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Abstract: Cutaneous melanoma is the most serious type of skin cancer, so new cytotoxic weapons
against novel targets in melanoma are of great interest. Euplotin C (EC), a cytotoxic secondary
metabolite of the marine ciliate Euplotes crassus, was evaluated in the present study on human
cutaneous melanoma cells to explore its anti-melanoma activity and to gain more insight into its
mechanism of action. EC exerted a marked cytotoxic effect against three different human melanoma
cell lines (A375, 501Mel and MeWo) with a potency about 30-fold higher than that observed in
non-cancer cells (HDFa cells). A pro-apoptotic activity and a decrease in melanoma cell migration by
EC were also observed. At the molecular level, the inhibition of the Erk and Akt pathways, which
control many aspects of melanoma aggressiveness, was shown. EC cytotoxicity was antagonized
by dantrolene, a ryanodine receptor (RyR) antagonist, in a concentration-dependent manner. A role
of RyR as a direct target of EC was also suggested by molecular modelling studies. In conclusion,
our data provide the first evidence of the anti-melanoma activity of EC, suggesting it may be a
promising new scaffold for the development of selective activators of RyR to be used for the treatment
of melanoma and other cancer types.
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1. Introduction

Marine chemicals are a great source of new potential anticancer drugs. In this context, the
therapeutic application of molecules derived from marine eukaryotic microorganisms remains largely
unexplored [1]. The ciliated protists are important components of marine habitats, forming complex
communities and producing a rich number of secondary metabolites [2]. From the early 90 s,
investigation into the natural products from marine ciliates belonging to the genus Euplotes revealed
that they produce several terpenoids [3]. In 1992, extraction from large mass cultures of the marine
species Euplotes crassus led to the isolation of the first sesquiterpenoids from marine protists, i.e.,
euplotin A, B and C and their biogenic precursor preuplotin [4,5].

Euplotin C (EC) (Figure 1) represents the final product of the euplotin metabolic pathway and it
is the most powerful cytotoxic agent among the other related products [6,7].

Figure 1. Chemical structure of euplotin C.

Initially observed against other ciliates, the spectrum of the cytotoxic action of EC has also
been reported against other microorganisms [8–10]. The ability to reduce cell proliferation, via a
pro-apoptotic mechanism, was also demonstrated against rat and mouse tumor cells [11]. However,
low cytotoxicity on mouse monocyte/macrophages by EC was observed, suggesting a degree of
selectivity in mammals against cancer cells [8]. The pro-apoptotic mechanism of EC in cancer cells has
been mainly linked to an early ryanodine receptor (RyR)-mediated induction of calcium release from
the endoplasmic reticulum and a subsequent involvement of mitochondrial cytochrome c release and
caspase activation [11,12].

In the present study, the anticancer effects of EC were further investigated, evaluating its effects and
the role of RyR activation in melanoma cells. Melanoma represents the most deadly among skin cancers,
with a dramatically increasing incidence worldwide [13] and new molecules increasing the success in the
fight against melanoma are still desired. Although targeted therapy and immunotherapy greatly improve
the treatment of melanoma patients, resistance to these therapies often limits their complete success
in metastatic melanoma [14,15]. Erk 1/2 (extracellular signal-regulated kinase 1/2) and Akt (protein
kinase B) signaling pathways are often aberrantly activated in melanoma inducing a complex network
involved in melanoma cell proliferation and metastatization [16,17]. These pathways are controlled of
different intracellular molecules, among which are microRNAs (miRNAs), small non-coding RNAs
that negatively regulate gene and other non-coding transcripts expression. Among the miRNAs
affecting these pathways, are miR-193a-3p and let-7g-5p [18–20], which also promote apoptosis in
cancer cells [21,22]. Therefore, in the present study, the effects of EC on Erk and Akt activation as well
as on miR-193a and let-7g expression in melanoma cells were also investigated.

2. Results

2.1. Euplotin C Modulates Melanoma Cell Viability, Apoptosis and Migration

EC induced a concentration-dependent cytotoxicity after 24 h exposure in tested human cutaneous
melanoma cell lines with similar IC50 values (3.53 ± 0.19, 2.68 ± 0.29 and 3.56 ± 0.38 µM in A375,
501Mel and MeWo cell lines, respectively) (Figure 2a).
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On the other hand, against HDF-a cells, the IC50 of EC was about 30-fold higher than that observed
in tumour cells (i.e., 93.10 ± 0.32 µM), demonstrating some EC selectivity against cancer cells.

