Supplementary materials for

Mono- and dimeric naphthalenones from marine-derived fungus Leptosphaerulina chartarum 3608

Panpan Zhang ¹, Chunxiu Jia ², Jiajia Lang ², Jing Li ¹, Guangyuan Luo ¹, Senhua Chen ^{1,*}, Sujun Yan ^{2,*}, and Lan Liu ^{1,3}

- ¹ School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China; zhangpp23@mail2.sysu.edu.cn; Lijing356@mail.sysu.edu.cn; luogy331@gmail.com; cesllan@mail.sysu.edu.cn
- ² School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China; jiachx@mail2.sysu.edu.cn; langjj@mail2.sysu.edu.cn
- ³ Key Laboratory of Functional Molecules from Oceanic Microorganisms, Sun Yat-sen University, Department of Education of Guangdong Province, Guangzhou 510080, China
- * Correspondence: chensenh@mail.sysu.edu.cn; cesyansj@mail.sysu.edu.cn; Tel.: +86-20-84725459

Content

Figure S1. ¹ H (400 MHz) NMR spectrum of (±)-leptothalenone A (1) in CD ₃ OD
Figure S2. ¹³ C (100 MHz) NMR spectrum of (±)-leptothalenone A (1) in CD ₃ OD
Figure S3. DEPT-90 spectrum of (±)-leptothalenone A (1) in CD ₃ OD
Figure S4. DEPT-135 spectrum of (±)-leptothalenone A (1) in CD ₃ OD
Figure S5. HSQC spectrum of (±)-leptothalenone A (1) in CD ₃ OD
Figure S6. HMBC spectrum of (±)-leptothalenone A (1) in CD ₃ OD
Figure S7. ¹ H- ¹ H COSY spectrum of (±)-leptothalenone A (1) in CD ₃ OD
Figure S8. NOESY spectrum of (±)-leptothalenone A (1) in CD ₃ OD7
Figure S9. HR-ESIMS of (±)-leptothalenone A (1) in CD ₃ OD
Figure S10. ¹ H (400 MHz) NMR spectrum of (-)-4,8-dihydroxy-7- (2-hydroxy-ethyl)-6-methoxy-3,4- dihydro-2 <i>H</i> -naphthalen-1-one ((-)- 2) in CD ₃ OD
Figure S11. ¹³ C (100 MHz) NMR spectrum of (-)-4,8-dihydroxy-7- (2-hydroxy-ethyl)-6-methoxy-3,4- dihydro-2 <i>H</i> -naphthalen-1-one ((-)- 2) in CD ₃ OD
Figure S12. DEPT-90 spectrum of (-)-4,8-dihydroxy-7- (2-hydroxy-ethyl)-6-methoxy-3,4-dihydro-2 <i>H</i> -naphthalen-1-one ((-)- 2) in CD ₃ OD
Figure S13. DEPT-135 spectrum of (-)-4,8-dihydroxy-7- (2-hydroxy-ethyl)-6-methoxy-3,4-dihydro- 2 <i>H</i> -naphthalen-1-one ((-)- 2) in CD ₃ OD
Figure S14. HSQC spectrum of (-)-4,8-dihydroxy-7- (2-hydroxy-ethyl)-6-methoxy-3,4-dihydro-2 <i>H</i> -naphthalen-1-one ((-)- 2) in CD ₃ OD
Figure S15. HMBC spectrum of (-)-4,8-dihydroxy-7- (2-hydroxy-ethyl)-6-methoxy-3,4-dihydro-2 <i>H</i> -naphthalen-1-one ((-)- 2) in CD ₃ OD
Figure S16. ¹ H- ¹ H COSY spectrum of (-)-4,8-dihydroxy-7- (2-hydroxy-ethyl)-6-methoxy-3,4-dihydro- 2 <i>H</i> -naphthalen-1-one ((-)- 2) in CD ₃ OD
Figure S17. NOESY spectrum of (-)-4,8-dihydroxy-7- (2-hydroxy-ethyl)-6-methoxy-3,4-dihydro-2 <i>H</i> -naphthalen-1-one ((-)- 2) in CD ₃ OD
Figure S18. HR-ESIMS of (-)-4,8-dihydroxy-7- (2-hydroxy-ethyl)-6-methoxy-3,4-dihydro-2 <i>H</i> -naphthalen-1-one ((-)- 2) in CD ₃ OD
Figure S19. ¹ H (400 MHz) NMR spectrum of 6-hydroxy-5,8-dimethoxy-3-methyl-1 <i>H</i> -isochromen-1- one (4) in CD ₃ OD
Figure S20. ¹³ C (100 MHz) NMR spectrum of 6-hydroxy-5,8-dimethoxy-3-methyl-1 <i>H</i> -isochromen-1- one (4) in CD ₃ OD
Figure S21. DEPT-90 spectrum of 6-hydroxy-5,8-dimethoxy-3-methyl-1 <i>H</i> -isochromen-1-one (4) in CD ₃ OD. 14

