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Abstract: Jomthonic acids (JAs) are a group of natural products (NPs) with adipogenic activity.
Structurally, JAs are formed by a modified β-methylphenylalanine residue, whose biosynthesis
involves a methyltransferase that in Streptomyces hygroscopicus has been identified as MppJ. Up to
date, three JA members (A–C) and a few other natural products containing β-methylphenylalanine
have been discovered from soil-derived microorganisms. Herein, we report the identification of a
gene (jomM) coding for a putative methyltransferase highly identical to MppJ in the chromosome of
the marine actinobacteria Streptomyces caniferus GUA-06-05-006A. In its 5’ region, jomM clusters with
two polyketide synthases (PKS) (jomP1, jomP2), a nonribosomal peptide synthetase (NRPS) (jomN)
and a thioesterase gene (jomT), possibly conforming a single transcriptional unit. Insertion of a strong
constitutive promoter upstream of jomP1 led to the detection of JA A, along with at least two novel JA
family members (D and E). Independent inactivation of jomP1, jomN and jomM abolished production
of JA A, JA D and JA E, indicating the involvement of these genes in JA biosynthesis. Heterologous
expression of the JA biosynthesis cluster in Streptomyces coelicolor M1152 and in Streptomyces albus
J1074 led to the production of JA A, B, C and F. We propose a pathway for JAs biosynthesis based on
the findings here described.

Keywords: biosynthesis gene cluster; molecular elicitation; heterologous expression; polyketide
synthase; nonribosomal peptide synthetase

1. Introduction

The marine environment is a valuable source of natural products (NPs) with increasing medical
importance [1,2]. The relevance and success of screening programs aimed at discovering new molecules
with pharmaceutical application from the marine environment has been validated by the development
and marketing of various NPs as analgesic [3], antiviral [4] and antitumor drugs [5]. This fact,
along with the exponentially growing number of reported bioactive agents isolated from marine
invertebrates and microorganisms [6,7], points to oceans as a preeminent environment for the supply of
novel therapeutic chemicals. Although marine invertebrates such as sponges [8,9] are renowned drug
discovery targets, in many instances the true producer of the relevant NP are symbiotic microorganisms,
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often bacteria and cyanobacteria, which represent a worthy exploring source of novel and structurally
diverse chemical entities [10–13].

In the last decade, much attention has been given to microbial genomics regarding the potential
of microorganisms as producers of bioactive metabolites [14–16]. Many whole-genome sequencing
projects from both marine- and soil-derived microorganisms have uncovered a wealth of orphan
genes related to secondary metabolism such as polyketide synthases (PKS) and non-ribosomal peptide
synthetases (NRPS) [17,18]. This way, the blooming number of microbial genomes and metagenomic
data from different environments [19–21] might contribute to innovative achievements on NP research
and raises new prospects for the discovery of novel treatments for emerging disorders [22–24].
Genomic analysis of known and under study microorganisms reveals that the number of potential
secondary metabolite gene clusters harbored by their respective chromosomes surpasses the amount
of compounds detected under conventional laboratory conditions, indicating that microbial capability
to provide chemicals of medical interest could be far greater than expected [25–27]. This has prompted
the development of a series of molecular- and cultivation-based approaches intended to uncover
and exploit the natural chemical potential of candidate microorganisms by eliciting the expression of
silent or poorly expressed gene clusters [28–32]. Alone or in combination, different pathway-specific
genome mining strategies such as gene mutation, insertion of constitutive promoters in front of key
gene operons or direct cloning and subsequent heterologous expression of orphan gene clusters, might
help to uncover the metabolite(s) biosynthesized by any given cryptic gene cluster. These and many
other molecular strategies, along with the development of next-generation whole-genome sequencing
systems and bioinformatics sequence analysis platforms, have given birth to the so-called field of
genomics-driven natural product discovery [24,33,34]. Research on this field has made feasible the
discovery of a wave of novel microbial NPs biosynthesized by gene clusters regarded up to now as
cryptic [35–41].

Herein, we report on the activation of a cryptic PKS-NRPS hybrid gene cluster in the chromosome
of the marine actinobacteria Streptomyces caniferus GUA-06-05-006A. This has enabled the identification
of three novel metabolites belonging to the jomthonic acid (JA) family of NPs. Up to date, only three
members (JA A–C) of this family of molecules have been reported [42,43]. We describe the isolation
and structural determination of two new JA A derivatives, and the identification of additional potential
related compounds.

2. Results

2.1. Identification of the Jomthonic Acid Gene Cluster

Previous identification and characterization in the marine actinobacteria S. caniferus GUA-06-05-006A
of the promising antitumor compounds PM100117 and PM100118 biosynthesis gene cluster (BGC) [44],
aimed us to further investigate the chemical diversity enclosed in this strain. Of the 32 BGCs potentially
involved in the production of secondary metabolites detected after sequencing of the genome of
S. caniferus GUA-06-05-006A, only two BGCs contain PKS–NRPS hybrid genes [44]. One of these
PKS–NRPS BGCs (Figure 1, Table 1) caught our attention because it entails a large operon that included
a gene (jomM) coding for a putative methyltransferase highly identical to MppJ, the enzyme responsible
for the biosynthesis of βMePhe in Streptomyces hygroscopicus [45]. To discover the compound(s) coded
by this BGC, we inserted the constitutive promoter ermE*p upstream of the PKS gene jomP1 (Figure 1).
Ultra Performance Liquid Chromatography (UPLC) analysis of metabolite production in the resulting
strain, G-permE*, revealed the increased biosynthesis, relative to wild type, of three compounds
(1–3, Figure 2A) showing identical UV spectra, with a maximum absorption wavelength at 264 nm.
Consistent with this observation, production of 1–3 was abolished upon insertional inactivation of
PKS gene jomP1 or NRPS gene jomN (Figure 2A), thus confirming the involvement of both genes in
1–3 biosynthesis. These compounds were purified and subjected to structural analysis by nuclear
magnetic resonance NMR (Supplementary file 1). The chemical structure of 1 and 2 corresponded to
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novel analogues of JA A, a previously identified natural product with adipogenic activity produced by
Streptomyces sp. BB47 [42]. Structurally, JA A (peak 3, UPLC Rt = 5.209 min, m/z 388.2141[M + H]+

