, pre-heating coil and
column were placed in the temperature-controlled chamber for at least 5 min for pre-heating.

In order to summarize all optimization stages, tested conditions are depicted below in Table 3.

Table 3. Conditions and operating conditions tested at all stages of CPSE optimization.

Stage Abbreviation Condition Tested Operating Conditions

1 Biomass
M50 50 mg DWbiomass Q: 2 mL·min−1

T: 40 ◦C
Vethanol: 150 mL

M100 100 mg DWbiomass
M150 150 mg DWbiomass

2 Flow

Q1 1 mL·min−1
DWbiomass: 50 mg

T: 60 ◦C
Vethanol: 150 mL

Q2 2 mL·min−1

Q3 3 mL·min−1

Q4 4 mL·min−1

3 Temperature

T30 30 ◦C
DWbiomass: 50 mg

Q: 3 mL·min−1

Vethanol: 150 mL

T40 40 ◦C
T50 50 ◦C
T60 60 ◦C
T70 70 ◦C

4

Fractions of total
solvent volume

1F 1st fraction of 12.5 mL DWbiomass: 50 mg
Q: 3 mL·min−1

T: 60 ◦C
2F 2nd fraction of 12.5 mL
3F 3rd fraction of 125 mL

Cycles of solvent
recirculation

1C (1F) 1 cycle; 4 min DWbiomass: 50 mg
Q: 3 mL·min−1

T: 60 ◦C
Vethanol: 12.5 mL

2C 2 cycles; 8 min
3C 3 cycles; 12 min
4C 4 cycles; 16 min
5C 5 cycles; 20 min

Extraction Conditions Optimization

The operation conditions of this CPSE system were optimized sequentially along four stages:
(1) amount of biomass in extractor; (2) solvent flow/pressure (mL·min−1); (3) temperature (◦C);
and (4) total volume of solvent used (mL). As the optimization stages progressed, the conditions were
redefined based on the results obtained at so far; the conditions were there generating an extract with
higher lipidic component (carotenoids and PUFA) and better total antioxidant capacity.

Selection of the correct solvent is one of the most crucial factors affecting pressurized extraction.
The targeted compounds were fatty acids and carotenoids; and based on an earlier study [29] and
studies elsewhere [20,25,39,42], ethanol was selected. Besides its relatively low environmental impact,
it has a positive net energy balance—and a generally recognized as safe (GRAS) status—an extra
advantage for its applicability by the nutraceutical industry [20].

To establish the best biomass amount to perform extraction, 50, 100 and 150 mg of freeze-dried
biomass were assayed (at medium-low temperature, 40 ◦C and ethanol flow rates of 2mL·min−1,
respectively). The influence of solvent flow/pressure was studied using the previous selected
biomass amount; hence, four different flow rates were tested—1, 2, 3 and 4 mL·min−1. Once the best
combination of biomass amount and solvent flow was attained, several system temperatures were
tested, viz. 30, 40, 50, 60 and 70 ◦C, reaching pressures of 212, 210, 195, 180 and 168 bar, respectively.

Until this point, all solvent used was circulating in an open continuous flow; to reduce use of
solvent volume, this condition was optimized as last stage. Therefore, the extract was collected first in
several fractions along the extraction process—and the content in PUFA, carotenoids and antioxidant
capacity were determined in each fraction. Determination of minimum solvent volume corresponds
to the cumulative volume of the fraction that contained the major amount of lipidic component and
antioxidant capacity. In order to improve extraction efficiency, the minimum volume found was
employed in recirculation mode in the CPSE system, connecting the extracts reservoir to the inlet
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solvent injection pump and making it pass again through the column. In this way, each time the solvent
passed through the column defined one cycle—so, several cycles, of solvent recirculation were tested:
2, 3, 4 and 5 cycles which correspond to 4, 8, 12, 16 and 20 min. By the end of each cycle, the system
was purged, the column detached and the system closed and submitted to a cleaning cycle with hot
solvent for 5 min. All extractions were performed in triplicate, extracts were dried and maintained
under N2 atmosphere till analysis. Aliquots of each extract were used to determine contents in fatty
acids and carotenoids, as well as their antioxidant capacity.