The mechanism of EC action was studied on A375 cells only because of a very similar potency
obtained in the three melanoma cell lines tested. The role played by the apoptotic process in the
EC-induced cytotoxicity was evaluated by measuring internucleosomal DNA fragmentation after
24 h of EC treatment. In particular, EC induced a strong increase (>20-fold higher than the control) of
histone-complexed DNA fragments in the cytoplasmic fraction of A375 cell (Figure 2b).

Moreover, the in vitro scratch assay on A375 cells treated with EC at 3 and 10 µM revealed similar
inhibition of cell migration after both 24 and 48 h, with a significant effect observed only at 10 µM
(Figure 2c,d).

Figure 2. Effect of EC on cell viability, apoptosis and migration. (a) Concentration–response
curves in human cutaneous melanoma cell lines and HDF-a cells after treatment with EC for 24 h;
(b) Internucleosomal DNA fragmentation in A375 cells treated with 3 µM EC for 24 h, compared to
control cells; (c) Images from representative experiments of the scratch wounds at 0, 24 and 48 h for
A375 cells treated with EC 3 and 10 µM (EC3 and EC10, respectively); (d) The average scratch area was
measured and compared to the corresponding area at the time of treatment (t0). Data are presented as
means ± SD of three independent experiments performed in triplicate. An unpaired t-test was used
in ELISA assay, and ordinary one-way ANOVA followed by Dunnett’s multiple comparisons test in
migration assay, *** p < 0.001 versus the respective t0.
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2.2. Role of Ryanodine-Sensitive Receptor in Euplotin C Anti-Melanoma Activity

2.2.1. Dantrolene Inhibits Euplotin C Activity

The selective antagonist of RyR channels, dantrolene, was used to assess the role of the RyR in the
molecular mechanism of EC action. Pre-treatment with dantrolene (25–75 µM) significantly reversed
cytotoxicity on melanoma cells in a concentration-dependent manner (Figure 3).

Figure 3. Role of RyR in the EC effect on A375 cell viability. Cells were exposed at 1, 3 and 10 µM EC
for 24 h, in the presence or absence of the RyR antagonist dantrolene, at 25, 50 and 75 µM. Data are
the mean ± SD from three independent experiments. *** p < 0.001; one-way ANOVA followed by
Dunnett’s multiple comparison test.