Figure S22. DEPT-135 spectrum of 6-hydroxy-5,8-dimethoxy-3-methyl-1 <i>H</i> -isochromen-1-one (4) in CD ₃ OD.	4
Figure S23. HSQC spectrum of 6-hydroxy-5,8-dimethoxy-3-methyl-1 <i>H</i> -isochromen-1-one (4) in CD ₃ OD	5
Figure S23. HMBC spectrum of 6-hydroxy-5,8-dimethoxy-3-methyl-1 <i>H</i> -isochromen-1-one (4) in CD ₃ OD	5
Figure S25 ¹ H- ¹ H COSY spectrum of 6-hydroxy-5,8-dimethoxy-3-methyl-1 <i>H</i> -isochromen-1-one (4) i CD ₃ OD	n 6
Figure S26. HR-ESIMS of 6-hydroxy-5,8-dimethoxy-3-methyl-1 <i>H</i> -isochromen-1-one (4) in CD ₃ OD.	6
Figure S27. ¹ H (400 MHz) NMR spectrum of (4 <i>S</i> , 10 <i>R</i> , 4' <i>S</i>)-leptothalenone B (5) in CD ₃ OD	7
Figure S28. ¹³ C (100 MHz) NMR spectrum of (4 <i>S</i> , 10 <i>R</i> , 4' <i>S</i>)-leptothalenone B (5) in CD ₃ OD 1	7
Figure S29. DEPT-90 spectrum of (4 <i>S</i> , 10 <i>R</i> , 4' <i>S</i>)-leptothalenone B (5) in CD ₃ OD	8
Figure S30. DEPT-135 spectrum of (4 <i>S</i> , 10 <i>R</i> , 4' <i>S</i>)-leptothalenone B (5) in CD ₃ OD 1	8
Figure S31. HSQC spectrum of (4 <i>S</i> , 10 <i>R</i> , 4' <i>S</i>)-leptothalenone B (5) in CD ₃ OD	9
Figure S32. HMBC spectrum of (4 <i>S</i> , 10 <i>R</i> , 4' <i>S</i>)-leptothalenone B (5)in CD ₃ OD	9
Figure S33. ¹ H- ¹ H COSY spectrum of (4 <i>S</i> , 10 <i>R</i> , 4' <i>S</i>)-leptothalenone B (5) in CD ₃ OD	0
Figure S34. NOESY spectrum of (4 <i>S</i> , 10 <i>R</i> , 4' <i>S</i>)-leptothalenone B (5) in CD ₃ OD	0
Figure S35. HR-ESIMS of (4 <i>S</i> , 10 <i>R</i> , 4' <i>S</i>)-leptothalenone B (5)	1
Figure S36. ¹ H (400 MHz) NMR spectrum of (4 <i>R</i> , 10 <i>S</i> , 4' <i>S</i>)-leptothalenone B (6) in CD ₃ OD	1
Figure S37. ¹³ C (100 MHz) NMR spectrum of (4 <i>R</i> , 10 <i>S</i> , 4' <i>S</i>)-leptothalenone B (6) in CD ₃ OD	2
Figure S38. DEPT-90 spectrum of (4 <i>R</i> , 10 <i>S</i> , 4' <i>S</i>)-leptothalenone B (6) in CD ₃ OD	2
Figure S39. DEPT-135 spectrum of (4 <i>R</i> , 10 <i>S</i> , 4' <i>S</i>)-leptothalenone B (6) in CD3OD	3
Figure S40. HSQC spectrum of (4 <i>R</i> , 10 <i>S</i> , 4' <i>S</i>)-leptothalenone B (6) in CD ₃ OD	3
Figure S41. HMBC spectrum of $(4R, 10S, 4'S)$ -leptothalenone B (6) in CD ₃ OD 2	4
Figure S42. ¹ H- ¹ H COSY spectrum of $(4R, 10S, 4'S)$ -leptothalenone B (6) in CD ₃ OD 2	4
Figure S43. NOESY spectrum of $(4R, 10S, 4'S)$ -leptothalenone B (6) in CD ₃ OD 2	5
Figure S44. HR-ESIMS of (4 <i>R</i> , 10 <i>S</i> , 4' <i>S</i>)-leptothalenone B (6) in CD ₃ OD	5
Figure S45. Structure of 3 resulting from single-crystal X-ray diffraction	6

Figure S1. ¹H (400 MHz) NMR spectrum of (\pm)-leptothalenone A (1) in CD₃OD.