3.3. Ultrasound Assisted Extraction

Ultrasound-assisted extraction was performed with 50 mg of freeze dried biomass and sequential
addition of 2 mL of ethanol, until a final volume of 12.5 mL. In the first addition of solvent, cells
were submitted to disruption by applying 15 min of continuous sonication at 45 KHz (USC100T VWR
ultrasonic bath). Between each addition, the extract was stirred for 20 min at 250 rpm, centrifuged at
20,000 rpm for 5 min and the supernatant (extract) collected and stored at 4 ◦C. To completely remove
cells debris, extracts were filtered through 0.45 µm pore size and then stored under nitrogen, at −20 ◦C
in darkness, prior to analysis.

3.4. Antioxidant Scavenging Capacity Assessment of Extracts

3.4.1. ABTS+• Scavenging Capacity

An aliquot of each extract obtained through the CPSE system was evaporated and the residue
re-suspended in ethanol:water, 50:50 (v/v) to a final concentration of 1 mg·mL−1. The ABTS+•

radical-scavenging capacity of the extracts was assessed in triplicate, as described elsewhere [23,30].
For quantification, a calibration curve using a known antioxidant—Trolox, was prepared, so antioxidant
capacity of extract was expressed as equivalents of Trolox (µTE·mgE

−1).

3.4.2. DPPH• Scavenging Capacity

An aliquot of each extract was likewise evaporated and the residue resuspended in methanol
to a final concentration of 5 mg·mL−1. In this spectrophotometric assay, the scavenging reaction
was measured after incubation for 30 min of 1 mL DPPH• with 125 µL of sample, as described
elsewhere [29]. Measures were performed at 515 nm and quantification was performed as described
above, being antioxidant capacity of extracts expressed in Trolox equivalents (µTE·mgE

−1).

3.5. Compound Identification

3.5.1. Determination of Carotenoid Profile

To identify and then quantify carotenoids (including β-carotene and lutein, in particular),
high-performance liquid chromatography (HPLC) was employed as analytical technique. An aliquot
from each extract was evaporated and suspended to a concentration of 15 mg·mL−1 and
β-apo-carotenol (Sigma) was used as an internal standard. The carotenoid profile was produced
in a Merck-Hitachi HPLC system, equipped with a Diode Array Detector (DAD) Merck-Hitachi
L-7450—to resolve, detect and identify the various chemical compounds of interest. The absorption
spectra were recorded between 270 and 550 nm. The stationary-phase was a 4 × 250 mm Purospher
Star RP-18e (5 µm) column (Merck). The mobile-phase was constituted by solvent A—ethyl acetate
and solvent B—acetonitrile/water at 9:1 (v/v), both from VWR, at various volumetric ratios along
elution time, for an overall flow rate of 1 mL min−1. The following gradient was used: 0–31 min
(0–60% A); 31–46 min (60% A); 46–51 min (60–100% A); 51–55 min (100% A); 55–60 min (100–0% A);
and 60–65 min (0% A). The elution times of the chromatographic standards were: lutein 14.4 min
and β-carotene 34.4 min. Standards were purchased in CarotNature, Lutein (No. 0133, Xanthophyll,
(3R,3′R,6′R)-β,ε-Carotene-3,3′-diol with 5% Zeaxanthin and purity of 96%), β-carotene (No. 0003,
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β, β -Carotene with 96% purity) and β-apo-carotenol (No. 0482, 8′-Apo- β -caroten-8′-al with 97%,
purity). Identification was by comparison of retention times and UV–visible photo-diode array spectra,
following a previous procedure [40].