2.2.2. Molecular Modelling Studies

Since EC cytotoxicity against melanoma cells was negatively affected by dantrolene, in agreement
with previously published results [11], the natural sesquiterpene EC has been evaluated as a possible
RyR channel agonist by an in silico investigation. With the aim of providing a possible model
for the interaction between EC and RyR channel, docking studies followed by molecular dynamic
(MD) simulations and relative binding energy evaluations were performed. Recently, de Georges and
collaborators reported the structure of rabbit skeletal muscle RyR1 channel in multiple functional states,
determined through high-resolution cryo-electron microscopy (cryo-EM) [23]. Precisely, the authors
identified both closed and open pore states of the channel, as well as the binding sites of Ca++ and those
of the well-known RyR activators ATP and caffeine, which were demonstrated to increase the open
probability of the channel pore in the presence of calcium [23]. Moreover, through cryo-EM studies
performed in the presence of Ca++ and ryanodine (10 µM), de Georges and co-workers identified
the possible binding site of the natural compound, which binds the open channel and locks it in a
long-duration dilated state, at low (nM-µM) concentrations, thus acting as a channel activator [23,24].
While ATP and caffeine were shown to bind the activation module of the channel (comprising domains
CSol-EF1, CSol-EF2, TaF, CTD and subdomains S2S3, S6c), the proposed ryanodine binding site should
be located within the pore domain, adjacent to residue Q4933 (Figure 4a) [23].
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Figure 4. (a) Location of ATP (yellow), caffeine (green) and ryanodine binding sites within the RyR1
channel. For clarity, only the activation module (blue) and the transmembrane region (red) of the
protein are shown. Residue Q4933 is shown in cyan; (b) Analysis of the MD simulations of the nine
different RyR1-EC complexes. The first plot shows the RMSD of the ligand’s position with respect to its
starting docking pose within ATP and ryanodine (RND) binding sites; the second plot shows the results
of the same analysis performed for the ligand poses within caffeine (CFF) binding site; (c) Minimized
average structure of EC within the caffeine binding site of RyR 1 in pose 6, obtained from the last 10 ns
of MD simulation. The protein residues directly interacting with the ligand are shown; hydrogen bonds
are represented as black dashed lines. The ligand molecular surface is also shown.
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Based on these recent findings, our docking studies were focused on the three ligand binding sites
identified in the RyR1 channel. We based our analysis on this RyR subtype, since all three recognized
subtypes RyR1-3 have an identity of about 65% and differ in sites that are not critical for the analysis
of the possible EC binding site. Although no structure of the human RyR1 channel is available at
present, due to the high degree of identity between human and rabbit RyR1, EC was docked into the
structure of rabbit RyR1 in open pore conformation and in complex with ATP, caffeine and Ca++ ions
(PDB code 5TAL) [23]. Since the structure of the locked-open RyR1 pore domain determined in the
presence of Ca++ and ryanodine is very similar to that determined in the presence of ATP, caffeine and
Ca++, a single RyR1 structure was used for the docking studies of the Euplotes molecule EC into the
three different binding sites. A robust AUTODOCK [25] procedure that showed good results in virtual
screening and ligand pose prediction studies [26,27] was employed for this analysis. For each binding
site, the docking calculation produced 200 different poses that were clustered using a root-mean square
deviation (RMSD) cutoff of 1.5 Å. In total, 9 clusters of poses were thus identified and employed for
further studies: 3 clusters for ATP, 2 for ryanodine and 4 for caffeine binding site (see Materials and
Methods for details). For each identified cluster, the binding pose with the docking score was selected
as a representative binding mode. The stability of the 9 different binding poses was evaluated through
MD simulation studies. The different RyR1-EC complexes predicted by docking were studied with
12.5 ns of MD simulation, and the RMSD of the ligand’s position with respect to the original docking
pose was analyzed. As shown in the upper plot of Figure 4b, the ligand binding poses predicted
within ryanodine binding sites (poses 4 and 5) underwent substantial adjustments during the MD
simulations, since the ligand was found to move about 6–7 Å away from its initial position, but showed
only small RMSD fluctuations in the last 10 ns of simulation. This means that, in the first nanoseconds
of simulation, the binding dispositions of EC within ryanodine binding site changed considerably
with respect to the initial poses predicted by docking, but the new dispositions reached by EC in the
protein site were maintained with a good stability. The binding modes predicted for the ATP binding
site (poses 1–3) showed greater RMSD fluctuations, suggesting that the ligand was endowed with a
higher freedom of movement inside this pocket and thus maintained the binding disposition with a
slightly lower stability. Among the binding poses predicted within the caffeine binding site (lower plot
of Figure 4b), poses 6–8 appeared to be quite stable, since the ligand moved at most 4 Å away from
the initial docking poses and showed low RMSD fluctuations. In particular, pose 6 that showed an
average RMSD of 2.1 Å from the initial docking solution was found to be remarkably stable.

To better assess the reliability of the different RyR1-EC binding complexes, the corresponding
ligand-protein interaction energies were evaluated from the MD coordinates extracted from the last
10 ns of simulation. Molecular Mechanic-Generalized Born surface area (MM-GBSA) and Molecular
Mechanic-Poisson Boltzmann surface area (MM-PBSA) methods [28], reliably assessing the binding
energy interaction [29–31], were employed for the calculation (see Materials and Methods for details).
In agreement with the observations reported above, the analysis revealed a considerably higher binding
energy for poses 4–9 with respect to poses 1–3. Moreover, pose 6 was found to be the most reliable
binding mode, since both evaluation methods predicted a binding energy (∆GBSA = −44.8 kcal/mol;
∆PBSA = −31.7 kcal/mol) exceeding a minimum of 5 kcal/mol compared with that predicted for the
other poses (see Table S1 in the Supplementary Materials).