Figure S2. 13 C (100 MHz) NMR spectrum of (±)-leptothalenone A (1) in CD₃OD.

Figure S3. DEPT-90 spectrum of (±)-leptothalenone A (1) in CD₃OD.

Figure S4. DEPT-135 spectrum of (\pm) -leptothalenone A (1) in CD₃OD.

Figure S5. HSQC spectrum of (\pm) -leptothalenone A (1) in CD₃OD.

Figure S6. HMBC spectrum of (±)-leptothalenone A (1) in CD₃OD.

Figure S7. 1 H- 1 H COSY spectrum of (±)-leptothalenone A (1) in CD₃OD.

Figure S8. NOESY spectrum of (±)-leptothalenone A (1) in CD₃OD.

Figure S9. HR-ESIMS of (±)-leptothalenone A (1) in CD₃OD.

Figure S10. ¹H (400 MHz) NMR spectrum of (-)-4,8-dihydroxy-7- (2-hydroxy-ethyl)-6-methoxy-3,4dihydro-2*H*-naphthalen-1-one ((-)-**2**) in CD₃OD.

Figure S11. ¹³C (100 MHz) NMR spectrum of (-)-4,8-dihydroxy-7- (2-hydroxy-ethyl)-6-methoxy-3,4- dihydro-2*H*-naphthalen-1-one ((-)-**2**) in CD₃OD.

Figure S12. DEPT-90 spectrum of (-)-4,8-dihydroxy-7- (2-hydroxy-ethyl)-6-methoxy-3,4-dihydro-2*H*-naphthalen-1-one ((-)-**2**) in CD₃OD.

Figure S13. DEPT-135 spectrum of (-)-4,8-dihydroxy-7- (2-hydroxy-ethyl)-6-methoxy-3,4-dihydro-2*H*-naphthalen-1-one ((-)-**2**) in CD₃OD.

Figure S14. HSQC spectrum of (-)-4,8-dihydroxy-7- (2-hydroxy-ethyl)-6-methoxy-3,4-dihydro-2*H*-naphthalen-1-one ((-)-**2**) in CD₃OD.

Figure S15. HMBC spectrum of (-)-4,8-dihydroxy-7- (2-hydroxy-ethyl)-6-methoxy-3,4-dihydro-2*H*-naphthalen-1-one ((-)-**2**) in CD₃OD.

Figure S16. ¹H-¹H COSY spectrum of (-)-4,8-dihydroxy-7- (2-hydroxy-ethyl)-6-methoxy-3,4-dihydro-2*H*-naphthalen-1-one ((-)-**2**) in CD₃OD.

Figure S17. NOESY spectrum of (-)-4,8-dihydroxy-7- (2-hydroxy-ethyl)-6-methoxy-3,4-dihydro-2*H*-naphthalen-1-one ((-)-**2**) in CD₃OD.

Figure S18. ESIMS of (-)-4,8-dihydroxy-7- (2-hydroxy-ethyl)-6-methoxy-3,4-dihydro-2*H*-naphthalen-1-one ((-)-2) in CD₃OD.

Figure S19. ¹H (400 MHz) NMR spectrum of 6-hydroxy-5,8-dimethoxy-3-methyl-1*H*-isochromen-1one (**4**) in CD₃OD.

Figure S20. ¹³C (100 MHz) NMR spectrum of 6-hydroxy-5,8-dimethoxy-3-methyl-1*H*-isochromen-1one (**4**) in CD₃OD.

Figure S21. DEPT-90 spectrum of 6-hydroxy-5,8-dimethoxy-3-methyl-1*H*-isochromen-1-one (4) in CD₃OD.

Figure S22. DEPT-135 spectrum of 6-hydroxy-5,8-dimethoxy-3-methyl-1*H*-isochromen-1-one (4) in CD₃OD.