3.5.2. Determination of Fatty Acid Profile

Fatty acid methyl esters were produced from 5 mL evaporated aliquot of each extraction obtained
by direct transesterification—according to the acidic method described by Lepage and Roy [48],
after modifications introduced by Cohen et al. [49] using heptadecanoic (C17:0) acid as an internal
standard and acetyl chloride as a catalyst. Esters were analysed in a GC Varian Chromapack CP-3800
gas chromatograph (GC), using a flame ionization detector and quantified with the software Varian
Star Chromatography WorkStation (Version 5.50). A silica CP-WAX 52 CB (Agilent) column was used
and helium was employed as carrier gas in splitless mode. Injector and detector were maintained at
260 and 280 ◦C, respectively, and the oven heating program started at 100 ◦C holding this temperature
for 5 min. Temperatures increased till 180 ◦C, at a rate of 6 ◦C min−1 and again till 200 ◦C at 2 ◦C
min−1. Temperature was continuously increased till 205 ◦C but at a slower rate of 0.5 ◦C min−1 and
then faster at 1 ◦C min−1 till 230 ◦C. Finally, maximum temperature was reached 233 ◦C at a rate
of 0.5 ◦C min−1. Chromatographic grade standards of fatty acids in methyl ester form CRM47885
(Supelco) were used for tentative identification, based on retention times: C13:0, C14:0, C14:1, C15:0,
C15:1, C16:0, C16:1, C17:0, C17:1, C18:0, C18:1 n9-cis + trans, C18:2 n6, C18:2 n6 c, C18:3 n6, C18:3 n3,
C20:0, C20:1, C20:5 n3, C21:0, C22:0, C22:2, C22:1 n9. The mean of the results from the aforementioned
chemical assays was used as a datum point.

3.6. Statistical Analysis

The experimental data were analysed using GraphPad Prism v. 5.0. A first diagnostic unfolded
a non-normal distribution of the data, so 1-way ANOVA with Tukey’s multi-comparison test was
used to assess variances between different extract in terms of carotenoid content and antioxidant
capacity; and two-way ANOVA with the same multi-comparison test in fatty acid content for extraction
conditions. Since each datum point had been replicated, a representative measure of variability was
available in all cases to support said statistical analyses.

4. Conclusions

Our low cost, laboratory scale CPSE system proved versatile and effective in obtaining a bioactive
extract rich in carotenoids and PUFA for nutraceutical purposes. The optimum conditions found,
in terms of temperature and pressures were 60 ◦C and 180 bar. These values are lower than those used
by competing PLE methods, which means lower need of energy and thus lower cost.

It is possible to obtain bioactive extract with different compositions, by collecting sequential
fractions of the extract—thus reinforcing the versatility of the system developed and making it
particularly attractive for nutraceutical purposes.

Furthermore, the possibility of operating in a continuous closed mode and with a GRAS solvent,
makes it possible to optimize the extraction yield of bioactive compounds in environmental friendly
way and with the use of fewer resources (biomass and solvent) thus lowering costs and environmental
impact. Therefore, with CPSE makes it possible to generate antioxidant extract rich in carotenoids
(using 3 cycles of ethanol recirculation) or fatty acids (5 cycles of ethanol recirculation).

When compared to conventional methods, namely ultrasound assisted extraction (UAE), our CPSE
proved more efficient in terms of bioactive compound extraction (carotenoids and PUFA).

Upon eventual scale-up, this system appears promising. This preliminary study was aimed at
contributing to more efficient and proper exploitation of microalgal bioactive compounds.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/16/9/327/s1.

http://www.mdpi.com/1660-3397/16/9/327/s1


Mar. Drugs 2018, 16, 327 15 of 17

Author Contributions: H.M.A. and A.C.G. conceived and designed the experiments; H.M.A. with tutoring of
M.C.A.P. performed the HPLC analysis. HMA together with A.C.G. analysed the data and wrote the paper; I.S.-P.
and F.X.M. besides contributing with Funding Acquisition that allowed the purchase of reagents, materials and
analysis tool, they also provided and accurate reviewing of article.

Funding: This work was financially co-supported by: ZEBRALGRE (PTDC/CVT-WEL/5207/2014),
founded by national funds through FCT supported by COMPETE 2020: Programa Operacional
Competitividade e Internacionalização (POCI)-01-0145-FEDER-016797; by the Structured Program of R&D&I
INNOVMAR—Innovation and Sustainability in the Management and Exploitation of Marine Resources, reference
NORTE-01-0145-FEDER-000035, namely within the Research Line NOVELMAR—Novel marine products with
biotechnological applications, within the R&D Institution CIIMAR (Interdisciplinary Centre of Marine and
Environmental Research), supported by the Northern Regional Operational Programme (NORTE2020), through the
ERDF; and by DINOSSAUR—PTDC/BBB-EBB/1374/2014-POCI-01-0145-FEDER-016640, funded by FEDER funds
through COMPETE2020—POCI and by national funds through FCT—Fundacão para a Ciência e a Tecnologia, I.P.