(calculated for C22H30NO5 388.2118)), consists of a βMePhe residue with its amino and carboxyl group
attached to a short polyketide chain and to a hydroxyacid unit, respectively (Figure 2B). The chemical
structure of 1 (UPLC Rt = 4,264 min, m/z 516.2709 [M + H]+ (calculated for C27H38N3O7 516.2704))
is that of JA A with a glutamine residue at C21 in the hydroxyacid part. Compound 2 (UPLC
Rt = 4411 min, m/z 404.2099 [M + H]+ (calculated for C22H30NO6 404. 2079)) is derived from 3 by
polyketide chain hydroxylation at C1. Given the structural relationship of compounds 1 and 2 with JA
A, hereinafter, they will be referred to as JA D and E, respectively.
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Figure 1. Organization of the jomthonic acids biosynthetic gene cluster. The proposed gene 
functions are listed in Table 1. Grey bar indicates DNA fragment cloned in plasmid pJATAR for 
heterologous expression. 

Table 1. Deduced functions of open reading frames (ORFs) in jomthonic acids biosynthetic gene cluster. 

Gene Deduced 
aa. Length 

Protein 
Homologue 

(Accession No.) 

Identity/ 
Similarity 

(%) 
Proposed Function 

orf1 194 WP_030077520.1 93/86 RNA polymerase 
orf2 313 WP_053208602.1 95/96 Hypothetical protein 
orf3 1462 WP_084771961.1 94/96 Cell division protein FtsK 
orf4 1525 WP_055485092.1 59/70 Type IV secretion protein Rhs 
orf5 241 WP_084771964.1 93/95 Hypothetical protein 
orf6 104 WP_084771965.1 86/94 Hypothetical protein 
orf7 99 WP_033268020.1 99/100 WXG-like protein 
orf8 289 SDQ83237.1 89/91 AraC-family transcriptional regulator 
orf9 396 SDQ83203.1 87/93 Monooxygenase 

orf10 315 OSY47464.1 92/94 FG-GAP repeat protein 
orf11 95 OSY47461.1 96/96 Type II toxin–antitoxin system 
orf12 286 OSY47460.1 91/94 Thioesterase 

orf13 218 WP_085923163.1 99/99 ATP-dependent Clp protease proteolytic 
subunit 

orf14 106 OSY47458.1 95/97 Hypothetical protein 
orf15  - - Unassigned 

jomP1 2093 WP_020735335.1 47/58 
Type I polyketide synthase 
(PCP/KS/AT/AT/KR/PCP) 

jomP2 1853 CAD19087.1 43/57 Type I polyketide synthase 
(KS/AT/DH/KR/PCP) 

jomN 1062 SCL52665.1 48/63 Non-ribosomal protein 
synthetase(C/A/PCP) 

jomT 254 WP_025675064.1 35/51 Thioesterase 
jomB 72 WP_004933768.1 72/83 mbtH-like protein 
jomM 329 WP_004933770.1 78/85 Methyltransferase 
orf16 751 WP_053684324.1 53/65 LuxR-family transcriptional regulator 

Figure 1. Organization of the jomthonic acids biosynthetic gene cluster. The proposed gene functions are
listed in Table 1. Grey bar indicates DNA fragment cloned in plasmid pJATAR for heterologous expression.

Table 1. Deduced functions of open reading frames (ORFs) in jomthonic acids biosynthetic gene cluster.

Gene Deduced aa.
Length

Protein
Homologue

(Accession No.)

Identity/
Similarity (%) Proposed Function

orf1 194 WP_030077520.1 93/86 RNA polymerase
orf2 313 WP_053208602.1 95/96 Hypothetical protein
orf3 1462 WP_084771961.1 94/96 Cell division protein FtsK
orf4 1525 WP_055485092.1 59/70 Type IV secretion protein Rhs
orf5 241 WP_084771964.1 93/95 Hypothetical protein
orf6 104 WP_084771965.1 86/94 Hypothetical protein
orf7 99 WP_033268020.1 99/100 WXG-like protein
orf8 289 SDQ83237.1 89/91 AraC-family transcriptional regulator
orf9 396 SDQ83203.1 87/93 Monooxygenase

orf10 315 OSY47464.1 92/94 FG-GAP repeat protein
orf11 95 OSY47461.1 96/96 Type II toxin–antitoxin system
orf12 286 OSY47460.1 91/94 Thioesterase

orf13 218 WP_085923163.1 99/99 ATP-dependent Clp protease
proteolytic subunit

orf14 106 OSY47458.1 95/97 Hypothetical protein
orf15 - - Unassigned

jomP1 2093 WP_020735335.1 47/58 Type I polyketide synthase
(PCP/KS/AT/AT/KR/PCP)

jomP2 1853 CAD19087.1 43/57 Type I polyketide synthase
(KS/AT/DH/KR/PCP)

jomN 1062 SCL52665.1 48/63 Non-ribosomal protein synthetase(C/A/PCP)
jomT 254 WP_025675064.1 35/51 Thioesterase
jomB 72 WP_004933768.1 72/83 mbtH-like protein
jomM 329 WP_004933770.1 78/85 Methyltransferase
orf16 751 WP_053684324.1 53/65 LuxR-family transcriptional regulator
orf17 229 WP_042159102.1 83/88 Hypothetical protein
orf18 404 WP_052718894.1 90/93 Hypothetical protein
orf19 295 SCK58100.1 86/91 Putative nuclease
orf20 170 WP_035838695.1 81/85 MarR-family transcriptional regulator
orf21 123 WP_039639044.1 93/95 Glyoxalase

orf22 318 WP_042157776.1 78/83 DNA-3-methyladenine glycosylase 2
family protein
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Table 1. Cont.

