Two New Terpenoids from *Talaromyces*

purpurogenus

Wenjing Wang, Xiao Wan, Junjun Liu, Jianping Wang, Hucheng Zhu, Chunmei Chen * and Yonghui Zhang *

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; <u>wangwj0122@163.com</u> (W. W.); <u>marina.wanx@gmail.com</u> (X. W.); <u>junjun.liu@hust.edu.cn</u> (J. L.); <u>jpwang1001@163.com</u> (J. W.); <u>zhuhucheng@hust.edu.cn</u> (H. Z.)

* Correspondence: <u>chenchunmei@hust.edu.cn</u> (C. C.); <u>zhangyh@mails.tjmu.edu.cn</u> (Y. Z.); Tel.:+86-27-8369-2892 (C.C.); +86-27-8369-2892 (Y.Z.)

Figure S1. (+)-HR-ESI-MS Spectrum of 1	3
Figure S2. IR Spectrum of 1	3
Figure S3. UV Spectrum of 1	4
Figure S4. ¹ H NMR Spectrum of 1 in CD ₃ OD	4
Figure S5. ¹³ C NMR Spectrum of 1 in CD ₃ OD	5
Figure S6. HSQC Spectrum of 1 in CD₃OD	5
Figure S7. HMBC Spectrum of 1 in CD ₃ OD	6
Figure S8. $^{1}H-^{1}H$ COSY Spectrum of 1 in CD ₃ OD	6
Figure S9. NOESY Spectrum of 1 in CD ₃ OD	7
Figure S10. (+)-HR-ESI-MS Spectrum of 2	7
Figure S11. IR Spectrum of 2	8
Figure S12. UV Spectrum of 2	8
Figure S13. ¹ H NMR Spectrum of 2 in CD ₃ OD	9
Figure S14. ¹³ C NMR Spectrum of 2 in CD ₃ OD	9
Figure S15. HSQC Spectrum of 2 in CD ₃ OD	10
Figure S16. HMBC Spectrum of 2 in CD ₃ OD	10
Figure S17. ¹ H– ¹ H COSY Spectrum of 2 in CD ₃ OD	11
Figure S18. NOESY Spectrum of 2 in CD ₃ OD	11
NMR calculations	11
Figure S19. Optimized geometries of predominant conformers of 2a at the B3LYP/6-31G(d,p) level.
	12
Table S1. Conformational distribution of 2a.	12
Table S2. Compound 2a structure optimized at B3LYP/6-31G*	13
Figure S20. Optimized geometries of predominant conformers of 2b at the B3LYP/6-31G((d,p) level
	15
Table S3. Conformational distribution of 2b	15
Table S4. Compound 2b structure optimized at B3LYP/6-31G*	15
Table S5. DFT Calculation Result for C shifts of 2a	16
Figure S21. The ¹³ C NMR correlation of experimental data and calculated dada of 2a	17
Table S6. DFT Calculation Result for C shifts of 2b	17
Figure S22. The ¹³ C NMR correlation of experimental data and calculated dada of 2b	18
ECD calculations	18
Table S7. Details for ECD calculation of 2.	18

Content

Figure S1. (+)-HR-ESI-MS Spectrum of 1

Figure S3. UV Spectrum of 1

Figure S4. ¹H NMR Spectrum of 1 in CD₃OD

Figure S6. HSQC Spectrum of 1 in CD₃OD

Figure S7. HMBC Spectrum of 1 in CD₃OD

.3. 0 (Edd) .3. 5 (Edd) .4. 0 .4. 5 .5. 0 .5. 5 .6. 0 .6. 5

- 7. 0

A

Figure S9. NOESY Spectrum of 1 in CD₃OD

Figure S10. (+)-HR-ESI-MS Spectrum of 2

Figure S11. IR Spectrum of 2

E:\20180112\20180112王文静\1-27-1.0

15:31:18 2018-1-12

Figure S12. UV Spectrum of 2

Figure S13. ¹H NMR Spectrum of 2 in CD₃OD

NMR calculations

The conformations of **2** generated by BALLOON[1, 2] were subjected to semiempirical PM3 quantum mechanical geometry optimizations using the Gaussian 09 program[3].