Figure 4c illustrates the minimized average structure of EC bound to the RyR 1 channel in the
predicted binding mode obtained from the last 10 ns of MD simulation. The tricyclic core of the ligand
is placed between W4716 from one side and L4492, E4239, Y5014 on the other side, thus forming
hydrophobic interactions with these residues as well as with I4496, Y4715 and W5011. Moreover,
the side chain of Q5015 forms an H-bond interaction with the oxolan ring of the ligand. The acyloxy
group of EC forms an additional H-bond with R4679 and makes contact with R5017, Y4715 and Q5015.
Finally, the unsaturated lateral chain of the ligand well fits a hydrophobic pocket delimited by F3753,
I4242, F4243, Q4246, F4671 and W4716.
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Taking into consideration that the acetyl group of EC could be easily deacetylated in biological
fluids [11], we computationally evaluated whether the metabolite of EC produced by hydrolysis
of its acetyl group could stably interact with the caffeine binding site of RyR1. The hydroxyl
metabolite of EC (Figure S1a in the Supplementary Materials) was thus docked within the caffeine
binding site of RyR1 by using the same procedure employed for the docking studies of EC. In the
most energetically favoured binding mode predicted by docking, (Figure S1b of the Supplementary
Materials) the metabolite showed a disposition within the protein similar to that observed for EC
and thus perfectly maintained all the ligand-protein interactions detected in the EC-RyR1 complex
(Figure 4a). Interestingly, thanks to its hydroxyl group, the metabolite was able to form a further
H-bond with the side chain of Y4715 that could not be established by EC. These results suggest that
the metabolite produced by enzymatic cleavage of EC’s acetyl group could be an active metabolite
endowed with an activity comparable to EC.

2.3. Euplotin C Modulates Erk and Akt Pathway in A375 Melanoma Cell Line

The ability of EC to alter the expression of the B-Raf protein and phosphorylation of Erk 1/2 and
Akt was assessed by Western blot. EC significantly decreased the levels of B-Raf (27%) and those of the
Erk 1/2 (63%) and Akt (68%) phosphorylated proteins (Figure 5a).

Figure 5. (a) Western blot analysis of B-Raf, p-Akt, p-Erk 1/2, total Erk 1/2 and β-actin in A375 cell
line after 24 h of treatment with 3 µM EC; (b) miR-193a-3p and let-7g-5p expression in A375 cells
after treatment with 3 µM EC for 24 h. Results were analysed using the Ct method and normalised
to SNORD6 RNA levels. qPCR results were presented as box-plots with minimum and maximum
whiskers. Data are representative of three independent experiments. Bars represent SD in (a) and up
and low limits of values in (b). * p < 0.05, ** p < 0.01.

2.4. Euplotin C Enhances the Expression of miR-193a-3p and let-7g-5p

After treatment with the natural sesquiterpene at 3 µM for 24 h, both miR-193a-3p and let-7g-5p
were significantly up-regulated, as compared to the internal standard (i.e., SNORD6). In particular,
miR-193a-3p and let-7g-5p levels were 4- and 7-fold greater than that observed in control samples
(Figure 5b).
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3. Discussion

The anticancer activity of the marine sesquiterpene EC, previously reported in animal tumour
cells, i.e., corticotropic tumour of the mouse anterior pituitary and rat pheochromocytoma, by Cervia
and collaborators [11,12], is observed for the first time in the present study in human cutaneous
melanoma cells. The decrease in melanoma cell viability by EC obtained in the present study was
comparable to that observed in A375 melanoma cells by cisplatin [32], a conventional chemotherapeutic
agent used to treat many cancer types including metastatic melanoma.

Our data also confirm evidence obtained by Savoia and collaborators [8], who demonstrated
some selectivity of EC on cancer cells with respect to non-tumor cells. This property could make EC a
potential anticancer agent or lead compound for the design of new anticancer molecules with a good
tolerability profile.