Gene Deduced aa.
Length

Protein
Homologue

(Accession No.)

Identity/
Similarity (%) Proposed Function

rf23 190 WP_042159103.1 97/99 Hypotheticalprotein
orf24 373 WP_042159104.1 99/100 ROK-familyglucokinase
orf25 269 WP_085927837.1 100/100 Sugar ABC transporter ATP-binding protein
orf26 356 WP_085927838.1 99/99 Ribose ABC transporter permease

orf27 337 WP_042159107.1 99/100 Sugar ABC transporter
substrate-binding protein

orf28 358 WP_042159108.1 96/97 Sugar ABC transporter
substrate-binding protein

orf29 258 GAO11207.1 98/99 GntR-family transcriptional regulator
orf30 126 WP_018092820.1 84/90 Glyoxalase
orf31 275 WP_042159111.1 95/96 Putative aminoacid ABC transporter
orf32 219 WP_085927844.1 99/99 2-dehydro-3-deoxy-phosphogluconate aldolase
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Figure 2. Activation of jomthonic acids biosynthesis. (A) Metabolite analysis by UPLC of 
Streptomyces caniferus GUA-06-05-006A (wild type), G-perm*strain (constitutive promoter ermE*p 
inserted) and mutants ΔjomP1 and ΔjomN. Peaks corresponding to PM100117 (PM17) and PM100118 
(PM18) are indicated. (B) Chemical structures of jomthonic acid A and novel derivatives D and E. 
Asterisks indicate structural differences among the three compounds. 

2.2. Bioinformatics Analysis of the Jomthonic Acid Gene Cluster and Proposed Biosynthesis Pathway. 

Polyketide biosynthesis: The predicted JAs BGC spans 55kb and contains 38 ORFs, which includes 
two putative PKS genes, jomP1 and jomP2 (Figure 1 and Table 1), presumably involved in the 
biosynthesis of the JA polyketide chain. JomP1 and JomP2 show the closest similarity with PKS 
proteins StiA (57%) and StiC (49%), respectively, which participate in the biosynthesis of stigmatellin 
in the myxobacteria Stigmatella aurantica Sga15 [46]. Besides, both proteins show resemblance with 

Figure 2. Activation of jomthonic acids biosynthesis. (A) Metabolite analysis by UPLC of Streptomyces
caniferus GUA-06-05-006A (wild type), G-perm*strain (constitutive promoter ermE*p inserted) and
mutants ∆jomP1 and ∆jomN. Peaks corresponding to PM100117 (PM17) and PM100118 (PM18) are
indicated. (B) Chemical structures of jomthonic acid A and novel derivatives D and E. Asterisks
indicate structural differences among the three compounds.

2.2. Bioinformatics Analysis of the Jomthonic Acid Gene Cluster and Proposed Biosynthesis Pathway

Polyketide biosynthesis: The predicted JAs BGC spans 55kb and contains 38 ORFs, which includes
two putative PKS genes, jomP1 and jomP2 (Figure 1 and Table 1), presumably involved in the
biosynthesis of the JA polyketide chain. JomP1 and JomP2 show the closest similarity with PKS proteins
StiA (57%) and StiC (49%), respectively, which participate in the biosynthesis of stigmatellin in the
myxobacteria Stigmatella aurantica Sga15 [46]. Besides, both proteins show resemblance with putative
PKS enzymes from other myxobacteria members and several species of cyanobacteria. Bioinformatics
analysis detected in JomP1 an uncommon PKS domain pattern, consisting of two ACP and two
contiguous AT (AT1 and AT2) domains, distributed as follows: ACP-KS-AT1-AT2-KR-ACP (Figure 3).
This pattern is a rare finding previously described in myxobacteria [46–49]. In these microorganisms,
the presence of two adjacent AT domains has been linked to the specificity of the loading domain for
unusual initiating units, alternative to malonyl- and methylmalonyl-CoA [46]. It has been conjectured
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that in the biosynthesis of myxalamid [48], soraphen [49] and myxothiazol [47], the first AT domain is
responsible for loading the unusual starter units, isobutyryl-CoA/2-methyl-butyryl-CoA, benzoyl-CoA
and methylbutyryl-CoA, respectively, while the second AT domain is involved in the transfer of the
first extension unit, typically malonyl- or methylmalonyl-CoA. However, this assumption might
not stand for the JomP1 AT2 domain, which might be inactive due to the substitution of Ser-7 and
Gln-8 for Gly and His, respectively, in the conserved sequence domain GqgSQ (Supplementary file 2:
Figure S22) that lies close to the active site pocket in the AT domain 3D model [50,51]. According to
these observations, it seems reasonable to propose the transfer by AT1 of 2-methyl-2-eno-butyryl-CoA
(MEB-CoA) as the carboxylic acid incorporated by JomP1 (Figure 3). Furthermore, a certain degree
of flexibility of AT1 could explain the biosynthesis of other JAs previously described [42,43]. In this
hypothetical model, no role can be envisaged for the JomP1 KR domain. The biosynthesis of the JAs
polyketide chain is completed by PKS JomP2, which contains an AT domain with predicted specificity
for malonyl-CoA, KR and DH domains.
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Figure 3. Proposed biosynthesis pathway of jomthonic acids. Polyketide synthase (JomP1 and 
JomP2) and non-ribosomal protein synthetase (JomN) domains are as follows: KS ketosynthase, AT 
acyltransferase, KR ketoreductase, DH dehydratase, ACP acyl-carrier-protein, C condensation, 
Aadenylation, PCP peptidyl carrier protein. Compounds not detected in S. caniferus 
GUA-06-05-006A are shown in grey. Parentheses indicate structures not confirmed by NMR. Genes 
coding for enzymes X1, X2 and X3were not identified in the biosynthesis gene cluster. 