Duplicate conformations were identified and removed when the root-mean-square (RMS) distance was less than 0.5 Å for any two geometry-optimized conformations. The remaining conformations were further optimized at the B3LYP/6-31G(d) level in dimethylsulfoxide with the IEFPCM solvation model using Gaussian 09, and the duplicate conformations emerging after these calculations were removed according to the same RMS criteria above. The harmonic vibrational frequencies were calculated to confirm the stability of the final conformers. The NMR chemical shifts were calculated for each conformer at the B3LYP/6-311++G(d,p)//B3LYP/6-31G(d) level with dimethylsulfoxide as solvent by the IEFPCM solvation model implemented in Gaussian 09 program, which were then combined using Boltzmann weighting according to their population contributions.

Table S1. Conformational distribution of 2a

Species	2aa	2ab	2ac
Distribution (%)	82.07	16.40	1.53

[1] M.J.V. And, M.S. Johnson, Generating Conformer Ensembles Using a Multiobjective Genetic Algorithm, Journal of Chemical Information & Modeling, 47 (2007) 2462-2474.

[2] J.S. Puranen, M.J. Vainio, M.S. Johnson, Accurate conformation-dependent molecular electrostatic potentials for high-throughput in silico drug discovery, Journal of Computational Chemistry, 31 (2010) 1722-1732.

[3] G.W.S. Frisch MJT, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., (2009) Gaussian 09, Revision D 01, Gaussian, Inc, Wallingford, CT.

Conform	ation 2aa						
Atom	X	Y	Z	Atom	X	Y	Ζ
С	0.176	1.588	-1.42	Н	-1.67	2.214	-0.63
С	-3.135	-1.405	0.622	Н	-1.821	1.186	-2.024
С	1.288	1.228	-0.756	Н	-1.333	-2.442	1.192
С	-2.951	-0.102	0.352	Н	-2.158	-3.203	-0.167
С	2.624	1.638	-1.255	Н	0.782	-1.25	-1.701
С	-1.263	1.298	-1.086	Н	0.486	-2.723	-0.812
С	-1.918	-2.231	0.283	Н	0.895	0.802	1.328
С	0.391	-1.629	-0.751	Н	-0.93	0.285	0.76
С	1.492	0.418	0.498	Н	0.908	-1.475	1.341
С	-1.516	0.106	-0.15	Н	2.792	-2.699	0.792
С	1.312	-1.145	0.377	Н	4.672	-0.759	0.848
С	2.765	-1.728	0.283	Н	3.315	-1.026	-1.74
С	3.605	-0.745	1.113	Н	2.757	-2.701	-1.673
С	-1.126	-1.313	-0.693	Н	4.364	-2.279	-1.074
С	2.995	0.641	0.823	Н	-1.211	-0.866	-2.846
С	3.324	-1.937	-1.134	Н	-2.764	-1.38	-2.161
С	-1.682	-1.536	-2.118	Н	-1.476	-2.563	-2.439
С	-3.514	1.812	1.898	Н	-3.594	1.166	2.78
С	-5.368	0.579	0.702	Н	-2.484	2.18	1.846
С	-3.906	1.042	0.62	Н	-4.171	2.678	2.045
0	2.923	2.244	-2.261	Н	-5.503	-0.09	1.567
0	3.583	1.198	-0.38	Н	-6.014	1.449	0.862
0	3.418	-1.063	2.487	Н	-3.849	1.742	-0.225
0	3.285	1.484	1.898	Н	3.58	-0.24	2.982
0	-5.829	-0.034	-0.499	Н	2.707	2.265	1.873
Н	0.336	2.199	-2.308	Н	-5.202	-0.749	-0.699
Н	-4.023	-1.835	1.079				
Conform	ation 2ab						

 Table S2. Compound 2a structure optimized at B3LYP/6-31G*

Conforma	ation 2ab						
Atom	Χ	Y	Ζ	Atom	Χ	Y	Ζ
С	0.045	2.018	-0.855	Н	-1.802	2.32	0.098
С	-3.154	-1.549	0.115	Н	-1.945	1.733	-1.534
С	1.195	1.545	-0.345	Н	-1.362	-2.708	0.396
С	-3	-0.228	0.298	Н	-2.094	-2.959	-1.185
С	2.461	2.228	-0.734	Н	0.939	-0.693	-1.748
С	-1.373	1.591	-0.609	Н	0.574	-2.332	-1.267
С	-1.902	-2.198	-0.418	Н	1.153	0.741	1.643
С	0.451	-1.286	-0.966	Н	-1.002	0.125	0.884