The mechanism of EC-induced cytotoxicity in melanoma cells is the induction of apoptosis, as
already reported in mouse and rat cancer cells [11,12] as well against other Euplotes (E.) species, such as
E. vannus, an ecological competitor of E. crassus [7]. Previous evidence suggested the ryanodine receptor
(RyR) on endoplasmic reticulum (ER) as a potential EC target in cancer cells since RyR antagonism
with high concentration of the alkaloid ryanodine, inhibited cytoplasmic Ca++ elevation observed after
EC contact [11]. Concentration-dependent antagonism by the RyR antagonist (dantrolene) used in
our experiments confirms that RyR may play a relevant functional role in EC activity. To investigate
the role of RyR as a direct EC target, a molecular modelling approach was used in the present study.
This approach revealed EC has chemical features compatible with an agonist activity against the RyR
receptor with a good estimated binding affinity for the site identified for caffeine, the well-known
methylxanthine alkaloid with recognized agonist activity against RyR at mM concentrations [33].

It is interesting that RyR is not a direct target of commercially available anticancer agents and
very little is known about its functional expression and physiological role in non-excitable cells.
Nonetheless, a pro-apoptotic effect after RyR stimulation in cancer cells has been reported by Mariot
and collaborators. Intracellular Ca++ levels are very important in gene transcription regulation, as well
as in cell proliferation, migration and death. In particular, acute release of Ca++ from the ER can trigger
a variety of signaling mechanisms promoting cell death [34]. Also, ER stress induced by different
agents that increase cytoplasmic calcium concentration is a recognized process leading to apoptosis in
cancer cells [35] and has been described as a useful process to overcome resistance to targeted drugs
(e.g., vemurafenib) [36].

Apoptosis may be induced by Erk and/or Akt pathways inhibition in many cancer types including
melanoma [37,38].

Interestingly, a significant down-regulation by EC of B-Raf and of the phosphorylated forms of
Erk and Akt was demonstrated in the present study. EC activity against both Erk and Akt pathways
may explain, at least partially, why in all three melanoma cell lines investigated, EC had the same
potency, regardless of BRAF mutation status. The EC effects on the Erk and Akt pathways may also be
linked to those on mir-193a and let-7g expression. Indeed, miR-193a was previously reported to be
involved in the control of Akt [18,19] and Erk [20] signals in non-small-cell lung cancer and in colon
cancer cells, respectively. Also, the let-7g regulated Akt pathway in gastric tumour [39] and several
lines of evidence indicate these two miRNAs have a potential oncosuppressive role in melanoma since
they are down-regulated in tissues and plasma of melanoma patients [40,41]. Finally, both miR-193a
and let-7g were reported to induce apoptosis in cancer and other tissues [21,22,42,43].

Inhibition of the Erk and Akt pathways may also explain the ability of EC to inhibit melanoma cell
migration, observed in our experiments. Cell migration is in fact a complex and highly coordinated
process in which Erk and Akt may play a crucial role [44,45]. Furthermore, increasing evidence
implicates the cytosolic Ca++ level in the control of cell migration [46,47]. It is noteworthy that the
exposure of E. vannus to EC induced a rapid inhibition of cell motility resulting from microtubule
disassembly due to alterations in cationic homeostasis. As a matter of fact, Ca++ potentials appear to
control protist motility [6].
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In conclusion, our data showed EC inhibits cell viability and migration of human melanoma
cells with some selectivity of cancer versus non-cancer cells. We also provided evidence that
down-regulation of B-Raf expression and inhibition of Erk and Akt phosphorylation, together with the
interaction with miRNAs involved in the melanoma phenotype, may be a fundamental part of the
mechanism of EC and/or its deacetylated metabolite action. These findings also confirmed a relevant
role of RyR in EC activity, suggesting that EC might represent a new scaffold for the development of
selective RyR activators as novel potential agents against melanoma and other cancer types.

4. Materials and Methods

4.1. Cell Culture

The human A375 (malignant melanoma), MeWo (malignant melanoma derived from metastatic
site, lymph node) and HDFa (adult dermal fibroblasts) cell lines were purchased from the American
Type Culture Collection (ATCC). The 501Mel cells, human metastatic melanoma line, were kindly
provided by Dr. Poliseno (Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori c/o
IFC-CNR, Pisa, Italy).

Cell lines were maintained in Dulbecco’s modified Eagle medium (DMEM) (Euroclone, Milan,
Italy) supplemented with 10% fetal bovine serum (FBS) and a 1% antibiotic mixture 1:1 of penicillin
and streptomycin (Sigma-Aldrich, Milan, Italy) in a humidified atmosphere containing 5% CO2 at
37 ◦C. Cell morphology was examined under light microscopy.