Methylphenylalanine biosynthesis: A (2S, 3R) βMePhe residue constitutes the structural core of 
JAs. Biosynthesis of this moiety presumably requires activity of a methyltransferase enzyme. Genetic 
experiments in Streptomyces hygroscopicus NRRL30439 have shown methyltransferase MppJ to 
catalyze phenylalanine β-methylation in mannopeptimycin biosynthesis [45]. Besides, later in vitro 
studies on MppJ activity have shown that it methylates the benzylic C atom of phenylpyruvate 
instead of phenylalanine or the mannopeptimycin aglycone F [52]. Gene jomM in the JAs BGC codes 

Figure 3. Proposed biosynthesis pathway of jomthonic acids. Polyketide synthase (JomP1 and JomP2) and
non-ribosomal protein synthetase (JomN) domains are as follows: KS ketosynthase, AT acyltransferase, KR
ketoreductase, DH dehydratase, ACP acyl-carrier-protein, C condensation, Aadenylation, PCP peptidyl
carrier protein. Compounds not detected in S. caniferus GUA-06-05-006A are shown in grey. Parentheses
indicate structures not confirmed by NMR. Genes coding for enzymes X1, X2 and X3 were not identified
in the biosynthesis gene cluster.

Methylphenylalanine biosynthesis: A (2S, 3R) βMePhe residue constitutes the structural core of
JAs. Biosynthesis of this moiety presumably requires activity of a methyltransferase enzyme. Genetic
experiments in Streptomyces hygroscopicus NRRL30439 have shown methyltransferase MppJ to catalyze
phenylalanine β-methylation in mannopeptimycin biosynthesis [45]. Besides, later in vitro studies
on MppJ activity have shown that it methylates the benzylic C atom of phenylpyruvate instead of
phenylalanine or the mannopeptimycin aglycone F [52]. Gene jomM in the JAs BGC codes for a
putative methyltranferase 55% identical to MppJ. UPLC analysis of culture extracts from deletion
mutant ∆jomM showed loss of 1–3 production (Figure 4), confirming involvement in JAs biosynthesis,
conceivably catalyzing phenylalanine β-methylation. JA biosynthesis was restored in ∆jomM upon
jomM re-introduction (Supplementary file 2: Figure S23).
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Figure 4. Deletion of jomM and genes potentially involved in JA D and E biosynthesis. UPLC analysis
of jomthonic acids biosynthesis in Streptomyces caniferus GUA-06-05-006A (wild type) and mutant
strains ∆orf31, ∆orf9 and ∆jomM. Peaks corresponding to PM100117 (PM17) and PM100118 (PM18)
are indicated.

2-methyl-3-hydroxybutyrate biosynthesis and other gene functions: Various branched-chain fatty acids,
such as 2-methylbutyrate, can be generated in bacteria from amino acid fermentation. Moreover,
interconversion between 2-methy-3-hydroxylbutyrate (MHB) and leucine has been described in
anaerobic bacteria [53,54]. Hence, although based on sequence identity, no gene functions remotely
related to MHB biosynthesis are comprised within the JA BGC; certain primary metabolism reactions
might supply this structural moiety.

The JA BGC also comprises NRPS jomN, containing a condensation and an adenylation domain,
which is postulated to be the candidate enzyme to catalyze βMePhecondensation with the polyketide
chain. MbtH-like protein JomB and thioesterase JomT complete the proteins presumably required for
JAs biosynthesis. Based on various studies on MbtH-like protein function [55,56], JomB is possibly
required for βMePhe activation during its adenylation by JomN. JomT might be required to cleave
and offload JA F from the JomN PCP domain (Figure 3).

Hypothetical model for JAs assembly: Polyketide biosynthesis might be commenced by JomP1 which,
despite containing two ACP and two AT domains, would only be responsible for the loading of the
starting carboxylic acid MEB (Figure 3). As explained above, no extension reaction is presumed to be
catalyzed by JomP1 AT2. JomP2 would then extend the polyketide chain with malonate, with a double
bond formation due to the consecutive activity of its KR and DH domain. Next, NRPS JomN would
perform condensation of βMePhe with the polyketide molecule to form JA F. Subsequent addition
of MHB to form JA A might require JA F release from JomN, a reaction probably catalyzed by JomT.
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Notwithstanding, the enzymatic activity (X1) required to transfer the third JAs structural moiety MHB
to JA F (Figure 3) is unknown and possibly coded elsewhere in the genome as, based on sequence
identity, no gene functions suited to accomplish this reaction have been identified within the JA BGC.
Likewise, the JA BGC does not code for enzymatic activities related to glutamine transfer (X2) to
produce JA D and JA hydroxylation (X3) to produce JA E (Figure 3). Gene candidates conceivably
involved is those reaction are orf31 and orf9, which encode for putative proteins with glutamine binding
lipoprotein and monooxygenase activity, respectively. Nevertheless, deletion of these genes does not
have any effect on JA D and E production (Figure 4).