Acknowledgments: A PhD fellowship (ref. SFRH/BD/62121/2009) for author H.M.A., supervised by
author F.X.M. and co-supervised by authors I.S.P. and A.C.G., was granted by Fundação para a Ciência e
Tecnologia (FCT, Portugal), under the auspices of ESF and Portuguese funds (MEC). A postdoctoral fellowship
(ref. SFRH/BPD/72777/2010) was granted to author A.C.G., supervised by author F.X.M. and co-supervised by
author I.S.P., also under the auspices of ESF and MEC.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Borowitzka, M.A. High-value products from microalgae—Their development and commercialisation.
J. Appl. Phycol. 2013, 25, 743–756. [CrossRef]

2. Ahsan, M.; Habib, B.; Parvin, M. FAO Fisheries and Aquaculture Circular No. 1034: A Review on Culture,
Production and Use of Spirulina as Food for Humans and Feeds for Domestic Animals and Fish; Food and Agriculture
Organization: Rome, Italy, 2008.

3. García, J.L.; Vicente, M.; Galán, B. Microalgae, old sustainable food and fashion nutraceuticals.
Microb. Biotechnol. 2017, 10, 1017–1024. [CrossRef] [PubMed]

4. Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae.
J. Biosci. Bioeng. 2006, 101, 87–96. [CrossRef] [PubMed]

5. Alsenani, F.; Ahmed, F.; Schenk, P. Nutraceuticals from Microalgae. In Nutraceuticals and Functional
Foods in Human Health and Disease Prevention; Bagchi, D., Preuss, H.G., Swaroop, A., Eds.; CRC Press:
Boca Raton, FL, USA, 2015; pp. 673–684.

6. Guedes, A.C.; Amaro, H.M.; Malcata, F.X. Microalgae as sources of carotenoids. Mar. Drugs 2011, 9, 625–644.
[CrossRef] [PubMed]

7. Amaro, H.M.; Guedes, A.C.; Malcata, F.X. Advances and perspectives in using microalgae to produce
biodiesel. Appl. Energy 2011, 88, 3402–3410. [CrossRef]

8. Guedes, A.C.; Barbosa, C.R.; Amaro, H.M.; Pereira, C.I.; Xavier Malcata, F. Microalgal and cyanobacterial cell
extracts for use as natural antibacterial additives against food pathogens. Int. J. Food Sci. Technol. 2011, 46,
862–870. [CrossRef]

9. Venturi, F.; Sanmartin, C.; Taglieri, I.; Nari, A.; Andrich, G.; Terzuoli, E.; Donnini, S.; Nicolella, C.; Zinnai, A.
Development of Phenol-Enriched Olive Oil with Phenolic Compounds Extracted from Wastewater Produced
by Physical Refining. Nutrients 2017, 9, 916. [CrossRef] [PubMed]

10. Guedes, A.C.; Amaro, H.M.; Malcata, F.X. Microalgae as sources of high added-value compounds—A brief
review of recent work. Biotechnol. Prog. 2011, 27, 597–613. [CrossRef] [PubMed]

11. Vanthoor-Koopmans, M.; Wijffels, R.H.; Barbosa, M.J.; Eppink, M.H.M. Biorefinery of microalgae for food
and fuel. Bioresour. Technol. 2013, 135, 142–149. [CrossRef] [PubMed]

12. Zinnai, A.; Sanmartin, C.; Taglieri, I.; Andrich, G.; Venturi, F. Supercritical fluid extraction from microalgae
with high content of LC-PUFAs. A case of study: Sc-CO2 oil extraction from Schizochytrium sp.
J. Supercrit. Fluids 2016, 116, 126–131. [CrossRef]