4.2. Euplotin C Extraction and Isolation

The ethanol solution obtained through filtration of the cell pellet (about 5.0 mL) of E. crassus
SSt22 strain was evaporated. Then, the residue was partitioned between hexane-ethyl acetate 9:1
(organic part) and methanol-water 9:1 (aqueous part). The organic extract (250 mg) was then subjected
to reversed-phase flash chromatography (RP-FC) on a Lichrolut RP18 column with CH3CN-MeOH
gradient elution, collecting 5 fractions every 2 mL. Fractions 1–2 containing the targeted euplotins A-C
were further purified by RP semi-preparative HPLC (RP18, CH3CN-H2O 7:3, 5 mL/min) affording
21 mg of almost pure (<99%, established by NMR and LC-Ms analyses) EC used in these experiments.

4.3. Cell Viability

A panel of human cancer cell lines and HDFa was used to evaluate the EC activity in a
concentration range of 10 nM−100 µM for 24 h. In 96-well plates, exponentially growing cells
(5 × 103/well) were seeded in culture medium and incubated for 24 h to allow cell adhesion.

EC and dantrolene (Sigma-Aldrich, Steinheim, Germany) were dissolved in Dimethyl sulfoxide
(DMSO) and diluted in treatment medium immediately before starting the experiment. In cell cultures,
the final concentration of DMSO never exceeded 0.33%. During treatment incubation, only 1%
FBS-added medium was used because serum proteins could interact with compounds.

Cell viability was evaluated by neutral red assay (NR), based on the uptake and accumulation
of NR in lysosomes of living cells, according to literature [48]. Briefly, after 24 h exposure, NR
was added to each well (dilution 1:10). After 2 h of incubation at 37 ◦C, NR accumulated in
viable cells was extracted and solubilized with destaining solution (1% acetic acid and 50% ethanol).
Optical density values were measured at 540 nm using an Infinite® M200 NanoQuant instrument
(Tecan, Salzburg, Austria). Cell viability of cells treated with EC was reported as a percentage of those
from vehicle-treated cells (100% cell viability).

To estimate the involvement of ryanodine receptors in the mechanism of EC action, A375 cells
were treated with EC in the absence or presence of the ryanodine receptor antagonist, dantrolene, used
at 25, 50 and 75 µM.
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4.4. Internucleosomal DNA Fragmentation

The apoptosis of A375 cells treated with EC was assessed by the Cell Death Detection ELISA Kit
(Ref. 11774452001, Roche, Mannheim, Germany), according to the manufacturer’s protocol. Briefly,
3 µM EC was used to treat A375 cells and after 24 h, a quota of 104 cells from each sample was lysed.
After 10 min of centrifugation at 200× g, the supernatant was added to a streptavidin-coated microplate
and a mixture of anti-histone-biotin and anti-DNA-POD was added. Samples were incubated for 2 h
at room temperature. After incubation and remotion of unbound antibodies, the nucleosomes were
quantified by colour development after substrate addition. The Infinite M200 NanoQuant instrument
(Tecan, Salzburg, Austria) was used to measure optical density at 405 nm.

4.5. Migration Assay

The ability of EC to interfere with cell migration in A375 cells was evaluated by scratch assay in
96 well plates (5 × 104/well). After 24 h from seeding, the scratch was made by sterile micropipette
tip, and two washes with PBS were performed to remove the detached cells. A375 cells were incubated
with EC at 3 and 10 µM. Cell migration was monitored by light microscopy (4× magnification) at
different time points. Scratch areas were analysed with the ImageJ software (Version 1.51, Bethesda,
MD, USA).