2.3. Cluster Boundaries Analysis

Flanking the JAs BGC there are four orfs coding for putative transcriptional regulators belonging to
the GntR (orf29), MarR (orf20), LuxR (orf16) and AraC (orf8) families of transcription factors. To examine
whether or not these putative regulators take part in JAs biosynthesis control, we generated a series
of single gene deletion strains. UPLC metabolite analysis of the resulting mutants ∆orf29-gntR,
∆orf20-marR and ∆orf16-luxR, revealed no significant alteration of JAs biosynthesis with respect
to wild type cells (Figure 5A). By contrast, mutant ∆orf8-araC showed a slight increase of 1 and 2
production, concomitant with a diminished JA A level. As a second assessment of the potential
involvement of these genes in JAs biosynthesis, they were ectopically expressed under the control
of the constitutive promoter ermE*p from the integrative plasmid pSETk. The resulting constructs
pSAraC, pSLuxR, pSMarR and pSGntRwere were transferred to wild type S. caniferus GUA-06-05-006A
to produce the recombinant strains G-pSAraC, G-pSLuxR, G-pSMarR and G-pSGntR, respectively,
which were likewise subjected to metabolite production analysis (Figure 5B). Overexpression of
orf29 (G-pSGntR) resulted in JAs biosynthesis abrogation and a severe impairment of PM100117/18
production, indicating the pleiotropic effect possibly exerted by this gene on metabolite production.
This observation, along with the unaltered biosynthesis of compounds 1 and 2 upon orf29 deletion,
makes us to consider that this orf lies outside the JAs biosynthesis gene cluster. Pleiotropic effects
on PM100117/18 biosynthesis are similarly observed in recombinant strains G-pSLuxR (orf16) and
G-pSMarR (orf20), but neither these strains nor G-pSAraC (orf8) showed altered 1 and 2 biosynthesis
levels relative to control. Under the light of these observations, it is not possible to determine whether
orf8 and orf29 play a direct role or simply exert a pleiotropic effect on JAs biosynthesis.

The right boundary of the JAs gene cluster is thus defined by jomM, as the adjacent orf16 does not
seem to be involved in JAs biosynthesis. This side of the cluster also comprises putative gene functions
connected to chemical detoxification (orf21 and orf30), DNA cleavage and repair (orf19 and orf22) and
primary metabolism processes, such as sugar metabolism and transport (orf24-orf28) and nitrogen
metabolism (orf31 and orf32). The left limit of the cluster might be defined by jomP1, whose adjacent
orf14 and orf15 encode for hypothetical and unassigned function proteins, respectively. Besides, this
flank of the JAs gene cluster contains miscellanea of hypothetical gene functions related to virulence
(orf4, orf7 and orf11), cell division (orf3) and cell signaling (orf10) among others (Table 1).
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the resulting cultures did not detect traces of JAs (Figure 6). This result led us to hesitate on the 
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manipulated pJATAR to insert the constitutive promoter ermE*p in front of jomP1 to compel 
transcription of genes jomP1-jomM, which possibly constitutes a single transcriptional unit. 
Likewise, the resulting plasmid, pJATARe, was introduced in S. coelicolor M1152 and S. albus J1074, 
generating strains Sc-pJATARe and Sa-pJATARe, respectively. Following UPLC analysis of 
metabolite production the presence of JA A biosynthesis was detected in both recombinant strains 
(Figure 6). Besides, based on absorption spectra resemblance, strain Sa-pNTARe produced two 
additional potential JAs family members, peaks 1a and 2a (Figure 6B). Mass spectra of these products 
are shown in Supplementary file 2: Figure S24. Molecular weight of product 2a matched that of JA 
B/C (m/z374 [M+H]+) (Figure 6C), which remained undetected in the natural producer S. caniferus 
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Figure 5. Cluster boundaries analysis. UPLC analysis of jomthonic acids production in (A) Streptomyces
caniferus GUA-06-05-006A (wild type) and mutant strains ∆orf29-gntR, ∆orf20-marR, ∆orf16-luxR
and ∆orf8-araC, and (B) Streptomyces caniferus GUA-06-05-006A carrying overexpression plasmids
pSETk (empty plasmid), pSEGntR (orf29), pSEMarR (orf20), pSESARP (orf16) and pSEAraC (orf8).
Peaks corresponding to PM100117 (PM17) and PM100118 (PM18) are indicated.

2.4. Heterologous Expression of the JAs BGC

In order to confirm the involvement of the proposed gene cluster in JA biosynthesis, a DNA
fragment spanning from orf 9 to orf 24 was cloned using the transformation-associated recombination
(TAR) cloning system [37] and the resulting construct, pJATAR, was transferred to the heterologous
hosts Streptomyces coelicolor M1152 and Streptomyces albus J1074 to produce strains Sc-pJATAR and
Sa-pJATAR, respectively. These strains were fermented in a culture medium that favors secondary
metabolite biosynthesis in their respective backgrounds. Analysis by UPLC of organic extracts from the
resulting cultures did not detect traces of JAs (Figure 6). This result led us to hesitate on the expression
in the heterologous hosts of genes presumably required for JAs biosynthesis. Thus, we manipulated
pJATAR to insert the constitutive promoter ermE*p in front of jomP1 to compel transcription of genes
jomP1-jomM, which possibly constitutes a single transcriptional unit. Likewise, the resulting plasmid,
pJATARe, was introduced in S. coelicolor M1152 and S. albus J1074, generating strains Sc-pJATARe
and Sa-pJATARe, respectively. Following UPLC analysis of metabolite production the presence of
JA A biosynthesis was detected in both recombinant strains (Figure 6). Besides, based on absorption
spectra resemblance, strain Sa-pNTARe produced two additional potential JAs family members, peaks
1a and 2a (Figure 6B). Mass spectra of these products are shown in Supplementary file 2: Figure S24.
Molecular weight of product 2a matched that of JA B/C (m/z374 [M+H]+) (Figure 6C), which remained
undetected in the natural producer S. caniferus GUA-06-05-006A (Figure 2). Later metabolite analysis
of 5-fold concentrated culture extracts from the S. caniferus GUA-06-05-006A derivative strain G-permE*
led to the detection, by absorption spectra resemblance, of other potential JA candidates, including JA
F (Supplementary file 2: Figure S25), but not JA B/C. Given their low production levels, purification of
these compounds did not yield the product quantities required to carry out NMR analysis.
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Figure 6. Heterologous expression of the jomthonic acids biosynthesis gene cluster. UPLC metabolite
analysis of (A) Streptomyces coelicolor M1152 and (B) Streptomyces albus J1074 carrying plasmid pCAP01
(empty plasmid), pJATAR (JAs BGC) and pJATARe (JAs BGC with ermE*pinserted). (C) Speculative
chemical structure of peaks 2a (jomthonic acids B or C) in S. albus J1074.