13. Molina Grima, E.; Belarbi, E.H.; Acien Fernandez, F.G.; Robles Medina, A.; Chisti, Y. Recovery of microalgal
biomass and metabolites: Process options and economics. Biotechnol. Adv. 2003, 20, 491–515. [CrossRef]

14. Ceron, M.C.; Campos, I.; Sanchez, J.F.; Acien, F.G.; Molina, E.; Fernandez-Sevilla, J.M. Recovery of lutein
from microalgae biomass: Development of a process for Scenedesmus almeriensis biomass. J. Agric. Food Chem.
2008, 56, 11761–11766. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10811-013-9983-9
http://dx.doi.org/10.1111/1751-7915.12800
http://www.ncbi.nlm.nih.gov/pubmed/28809450
http://dx.doi.org/10.1263/jbb.101.87
http://www.ncbi.nlm.nih.gov/pubmed/16569602
http://dx.doi.org/10.3390/md9040625
http://www.ncbi.nlm.nih.gov/pubmed/21731554
http://dx.doi.org/10.1016/j.apenergy.2010.12.014
http://dx.doi.org/10.1111/j.1365-2621.2011.02567.x
http://dx.doi.org/10.3390/nu9080916
http://www.ncbi.nlm.nih.gov/pubmed/28829365
http://dx.doi.org/10.1002/btpr.575
http://www.ncbi.nlm.nih.gov/pubmed/21452192
http://dx.doi.org/10.1016/j.biortech.2012.10.135
http://www.ncbi.nlm.nih.gov/pubmed/23186688
http://dx.doi.org/10.1016/j.supflu.2016.05.011
http://dx.doi.org/10.1016/S0734-9750(02)00050-2
http://dx.doi.org/10.1021/jf8025875
http://www.ncbi.nlm.nih.gov/pubmed/19049289


Mar. Drugs 2018, 16, 327 16 of 17

15. Luengo, E.; Martinez, J.M.; Coustets, M.; Alvarez, I.; Teissie, J.; Rols, M.P.; Raso, J. A comparative study
on the effects of millisecond- and microsecond-pulsed eectric field treatments on the permeabilization and
extraction of pigments from Chlorella vulgaris. J. Membr. Biol. 2015, 248, 883–891. [CrossRef] [PubMed]

16. Iqbal, J.; Theegala, C. Optimizing a continuous flow lipid extraction system (CFLES) used for extracting
microalgal lipids. GCB Bioenergy 2013, 5, 327–337. [CrossRef]

17. Raut, P.; Bhosle, D.; Janghel, A.; Deo, S.; Verma, C.; Kumar, S.S.; Agrawal, M.; Amit, N.; Sharma, M.;
Giri, T.; Tripathi, D.K. Emerging Pressurized Liquid Extraction (PLE) Techniques as an Innovative Green
Technologies for the Effective Extraction of the Active Phytopharmaceuticals. Res. J. Pharm. Technol.
2015, 8, 800. [CrossRef]

18. Otero, P.; Quintana, S.E.; Reglero, G.; Fornari, T.; Garcia-Risco, M.R. Pressurized Liquid Extraction (PLE) as
an Innovative Green Technology for the Effective Enrichment of Galician Algae Extracts with High Quality
Fatty Acids and Antimicrobial and Antioxidant Properties. Mar. Drugs 2018, 16, 156. [CrossRef] [PubMed]

19. Carabias-Martínez, R.; Rodríguez-Gonzalo, E.; Revilla-Ruiz, P.; Hernández-Méndez, J. Pressurized liquid
extraction in the analysis of food and biological samples. J. Chromatogr. A 2005, 1089, 1–17. [CrossRef]
[PubMed]

20. Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction:
A review. Anal. Chim. Acta 2011, 703, 8–18. [CrossRef] [PubMed]

21. Castro-Puyana, M.; Pérez-Sánchez, A.; Valdés, A.; Ibrahim, O.H.M.; Suarez-Álvarez, S.; Ferragut, J.A.;
Micol, V.; Cifuentes, A.; Ibáñez, E.; García-Cañas, V. Pressurized liquid extraction of Neochloris oleoabundans
for the recovery of bioactive carotenoids with anti-proliferative activity against human colon cancer cells.
Food Res. Int. 2017, 99, 1048–1055. [CrossRef] [PubMed]