4.6. Docking Studies

The EC structure was constructed with Maestro [49] and then minimized in a water with
Macromodel [50] (using the generalized Born/surface area model). The minimization was performed
using a conjugate gradient, the MMFFs force field and a distance-dependent dielectric constant of 1.0,
using an energy convergence cutoff of 0.05 kcal/(Å·mol). Euplotin C was docked into the structure
of rabbit ryanodine receptor 1 (RyR1), in open pore conformation and in complex with ATP, caffeine
and Ca++ ions (PDB code 5TAL) [23] using AUTODOCK4.2 [25]. Prior to docking calculations, the
peptide chains corresponding to calstabin-2 (FKBP12.6 protein) and all the undetermined residues in
the channel structure were removed; the receptor was then prepared through the Protein Preparation
Wizard protocol implemented in Maestro, which was also employed to add missing side chains.
AUTODOCK TOOLS [51] were used for defining the ligand’s dihedrals and to add the solvent model.
Gasteiger and Kollman partial atomic charges were then assigned to ligand and receptor, respectively.
The ligand was docked into three different binding sites within RyR1, i.e., ATP, caffeine and ryanodine
binding sites; for this reason, three corresponding docking sites were used for the calculations. The ATP
docking site was delimited by a grid of 60, 70 and 60 points in the x, y and z directions, respectively,
which was centered on the bound ligand. The caffeine docking site was delimited by a grid of 55, 40 and
55 points in the x, y and z directions, respectively, centered on the bound ligand. Finally, the ryanodine
docking site was defined as a grid box of 60, 60 and 80 points in the x, y and z directions, respectively,
which was centered on the α-carbon of Q4933. The energetic map calculations were performed using a
grid spacing of 0.375 Å and a distance-dependent function of the dielectric constant. In each of the
three docking sites, 200 LGA (Lamarckian Genetic Algorithm) runs of docking calculation were carried
out for the ligand using AUTODOCK. In each docking run, the generation of 10,000,000 individuals
was simulated form a starting population of 500 elements and 10,000,000 energy evaluation steps
were performed, while the final solutions produced were clustered using a 1.5 Å. RMSD cutoff.
AUTODOCK’s defaults were used for all remaining settings for each docking site; only the binding
modes populated for more than 10% in the corresponding clusters of poses were considered, for a total
of nine different clusters.

4.7. Molecular Dynamic Simulations

All molecular dynamic (MD) simulations were performed with AMBER 14 [52], using the structure
of rabbit RyR1 previously prepared and used for the docking calculations (PDB code 5TAL). For each
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simulation, only the protein residues included in a shell of approximately 30 Å radius centered on the
bound ligand were considered. The different RyR1-euplotin C complexes were solvated with a 10 Å
water cap and Na+ ions were then added for neutralizing the system. General amber force field (GAFF)
parameters were assigned to the ligand, while AM1-BCC method was used to calculate its partial
charges. Before running MD simulations, the systems were subjected to two energy minimization steps
through 5000 cycles of steepest descent followed by conjugate gradient, using an energy convergence
cutoff of 0.05 kcal/(mol·Å2). In the initial step, a position restraint of 100 kcal/(mol·Å2) was applied to
the ligand and all protein residues, so that only the solvent was energy minimized. In the following step,
the restraint was set only for the protein α carbons, thus allowing the energy minimization of the whole
system. The minimized complexes were employed as starting point for the MD simulations, carried
out in three consecutive steps. Each of the three steps was performed employing periodic boundary
conditions and particle mesh Ewald electrostatics [53], a 0 Å distance cutoff for the non-bonded
interactions and maintaining bonds with hydrogen atoms totally constrained with SHAKE algorithm.
A 0.5 ns simulation performed with constant volume constituted the first MD step, where the system
temperature was raised from 0 to 300 K and the 100 kcal/(mol·Å2) restraint on the protein α carbons
was maintained. In the second step, the system was equilibrated through a 2 ns NPT simulation, in
which the temperature of the system was kept at 300 K through the Langevin thermostat and the
position restraint on α carbons was reduced to 10 kcal/(mol·Å2). The third MD step consisted of an
additional 10 ns of simulation performed under the same conditions of step 2.

4.8. Binding Energy Evaluation

Ligand-protein binding energies of the different EC-RyR1 complexes were calculated with AMBER
14, using the trajectories taken from last 10 ns of the corresponding MD simulations; for each evaluation,
100 MD frames were thus used (one every 100 ps). The MOLSURF program and the MM-PBSA module
of AMBER 14 were used to calculate nonpolar and polar energies, respectively, while the SANDER
module estimated Waals, electrostatic and internal contributions. Due to the aim of comparing binding
affinities of the same ligand for the target receptor, the variation of the ligand’s entropy could be
neglected and was thus not taken into account.