3. Discussion

Given their adipogenic activity, JAs constitute a promising family of NPs in metabolic
disorders research [57–59]. JA’s chemical structure contains interesting structural moieties also
reported in other metabolites. For instance, the JA A short polyketide chain is identical to that
of salinamide C from Streptomyces sp. CNB-091 [60] and daldinin F from Hypoxylonfuscum [61].
Likewise, βMePhe is an unusual non-proteinogenic amino acid previously described as part of
the altemicidin derivative SB-203208 [62], bottromycins [63], AK toxin [64], homaomycin [65] and
mannopeptimycin [66]. However, only the latter two compounds share with JAs the 3R configuration
of the βMePhe stereocenter.

Following a molecular elicitation strategy, we have identified the JA BGC, which has been
characterized based on bioinformatics analysis and genetic engineering data. The proposed cluster
covers 17.1 Kb and contains six biosynthesis genes comprised between jomP1 and jomM, coding for
putative functions required for polyketide biosynthesis and phenylalanine methylation. PKS JomP1
displays an uncommon structure, consisting of two ACP domains and two adjacent AT domains, up
to date only reported in members of myxobacteria [46–49]. For similar myxobacterial PKS genes, a
mechanism by which the first AT domain transfers an unconventional starting unit and the second
AT domain transfer either malonyl- or methylmalonyl-CoA has been proposed. However, if JomP1
operated through this mechanism, it would be arduous to assess the type of starting and elongation
units employed to synthesize the short polyketide chain present in JAs. Tentatively, we could postulate
malonyl- and methylmalonyl-CoA as starting and extension molecules, respectively, which along with
latter condensation to malonyl-CoA catalyzed by JomP2 could generate the JA polyketide chain with
an extra hydroxyl group at C2 (Supplementary file 2: Figure S26). Instead, based on the sequence of
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conserved domain, we have considered plausible the inactivity of AT2 and transfer of MEB-CoA by
AT1 domain (Figure 3).

Despite the absence of information on various gene functions presumably required for JA
biosynthesis, we have intuitively outlined a biosynthesis pathway (Figure 3). Although no traces
of JA B and C have been detected in S. caniferus GUA-06-05-006A, biosynthesis of both compounds
could occur through similar reaction steps as JA A when 2-eno-butyrate and 3-hydroxybutyrate
are available as substrates for JomP1 and enzyme X1, respectively (Figure 3). Based on predicted
gene functions, enzymes relevant to MHB transfer seem to be absent from the predicted JAs BGC.
Thus, according to the enzymatic activities encoded within the proposed biosynthesis pathway, it
could be reasonable to consider JA F as the true pathway end product, and the other JAs family
members as pathway shunt metabolites. Interestingly, heterologous expression of the BGC led to the
biosynthesis of an array of JAs in S. albus J1074, including JA A and possibly JA B or C. Whether the
enzymatic activity required for MHB transfer to JA F has been provided in the heterologous DNA
fragment (unlikely) or, on the contrary, is integrated in the host genome is unknown. Detection of
additional JA derivatives in a heterologous host reinforces the idea that the biosynthetic machinery
harbored in different actinobacteria lineages can be successfully combined and exploited to generate
structural diversity.

Expression of the JA BGC seems to be regulated, as no JAs are detected in the heterologous
host unless its biosynthesis is elicited by ermE*p insertion upstream of jomP1. Gene deletion and
overexpression experiments have not demonstrated the direct involvement of putative transcriptional
regulators coded in the surroundings of jomP1-jomM on JAs biosynthesis control. Hence, based on
these results, presence of key regulators encoded outside the JAs BGC is foreseeable. Lack of essential
gene functions in BGC is frequently explained on the basis of large-scale genetic rearrangements, such
as inversions and transpositions, which are fundamental to genome evolution [67,68].

This work provides a first insight into the genetic bases of JAs biosynthesis and shows
heterologous expression of BGCs as a suitable strategy to generate additional structural diversity.
Moreover, availability of the JAs BGC enables further genetic manipulations aimed at generating
novel derivatives with improved pharmacological properties and eases the elucidation of unraveled
biosynthesis steps.

4. Materials and Methods

4.1. Strains, Tumor Cell Lines, Media and Cultivation Conditions

Streptomyces strains S. caniferus GUA-06-05-006A [69], S. coelicolor M1152 [70] and S. albus J1074 [36]
were routinely maintained in medium A (MA) [71]. Metabolite production analyses and large
scale fermentations in S.caniferus GUA-06-05-006A were performed in SMS medium as described
elsewhere [44]. Heterologous production of JAs in S. coelicolor M1152 and S. albus J1074 was achieved
after 3 days of cultivation at 30 ◦C in GYM [72] and R5A medium [71], respectively. Escherichia coli
strains DH10B [73], used for cloning, ET12567/pUB307 [74] and ET12567/pUZ8002 [75], used for
intergeneric conjugation, were grown in LB or 2× TY medium, supplemented with the appropriate
antibiotic for plasmid selection [74].

Yeast strain Saccharomyces cerevisiae VL6-48 (MAT alpha, his3-D200, trp1-D1, ura3-52, lys2, ade2-101,
met14, psi + cir0), used for TAR cloning, was grown in YPD or YNB-trp medium [76], made solid, when
required, by addition of 2% agar.