22. Denery, J.R.; Dragull, K.; Tang, C.S.; Li, Q.X. Pressurized fluid extraction of carotenoids from Haematococcus
pluvialis and Dunaliella salina and kavalactones from Piper methysticum. Anal. Chim. Acta 2004, 501, 175–181.
[CrossRef]

23. Guedes, A.C.; Amaro, H.M.; Gião, M.S.; Malcata, F.X. Optimization of ABTS radical cation assay specifically
for determination of antioxidant capacity of intracellular extracts of microalgae and cyanobacteria. Food Chem.
2013, 138, 638–643. [CrossRef] [PubMed]

24. Herrero, M.; Jaime, L.; Martin-Alvarez, P.J.; Cifuentes, A.; Ibanez, E. Optimization of the extraction of
antioxidants from Dunaliella salina microalga by pressurized liquids. J. Agric. Food Chem. 2006, 54, 5597–5603.
[CrossRef] [PubMed]

25. Pieber, S.; Schober, S.; Mittelbach, M. Pressurized fluid extraction of polyunsaturated fatty acids from the
microalga Nannochloropsis oculata. Biomass Bioenergy 2012, 47, 474–482. [CrossRef]

26. Taucher, J.; Baer, S.; Schwerna, P.; Hofmann, D.; Hümmer, M.; Buchholz, R.; Becker, A. Cell disruption
and pressurized liquid extraction of carotenoids from microalgae. J. Thermodyn. Catal. 2016, 7, 158–165.
[CrossRef]

27. Herrero, M.; Castro-Puyana, M.; Mendiola, J.A.; Ibañez, E. Compressed fluids for the extraction of bioactive
compounds. TrAC Trends Anal. Chem. 2013, 43, 67–83. [CrossRef]

28. Luthria, D.L. Influence of experimental conditions on the extraction of phenolic compounds from parsley
(Petroselinum crispum) flakes using a pressurized liquid extractor. Food Chem. 2008, 107, 745–752. [CrossRef]

29. Amaro, H.M.; Fernandes, F.; Valentao, P.; Andrade, P.B.; Sousa-Pinto, I.; Malcata, F.X.; Guedes, A.C. Effect of
solvent system on extractability of lipidic components of Scenedesmus obliquus (M2-1) and Gloeothece sp. on
antioxidant scavenging capacity thereof. Mar. Drugs 2015, 13, 6453–6471. [CrossRef] [PubMed]

30. Guedes, A.C.; Gião, M.S.; Seabra, R.; Ferreira, A.C.S.; Tamagnini, P.; Moradas-Ferreira, P.; Malcata, F.X.
evaluation of the antioxidant activity of cell extracts from microalgae. Mar. Drugs 2013, 11, 1256–1270.
[CrossRef] [PubMed]

31. Guedes, A.; Amaro, H.; Barbosa, C.; Dias Pereira, R.; Xavier Malcata, F. Fatty acid composition of several
wild microalgae and cyanobacteria, with a focus on eicosapentaenoic, docosahexaenoic and α-linolenic acids
for eventual dietary uses. Food Res. Int. 2011, 44, 2721–2729. [CrossRef]

32. De la Guardia, M.; Armenta, S. Chapter 1—Origins of Green Analytical Chemistry. In Comprehensive
Analytical Chemistry; Guardia, M.D.L., Armenta, S., Eds.; Elsevier: New York, NY, USA, 2011; Volume 57,
pp. 1–23.