С	1.534	0.459	0.655	Н	0.493	-1.396	1.174
С	-1.563	0.174	-0.059	Н	2.674	-1.917	1.649
С	1.163	-1.056	0.378	Н	3.513	-0.703	-1.003
С	2.519	-1.813	0.566	Н	2.628	-3.161	-1.156
С	3.574	-0.815	0.091	Н	1.843	-3.866	0.27
С	-1.077	-1.001	-0.981	Н	3.601	-3.653	0.235
С	3.093	0.511	0.71	Н	-0.999	0.094	-2.886
С	2.649	-3.201	-0.061	Н	-2.581	-0.634	-2.541
С	-1.499	-0.777	-2.448	Н	-1.223	-1.651	-3.05
С	-3.663	1.053	2.368	Н	-3.746	0.15	2.982
С	-5.447	0.247	0.768	Н	-2.643	1.437	2.473
С	-3.999	0.742	0.894	Н	-4.348	1.808	2.771
0	2.621	3.168	-1.485	Н	-5.58	-0.678	1.352
0	3.515	1.642	-0.103	Н	-6.124	0.997	1.191
0	4.869	-1.227	0.479	Н	-3.944	1.684	0.331
0	3.641	0.644	1.979	Н	5.502	-0.562	0.164
0	-5.86	0.064	-0.584	Н	3.215	1.398	2.419
Н	0.161	2.867	-1.528	Н	-5.198	-0.516	-0.996
Н	-4.042	-2.122	0.368				

Conforma	ation 2ac						
Atom	Χ	Y	Ζ	Atom	X	Y	Z
С	-0.048	-0.906	1.898	Н	-1.968	-1.581	1.398
С	-3.155	1.569	-0.991	Н	-1.971	-0.143	2.372
С	1.061	-0.883	1.14	Н	-1.288	2.234	-1.833
С	-3.089	0.404	-0.333	Н	-2.02	3.436	-0.772
С	2.378	-1.24	1.725	Н	0.784	1.783	1.283
С	-1.472	-0.606	1.513	Н	0.585	2.941	-0.009
С	-1.872	2.356	-0.906	Н	0.624	-1.087	-0.97
С	0.397	1.893	0.264	Н	-1.128	-0.284	-0.564
С	1.283	-0.524	-0.306	Н	0.823	1.066	-1.683
С	-1.67	0.232	0.237	Н	2.819	2.223	-1.562
С	1.235	1.01	-0.669	Н	4.532	0.2	-1.035
С	2.733	1.462	-0.777	Н	3.308	1.371	1.358
С	3.459	0.201	-1.272	Н	2.876	2.984	0.781
С	-1.143	1.711	0.307	Н	4.422	2.265	0.321
С	2.747	-0.97	-0.564	Н	-1.213	1.975	2.493
С	3.363	2.046	0.499	Н	-2.732	2.382	1.67
С	-1.641	2.418	1.587	Н	-1.339	3.473	1.569
С	-4.876	-0.808	1.045	Н	-4.196	-1.234	1.79
С	-3.765	-1.985	-0.893	Н	-5.231	0.155	1.428
С	-4.201	-0.624	-0.33	Н	-5.739	-1.478	0.961
0	2.665	-1.528	2.867	Н	-3.028	-2.462	-0.23

0	3.334	-1.184	0.746	Н	-4.643	-2.648	-0.93
0	3.248	0.099	-2.676	Н	-4.97	-0.244	-1.016
0	2.925	-2.124	-1.33	Н	3.319	-0.848	-2.893
0	-3.219	-1.792	-2.198	Н	2.271	-2.796	-1.074
Н	0.098	-1.221	2.932	Н	-2.959	-2.664	-2.534
Н	-4.012	1.895	-1.577				

Figure S20. Optimized geometries of predominant conformers of 2b at the B3LYP/6-31G(d,p) level