4.2. DNA Manipulation

DNA manipulation in Escherichia coli and S. caniferus GUA-06-05-006A was carried out according
to standard protocols [74,77]. Polymerase chain reaction (PCR) amplifications were performed by using
Herculase II Fusion polymerase (Agilent Technologies, Palo Alto, CA, USA) with a previously reported
touchdown PCR procedure [44]. All primers used in this work are described in Supplementary file
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3: Table S1. Genetic manipulations in S. caniferus GUA-06-05-006A were confirmed by colony PCR
by using the procedure described in [78] with the following modifications. Bacterial colonies were
suspended in 50 µL of 0.2 M 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino] ethanesulfonic
acid (TES) buffer, pH 7.5, with 1 µL lysozyme (50 mg/mL) and incubated for 40 min at 30 ◦C. The mix
was centrifuged (10,000× g, 2 min) and the pellet thoroughly suspended in 10 µL dimethyl sulfoxide
(DMSO). The resulting suspension (2 µL) was used as PCR template with the indicated primer pairs
(Supplementary file 3: Table S1).

4.3. Plasmids Construction and Strain Generation

Information relevant to plasmids generated in this work is summarized in Supplementary file
3: Table S1. All plasmids were transferred to S.caniferus GUA-06-05-006Aby intergeneric conjugation
as previously described [44]. For jomP1 and jomN insertional inactivation, internal gene fragments
were amplified with the primer pairs EcoRI-P1/ HindIII-P1 and EcoRI-N/ HindIII-N, respectively, and
cloned in the indicated restriction sites of plasmid pOJ260 [79], which lacks the capacity to replicate
in Streptomyces and carries the aac(3)IV gene marker that confers resistance to apramycin(AmR).
The resulting plasmids, pIjomP1 and pIjomN, were then transferred to S.caniferus GUA-06-05-006A to
produce strains ∆jomP1 and ∆jomN, respectively. Insertion of ermE*p upstream of jomP1 was performed
in the pOJ260 derivative pOJ260e as described in [36]. A 2.8 Kb fragment covering the jomP1 upstream
region, including 108 bp from the start codon, was amplified with primers EcoRI-EP1/PstI-EP1 and
cloned in pOJ260e to afford plasmid pEjomP1, which was used to generate strain G-permE*.

To accomplish single deletion of orf8, orf9, orf16, orf20, orf29, orf31 and jomM, the downstream
DNA sequence of the referred target genes were amplified with the primer pairsBamHI-orf8/
EcoRV-orf8, BglIIHI-orf9/EcoRV-orf9, BamHI-orf16/EcoRV-orf16, BamHI-orf20/EcoRV-orf20,
BglIIHI-orf29/EcoRV-orf29, BglIIHI-orf31/EcoRV-orf31 and BglIIHI-M/EcoRV-M, respectively, and
cloned in the designated restriction sites of plasmid pEFBA-oriT [80], downstream to the
aac(3)IV gene. Then, the upstream sequence of the cited genes were likewise amplified with the
primer pairs NsiI-orf8/SpeI-orf8, NsiI-orf9/SpeI-orf9, NsiI-orf16/SpeI-orf16, NsiI-orf20/SpeI-orf20,
NsiI-orf29/SpeI-orf29, NsiI-orf31/SpeI-orf31 andNsiI-M/SpeI-M, respectively, and cloned upstream
to the aac(3)IV gene. Finally, the hygromycin B resistance (HygR) gene marker, hyg, was extracted
by XbaI/NheI digestion from plasmid pLHyg [81] and introduced in the XbaI site of the deletion
plasmids. The resulting construction plasmids, pDorf8, pDorf9, pDorf16, pDorf20, pDorf29, pDorf31,
pDjomM were introduced in S.caniferus GUA-06-05-006A to generate deletion strains ∆orf8-araC, ∆orf9,
∆orf16-luxR, ∆orf20-marR, ∆orf29-gntR, ∆orf31 and ∆jomM, respectively. Gene hyg allowed recognizing
clones in which a complete gene replacement by a double cross-over has taken place (HygS AmR) from
those in which a single cross-over event has integrated the deletion plasmid into the chromosome
(HygR AmR).

A suitable plasmid backbone to accomplish ectopic expression was constructed as follows. A 930
bp fragment containing the kanamycin resistance marker aph(3) II was amplified from plasmid
pCAP01 [37] with primers EcoRI-KanR/EcoRV-KanR and cloned in the integrative plasmid pSETec [82],
contiguous to the constitutive ermE*p promoter to produce plasmid pSETk. Genes orf8, orf16, orf20,
orf29 and jomM were amplified with primers indicated in Supplementary file 3: Table S1, and cloned
in pSETk between ermE*p and aph(3) II. The resulting plasmids (Supplementary file 3: Table S1)
were transferred to S.caniferus GUA-06-05-006A or ∆jomMto generate strains G-pSAraC, G-pSLuxR,
G-pSMarR, G-pSGntR and ∆M-pSEJomM.

4.4. Heterologous Expression of the JAs BGC

The JAs BGC (orf9 to orf23) was captured by TAR cloning [37] for heterologous expression in
S. coelicolor M1152 and S. albus J1074. Cluster capture arms of approximately 1 Kb were generated
by PCR amplification with primer pairs XhoI-2TAR/NsiI-U2TAR and NsiI-L2TAR/SpeI-2TAR
(Supplementary file 3: Table S1). PCR products were digested with NsiI and ligated. The resulting
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assembled fragment of 2 Kb was then amplified with primers XhoI-2TAR/SpeI-2TAR and cloned in the
XhoI/SpeI sites of plasmid pCAP01 to afford the capture plasmid pCL2-CAP. Yeast strain Saccharomyces
cerevisiae VL6-48 was then co-transformed [76] with pCL2-CAP (0.5 µg), linearized by digestion with
NsiI, and S. caniferusGUA-06-05-006A genomic DNA (1 µg). Yeast transformants were selected on
synthetic YNB–trp medium and screened by PCR for the presence of the JAs BGC. The resulting
plasmid, p2NTAR, was extracted from three positive clones, subjected to physical characterization by
BamHI, NcoI, NotI, PstI and EcoRV digestion and transferred to the heterologous Streptomyces hosts
by intergeneric conjugation [44].