33. Cooney, M.; Young, G.; Nagle, N. Extraction of Bio-oils from Microalgae. Sep. Purif. Rev. 2009, 38, 291–325.
[CrossRef]

http://dx.doi.org/10.1007/s00232-015-9796-7
http://www.ncbi.nlm.nih.gov/pubmed/25819916
http://dx.doi.org/10.1111/j.1757-1707.2012.01195.x
http://dx.doi.org/10.5958/0974-360X.2015.00129.8
http://dx.doi.org/10.3390/md16050156
http://www.ncbi.nlm.nih.gov/pubmed/29748479
http://dx.doi.org/10.1016/j.chroma.2005.06.072
http://www.ncbi.nlm.nih.gov/pubmed/16130765
http://dx.doi.org/10.1016/j.aca.2011.07.018
http://www.ncbi.nlm.nih.gov/pubmed/21843670
http://dx.doi.org/10.1016/j.foodres.2016.05.021
http://www.ncbi.nlm.nih.gov/pubmed/28865616
http://dx.doi.org/10.1016/j.aca.2003.09.026
http://dx.doi.org/10.1016/j.foodchem.2012.09.106
http://www.ncbi.nlm.nih.gov/pubmed/23265534
http://dx.doi.org/10.1021/jf060546q
http://www.ncbi.nlm.nih.gov/pubmed/16848551
http://dx.doi.org/10.1016/j.biombioe.2012.10.019
http://dx.doi.org/10.4172/2157-7544.1000158
http://dx.doi.org/10.1016/j.trac.2012.12.008
http://dx.doi.org/10.1016/j.foodchem.2007.08.074
http://dx.doi.org/10.3390/md13106453
http://www.ncbi.nlm.nih.gov/pubmed/26492257
http://dx.doi.org/10.3390/md11041256
http://www.ncbi.nlm.nih.gov/pubmed/23595054
http://dx.doi.org/10.1016/j.foodres.2011.05.020
http://dx.doi.org/10.1080/15422110903327919


Mar. Drugs 2018, 16, 327 17 of 17

34. Turner, C.; King, J.W.; Mathiasson, L. Supercritical fluid extraction and chromatography for fat-soluble
vitamin analysis. J. Chromatogr. A 2001, 936, 215–237. [CrossRef]

35. Guedes, A.C.; Gião, M.S.; Matias, A.A.; Nunes, A.V.M.; Pintado, M.E.; Duarte, C.M.M.; Malcata, F.X.
Supercritical fluid extraction of carotenoids and chlorophylls a, b and c, from a wild strain of
Scenedesmus obliquus for use in food processing. J. Food Eng. 2013, 116, 478–482. [CrossRef]

36. Macías-Sánchez, M.D.; Fernandez-Sevilla, J.M.; Fernández, F.G.A.; García, M.C.C.; Grima, E.M. Supercritical
fluid extraction of carotenoids from Scenedesmus almeriensis. Food Chem. 2010, 123, 928–935. [CrossRef]

37. Halim, R.; Gladman, B.; Danquah, M.K.; Webley, P.A. Oil extraction from microalgae for biodiesel production.
Bioresour. Technol. 2011, 102, 178–185. [CrossRef] [PubMed]

38. Fournier, V.; Destaillats, F.; Juanéda, P.; Dionisi, F.; Lambelet, P.; Sébédio, J.-L.; Berdeaux, O. Thermal
degradation of long-chain polyunsaturated fatty acids during deodorization of fish oil. Eur. J. Lipid
Sci. Technol. 2006, 108, 33–42. [CrossRef]

39. Jaime, L.; Rodríguez-Meizoso, I.; Cifuentes, A.; Santoyo, S.; Suarez, S.; Ibáñez, E.; Señorans, F.J. Pressurized
liquids as an alternative process to antioxidant carotenoids extraction from Haematococcus pluvialis microalgae.
LWT-Food Sci. Technol. 2010, 43, 105–112. [CrossRef]

40. Guedes, A.C.; Amaro, H.M.; Pereira, R.D.; Malcata, F.X. Effects of temperature and pH on growth and
antioxidant content of the microalga Scenedesmus obliquus. Biotechnol. Prog. 2011, 27, 1218–1224. [CrossRef]
[PubMed]

41. Cerón, M.C.; García-Malea, M.C.; Rivas, J.; Acien, F.G.; Fernandez, J.M.; Del Río, E.; Guerrero, M.G.;
Molina, E. Antioxidant activity of Haematococcus pluvialis cells grown in continuous culture as a function of
their carotenoid and fatty acid content. Appl. Microbiol. Biotechnol. 2006, 74, 1112. [CrossRef] [PubMed]