Figure S23. HSQC spectrum of 6-hydroxy-5,8-dimethoxy-3-methyl-1*H*-isochromen-1-one (**4**) in CD₃OD.

Figure S23. HMBC spectrum of 6-hydroxy-5,8-dimethoxy-3-methyl-1*H*-isochromen-1-one (**4**) in CD₃OD.

Figure S25 ¹H-¹H COSY spectrum of 6-hydroxy-5,8-dimethoxy-3-methyl-1*H*-isochromen-1-one (**4**) in CD₃OD.

Figure S26. HR-ESIMS of 6-hydroxy-5,8-dimethoxy-3-methyl-1*H*-isochromen-1-one (4) in CD₃OD.

Figure S27. ¹H (400 MHz) NMR spectrum of (4*S*, 10*R*, 4'*S*)-leptothalenone B (5) in CD₃OD.

Figure S28. ¹³C (100 MHz) NMR spectrum of (4*S*, 10*R*, 4'*S*)-leptothalenone B (**5**) in CD₃OD.

Figure S29. DEPT-90 spectrum of (4*S*, 10*R*, 4'*S*)-leptothalenone B (5) in CD₃OD.

Figure S30. DEPT-135 spectrum of (4*S*, 10*R*, 4'*S*)-leptothalenone B (5) in CD₃OD.

Figure S31. HSQC spectrum of (4*S*, 10*R*, 4'*S*)-leptothalenone B (5) in CD₃OD.

Figure S32. HMBC spectrum of (4*S*, 10*R*, 4'*S*)-leptothalenone B (5)in CD₃OD.

Figure S33. 1 H- 1 H COSY spectrum of (4*S*, 10*R*, 4'*S*)-leptothalenone B (**5**) in CD₃OD.

Figure S34. NOESY spectrum of (4*S*, 10*R*, 4'*S*)-leptothalenone B (5) in CD₃OD.

Figure S35. HR-ESIMS of (4*S*, 10*R*, 4'*S*)-leptothalenone B (5).

Figure S36. ¹H (400 MHz) NMR spectrum of (4*R*, 10*S*, 4'*S*)-leptothalenone B (6) in CD₃OD.

Figure S37. ¹³C (100 MHz) NMR spectrum of (4*R*, 10*S*, 4'*S*)-leptothalenone B (**6**) in CD₃OD.

Figure S38. DEPT-90 spectrum of (4*R*, 10*S*, 4'*S*)-leptothalenone B (6) in CD₃OD.

Figure S39. DEPT-135 spectrum of (4*R*, 10*S*, 4'*S*)-leptothalenone B (6) in CD3OD.

Figure S40. HSQC spectrum of (4*R*, 10*S*, 4'*S*)-leptothalenone B (6) in CD₃OD.

Figure S41. HMBC spectrum of (4*R*, 10*S*, 4'*S*)-leptothalenone B (6) in CD₃OD.

Figure S42. 1 H- 1 H COSY spectrum of (4*R*, 10*S*, 4'*S*)-leptothalenone B (6) in CD₃OD.

Figure S43. NOESY spectrum of (4*R*, 10*S*, 4'*S*)-leptothalenone B (6) in CD₃OD.

Figure S44. HR-ESIMS of (4R, 10S, 4'S)-leptothalenone B (6) in CD₃OD.

Figure S45. Structure of **3** resulting from single-crystal X-ray diffraction.(Single crystal X-ray crystallographic data was obtained on a Rigaku Oxford diffractometer equipped with graphite-monochromatized Cu K α radiation at 298(2) K. Structure solution and refinement were performed with SHELXS-97, and all non-hydrogen atoms were refined anisotropically using the full-matrix least-squares method. All hydrogen atoms were positioned by geometric calculations and difference Fourier overlapping calculations. C₁₂H₁₄O₅, M = 238.23, orthorhombic crystal ($0.40 \times 0.30 \times 0.30$ mm), bronze block, space group P212121; unit cell dimensions *a* = 5.298 Å, *b* = 12.14910 (10) Å, *c* = 16.69040 (10) Å, *V* = 1074.293 (11) Å³; *Z* = 4; a total of 2163 unique reflections [R(int) = 0.0224] was measured; the final refinement gave *R*₁ = 0.0334, *wR*2 = 0.0885, and S = 1.121; Flack parameter = 0.00(6). Crystallographic data for the structure of **5** have been submitted to the Cambridge Crystallographic Data Centre as supplementary publication CCDC 1830777.)