To produce plasmid pNTARe, the ermE*p promoter was integrated upstream of jomP1, in
plasmid pJATAR, by ReDirect technology [83].The apramycin resistant gene marker aac(3)IV and
ermE*p were amplified from plasmid pSETec [82] with the primer pairs dApra/NsiI-rvApra
and dNsiI-pErm/rvpErm, respectively. The PCR products were digested with NsiI and ligated.
The resulting aac(3)IV-ermE*p assembled fragment was then amplified with the primer pair
dApra-pErm/rvApra-pErm to generate a DNA fragment flanked with suitable pJATAR homologous
sequences to direct ermE*p integration upstream of jomP1. This fragment and pJATAR were introduced
in E. coli BW25113 as described in [83]. Kanamycin/apramycin resistant transformants were selected
and analyzed for correct ermE*p integration by sequencing with primers dNsiI-pErm, rvpErm, dApra
and NsiI-rvApra.

4.5. Sequencing and Bioinformatics Analysis

The JAs BGC was identified and analyzed by the antibiotics and secondary metabolite analysis
shell: antiSMASH 4.0 [84] and PRISM 3 [85,86]. Annotation of ORFs within the JA BGC was based on
database searching of the corresponding proteins carried out by BLAST algorithm [87] at the National
Center for Biotechnology Information (NCBI). Additional sequence alignments were conducted by
Clustal Omega [88] and EMBOSS Water [89] from the European Molecular Biology Laboratory (EMBL).

The nucleotide sequence of the jomthonic acids biosynthesis gene cluster was deposited in the
European Nucleotide Archive (accession number: LT990689) and at Minimum Information about a
Biosynthetic Gene Cluster (MIBiG) repository [90] under the accession BGC0001457.

4.6. Analysis of Metabolite Production and Compound Purification

Whole culture samples (1 or 5 mL) were mixed with an equal volume of ethyl acetate and
mixed on a rotary shaker at room temperature for 1 h. The organic phase was then recovered by
centrifugation (3000× g, 10 min) and evaporated in vacuo. The resulting dry residue was dissolved in
methanol:DMSO (1:1) to perform UPLC and LC-MS analyses as described elsewhere [91,92].

Compounds 1–3 were purified from 2.5 L of G-permE* culture supernatant. Culture was filtered
and then applied to a solid-phase extraction cartridge (Sep-Pak Vac C18, 10 g, Waters, Mildford, MA,
USA) that had been fitted with a perforated stopper pierced by a stainless steel HPLC (Waters, Mildford,
MA, USA) tubing. The culture broth was applied by means of a peristaltic pump and subsequently the
cartridge was connected to a HPLC quaternary pump (model 600E, Waters). The retained material
was eluted with a mixture of methanol and 0.05% trifluoroacetic acid (TFA) in water. A linear gradient
from 0 to 100% methanol in 60 min, at 10 mL/min, was used. Fractions were taken every 5 min,
collected on 5 mL of 0.1 M phosphate buffer, pH 7.0 and analyzed by UPLC. Fractions containing the
desired compounds were evaporated in vacuo and subsequently re-dissolved in a small volume of a
DMSO:methanol (50:50) mixture. Compounds of interest were then purified by preparative HPLC
using a SunFire C18 column (10 µm, 10 × 250 mm, Waters, Mildford, MA, USA). Organic extracts
were chromatographed with mixtures of acetonitrile or methanol and 0.1% TFA in accurate isocratic
conditions (7 mL/min), and collected on 0.1 M phosphate buffer (pH 7.0). After every purification step,
the collected compounds were diluted 4-fold with water and then applied to a solid-phase extraction
cartridge (Sep-Pak C18, Waters, Mildford, MA, USA). The cartridges were washed with water and
compounds were eluted with methanol and dried in vacuo. Once the purification was finished, the
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compounds were dissolved in a mixture of tert-butanol and water (1:1) and lyophilized, obtaining 21.9,
3.8 and 3.9 mg of compounds 1, 2 and 3, respectively.

4.7. Mass Spectra and Structural Elucidation

NMR spectra were obtained on a Varian “Unity 500” spectrometer (Agilent Technologies, Palo
Alto, CA, USA) at 500/125 MHz (1H/13C) and on a Varian “Unity 400” spectrometer (Agilent
Technologies, Palo Alto, CA, USA) at 400/100 MHz (1H/13C). Chemical shifts were reported in
ppm using residual CDCl3 (δ 7.26 ppm for 1H and 77.0 ppm for 13C) as an internal reference.
COSY, HSQC and HMBC experiments were performed using standard pulse sequences. Data were
processed using MestReNova software (Mnova, Santiago de Compostela, Spain). (+)ESIMS were
recorded using an Agilent 1100 Series LC/MS spectrometer (Agilent Technologies, Palo Alto, CA,
USA). High resolution mass spectroscopy (HRMS) was performed on an Agilent 6230 TOF LC/MS
system (Agilent Technologies, Palo Alto, CA, USA) using the electrospray ionization mass spectrometry
(ESI-MS) technique.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/16/8/259/s1,
Supplementary file 1: Figure S1–S21, Supplementary file 2: Figure S22–S26, Supplementary file 3: Table S1 and
Figure S27.
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