7	h
4	υ

Table S3. Conformational distribution of 2b

Species	2b
Distribution (%)	100

Table S4. Compound 2b structure optimized at B3LYP/6-31G*

Conforma	ation 2b						
Atom	Χ	Y	Ζ	Atom	X	Y	Ζ
С	0.098	2.067	-0.819	Н	-1.678	1.483	-1.832
С	-3.136	-1.511	0.275	Н	-1.908	2.257	-0.299
С	1.233	1.598	-0.286	Н	-1.375	-2.671	0.7
С	-2.95	-0.182	0.291	Н	-2.114	-3.096	-0.84
С	2.497	2.413	-0.372	Н	0.55	-2.586	-0.988
С	-1.292	1.498	-0.804	Н	0.979	-1.039	-1.678
С	-1.903	-2.251	-0.171	Н	1.778	0.666	1.514
С	0.47	-1.504	-0.829	Н	-0.944	0.196	0.837
С	1.671	0.366	0.462	Н	0.502	-1.254	1.301
С	-1.5	0.144	-0.11	Н	2.44	-2.184	1.904
С	1.192	-1.1	0.466	Н	4.64	-1.219	0.436
С	2.547	-1.864	0.861	Н	2.088	-3.855	0.094
С	3.717	-0.8	0.863	Н	3.03	-2.855	-1.026
С	-1.045	-1.157	-0.876	Н	3.804	-3.569	0.4
С	3.111	0.274	-0.029	Н	-2.539	-0.917	-2.471
С	2.883	-3.105	0.029	Н	-0.924	-0.323	-2.907
С	-1.465	-1.103	-2.36	Н	-1.237	-2.059	-2.846

С	-3.563	1.377	2.178	Н	-2.545	1.779	2.204
С	-5.385	0.37	0.743	Н	-3.62	0.564	2.911
С	-3.933	0.867	0.769	Н	-4.246	2.174	2.494
0	2.643	3.573	-0.68	Н	-5.509	-0.471	1.445
0	3.581	1.632	0.005	Н	-6.048	1.174	1.081
0	3.97	-0.243	2.145	Н	-3.893	1.723	0.081
0	3.144	-0.164	-1.368	Н	4.205	-0.973	2.741
0	-5.833	0.018	-0.564	Н	4.078	-0.254	-1.627
Н	0.179	3.037	-1.311	Н	-5.181	-0.611	-0.916
Н	-4.037	-2.025	0.598				

Table S5. DFT Calculation Result for C shifts of 2a

Position	Expt	Calc	Corrected	Δδ
1	37.6	39.1885	35.91871	-1.68129
2	41.2	45.6765	42.12915	0.929147
3	40.8	49.6043	45.88891	5.088914
4	80	85.9934	80.72128	0.721275
5	114.1	118.368	111.7109	-2.38912
6	52.8	57.9146	53.8437	1.043696
7	130.5	133.529	126.2233	-4.27671
8	141.6	156.397	148.113	6.512984
9	28.6	31.411	28.47393	-0.12607
10	47.9	51.898	48.08449	0.184489
11	46.9	53.1627	49.29508	2.395084
12	45.5	46.5605	42.97533	-2.52467
13	122.1	128.429	121.3415	-0.75853
14	148.4	159.336	150.9263	2.526253
15	36.7	41.5995	38.22656	1.526562
16	11	15.0823	12.84378	1.843778
17	173	178.622	169.3872	-3.61281
18	24.9	25.0123	22.34897	-2.55103
19	17.6	17.6939	15.34365	-2.25635

20	67	68.9473	64.40441	-2.59559
			Average	2.28
			Max	6.4

Figure S21. The ¹³C NMR correlation of experimental data and calculated dada of 2a

Table S6. DFT Calculation Result for C shifts of 2b

Position	Expt	Calc	Corrected	Δδ
1	37.6	36.2084	33.66415	-3.93585
2	41.2	38.6217	35.96614	-5.23386
3	40.8	58.7194	55.13687	14.33687
4	80	85.4123	80.59862	0.598618
5	114.1	115.16	108.9743	-5.12574
6	52.8	55.4376	52.00644	-0.79356
7	130.5	133.724	126.682	-3.81796
8	141.6	148.588	140.8605	-0.73954
9	28.6	31.0093	28.70485	0.104848
10	47.9	49.9625	46.78387	-1.11613
11	46.9	51.5738	48.32085	1.420851
12	45.5	48.1855	45.08883	-0.41117
13	122.1	127.793	121.0246	-1.07541
14	148.4	159.298	151.0765	2.676486
15	36.7	40.8487	38.09043	1.390425