4.9. Western Blot Analysis

The expression of p-Akt, p-Erk 1/2, total-Erk 1
2 , B-Raf and β-actin was evaluated in A375 cell lysates

by Western blot analysis as previously described [54]. Briefly, the lysates (30 µg of protein in Laemmli
sample buffer 2×) were separated by electrophoresis in 10% sodium dodecyl sulphate-polyacrylamide gels.
Electroblotting at 4 ◦C was performed to transfer proteins to nitrocellulose membranes that, subsequently,
were incubated for 45 min in T-TBS (20 mM Tris, 500 mM NaCl, 0.1% Tween-20, pH 8) containing 5%
non-fat milk to reduce non-specific immune-detection. All primary antibodies were used overnight
at 4 ◦C, diluted in T-TBS containing 1% non-fat milk and at following dilution: anti-p-Akt1-2-3 at
1:200 dilution (sc-7985-R Santa Cruz Biotechnology), anti-phosphotyrosine204-ERK1(p44)/ERK2(p42) at
1:500 dilution, (Ref. sc-7383, Santa Cruz Biotechnology), anti-ERK1 (p44)/ERK2 (p42) at 1:200 dilution
(Ref. sc-514302, Total ERK, Santa Cruz Biotechnology), anti-Raf-B at 1:200 dilution, Ref. sc-5284 Santa
Cruz Biotechnology), and with a mouse anti-β-actin at 1:5000 dilution (#MAB1501, Merck-Millipore,
Burlington, MA, USA). After washes in T-TBS, immune-reactive bands were detected by incubation
with horseradish peroxidase-conjugated secondary antibodies anti-rabbit (#MAB201P, Merck-Millipore,
Burlington, MA, USA) and anti-mouse (Sigma-Aldrich, A4416, Milan, Italy). Signals were revealed by
chemiluminescent detection (ImageQuant LAS 4000, GE Healthcare, Little Chalfont, Buckinghamshire,
UK). ImageJ64 software (Version 1.51, Bethesda, MD, USA) was used for densitometric analysis
of bands.



Mar. Drugs 2018, 16, 166 12 of 15

4.10. Evaluation of miRNAs Expression

The miRNeasy Mini Kit (Qiagen, Hilden, Germany) was used for purification and extraction of
total miRNAs. The extracted miRNAs were retro-transcribed by the miScript Reverse Transcription Kit
(Qiagen, Germany) and the corresponding cDNA was diluted 1:3 in RNase-free water. The miScript
SYBR-Green PCR kit (Qiagen, Germany) was used to perform qPCR experiments in triplicate. Signals
were detected on the MiniOpticon CFX 48 real-time PCR Detection System (Bio-Rad, Hercules,
CA, USA). MiScript Primer Assays specific for hsa-miR-193a-3p (MIMAT0000459), hsa-let-7g-5p
(MIMAT0000414) and hs-SNORD6 were obtained from Qiagen. miRNA expression was calculated
using the Ct method and normalized to the expression of the SNORD6 housekeeping gene.

4.11. Statistical Analysis

Data were presented as mean ± standard deviation (SD) of at least three independent experiments.
All statistical procedures were performed by commercial software (GraphPad Prism, version 6.0 from
GraphPad Software Inc., San Diego, CA, USA). The concentration able to inhibit cell viability by 50%
(IC50) was used as a measure of the potency of EC against each cell lines. qPCR results were presented
as box-plots. qPCR, western blotting and ELISA assay were analysed using unpaired t-test, and the
others assays using ordinary one-way ANOVA followed by Dunnett’s multiple comparisons test.
A p value < 0.05 was considered statistically significant.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/16/5/166/s1,
Figure S1: (a) Structure of the hydroxyl metabolite of EC produced by hydrolysis of EC’s acetyl group. (b) Predicted
binding mode of the hydroxyl metabolite of EC within the caffeine binding site of RyR1. Hydrogen bonds are
represented as black dashed lines, Table S1: MM-GBSA and MM-PBSA results for the nine different RyR1-euplotin
C complexes. ∆GBSA and ∆PBSA are the sum of the electrostatic (EEL) and van der Waals (VDW), as well as
polar (EGP/EPB) and non-polar (ESURF/ENPOLAR) solvation free energy. Data are expressed as kcal/mol.
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