42. Cha, K.H.; Kang, S.W.; Kim, C.Y.; Um, B.H.; Na, Y.R.; Pan, C.H. Effect of pressurized liquids on extraction of
antioxidants from Chlorella vulgaris. J. Agric. Food Chem. 2010, 58, 4756–4761. [CrossRef] [PubMed]

43. El-Agamy, E.I. Bioactive Components in Camel Milk. In Bioactive Components in Milk and Dairy Products;
Park, Y.W., Ed.; Willey: Hoboken, NJ, USA, 2009; pp. 159–194.

44. Nenadis, N.; Wang, L.-F.; Tsimidou, M.; Zhang, H.-Y. Estimation of Scavenging Activity of Phenolic
Compounds Using the ABTS•+ Assay. J. Agric. Food Chem. 2004, 52, 4669–4674. [CrossRef] [PubMed]

45. Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N.
Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy
2017, 7, 47. [CrossRef]

46. Plaza, M.; Santoyo, S.; Jaime, L.; Avalo, B.; Cifuentes, A.; Reglero, G.; García-Blairsy Reina, G.;
Señoráns, F.J.; Ibáñez, E. Comprehensive characterization of the functional activities of pressurized liquid
and ultrasound-assisted extracts from Chlorella vulgaris. LWT-Food Sci. Technol. 2012, 46, 245–253. [CrossRef]

47. Stanier, R.Y.; Kunisawa, R.; Mandel, M.; Cohen-Bazire, G. Purification and properties of unicellular blue-green
algae (order Chroococcales). Bacteriol. Rev. 1971, 35, 171–205. [PubMed]

48. Lepage, G.; Roy, C.C. Improved recovery of fatty acid through direct transesterification without prior
extraction or purification. J. Lipid Res. 1984, 25, 1391–1396. [PubMed]

49. Cohen, Z.; Vonshak, A.; Richmond, A. Effect of environmental conditions on fatty acid composition of the
red alga Porphyridium cruentum: Correlation to growth rate. J. Phycol. 1988, 24, 328–332. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0021-9673(01)01082-2
http://dx.doi.org/10.1016/j.jfoodeng.2012.12.015
http://dx.doi.org/10.1016/j.foodchem.2010.04.076
http://dx.doi.org/10.1016/j.biortech.2010.06.136
http://www.ncbi.nlm.nih.gov/pubmed/20655746
http://dx.doi.org/10.1002/ejlt.200500290
http://dx.doi.org/10.1016/j.lwt.2009.06.023
http://dx.doi.org/10.1002/btpr.649
http://www.ncbi.nlm.nih.gov/pubmed/21648102
http://dx.doi.org/10.1007/s00253-006-0743-5
http://www.ncbi.nlm.nih.gov/pubmed/17171393
http://dx.doi.org/10.1021/jf100062m
http://www.ncbi.nlm.nih.gov/pubmed/20337479
http://dx.doi.org/10.1021/jf0400056
http://www.ncbi.nlm.nih.gov/pubmed/15264898
http://dx.doi.org/10.3390/agronomy7030047
http://dx.doi.org/10.1016/j.lwt.2011.09.024
http://www.ncbi.nlm.nih.gov/pubmed/4998365
http://www.ncbi.nlm.nih.gov/pubmed/6530596
http://dx.doi.org/10.1111/j.1529-8817.1988.tb04474.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Biomass Amount Optimization 
	Solvent Flow-Rate Optimization 
	Temperature Optimization 
	Total Solvent Volume Optimization 
	Comparison of Lab-Made CPSE System with Ultrasound Assisted Extraction 

	Materials and Methods 
	Microalga Source and Biomass Production 
	Continuous Pressurized Solvent Extraction 
	Ultrasound Assisted Extraction 
	Antioxidant Scavenging Capacity Assessment of Extracts 
	ABTS+ Scavenging Capacity 
	DPPH Scavenging Capacity 

	Compound Identification 
	Determination of Carotenoid Profile 
	Determination of Fatty Acid Profile 

	Statistical Analysis 

	Conclusions 
	References