16	11	17.018	15.35887	4.358869
17	173	184.931	175.5272	2.527215
18	24.9	24.991	22.96413	-1.93587
19	17.6	17.5293	15.84659	-1.75341
20	67	69.6091	65.52431	-1.47569
			Average	2.74
			Max	14.7

Figure S22. The ¹³ C NMR	correlation of ex	perimental data a	nd calculated	dada of 2b
-------------------------------------	-------------------	-------------------	---------------	------------

ECD calculations

Table S7. Details for ECD calculation of 2

Important thermodynamic parameters (a.u	u.) and Boltzmann d	distributions of the optimized 2a
---	---------------------	--

Conformations	⊿G	%
2a1	0.40426	66.18%
2a2	0.406720	16.53%
2a3	0.406721	14.86%
2a4	0.406448	2.43%

Important thermodynamic parameters (a.u.) and Boltzmann distributions of the optimized 2b

Conformations	⊿G	%
2b1	0.407348	16.06%
2b2	0.406720	79.48%
2b3	0.405692	3.88%

Conforma	ation 2a1						
Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	-0.035	-2.063	-0.754	Н	1.875	-1.755	-1.61
С	3.033	1.718	-0.343	Н	1.895	-2.196	0.074
С	-1.172	-1.592	-0.215	Н	1.208	2.827	-0.066

Optimized Z-matrixes of compound 2a

С	2.959	0.418	-0.023	Н	1.826	2.937	-1.71
С	-2.433	-2.336	-0.493	Н	-0.811	2.2	-1.52
С	1.374	-1.556	-0.655	Н	-1.131	0.509	-1.82
С	1.721	2.255	-0.856	Н	-1.067	-0.618	1.695
С	-0.617	1.193	-1.135	Н	1.029	0.018	0.726
С	-1.503	-0.436	0.708	Н	-0.492	1.486	0.981
С	1.528	-0.086	-0.248	Н	-2.61	1.987	1.607
С	-1.211	1.058	0.276	Н	-3.794	0.594	-0.823
С	-2.57	1.795	0.523	Н	-2.861	2.992	-1.285
С	-3.647	0.74	0.253	Н	-3.735	3.582	0.132
С	0.92	0.972	-1.238	Н	-1.99	3.833	0.012
С	-3.044	-0.544	0.86	Н	0.896	1.427	-3.363
С	-2.797	3.123	-0.199	Н	2.33	0.518	-2.858
С	1.251	0.626	-2.704	Н	0.763	-0.301	-3.025
С	4.908	-1.139	-0.486	Н	5.688	-1.741	-0.009
С	4.938	0.378	1.547	Н	5.392	-0.398	-1.133
С	4.051	-0.435	0.585	Н	4.305	-1.796	-1.12
0	-2.593	-3.344	-1.153	Н	4.305	0.91	2.273
0	-3.479	-1.71	0.105	Н	5.509	1.13	0.992
0	-4.928	1.017	0.82	Н	3.57	-1.217	1.194
0	-3.423	-0.692	2.184	Н	-4.836	1.757	1.442
0	5.917	-0.418	2.213	Н	-4.348	-0.372	2.224
Н	-0.158	-2.971	-1.345	Н	5.441	-1.049	2.777
Н	3.908	2.349	-0.212				

Conforma	ation 2a2						
Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	0.045	-0.923	1.919	Н	-1.847	-1.665	1.386
С	-3.229	1.488	-0.822	Н	-1.911	-0.268	2.432
С	1.134	-0.86	1.134	Н	-1.414	2.196	-1.754
С	-3.087	0.317	-0.183	Н	-2.126	3.379	-0.657
С	2.477	-1.172	1.68	Н	0.81	1.814	1.267
С	-1.394	-0.677	1.555	Н	0.527	2.949	-0.029
С	-1.958	2.303	-0.8	Н	0.633	-1.089	-0.957
С	0.378	1.9	0.264	Н	-1.115	-0.306	-0.517
С	1.3	-0.503	-0.32	Н	0.752	1.065	-1.69
С	-1.638	0.186	0.308	Н	2.725	2.268	-1.652
С	1.202	1.027	-0.692	Н	4.504	0.292	-1.168
С	2.684	1.513	-0.857	Н	3.33	1.457	1.257
С	3.422	0.265	-1.366	Н	2.848	3.055	0.679
С	-1.154	1.675	0.375	Н	4.392	2.361	0.176
С	2.765	-0.914	-0.622	Н	-1.14	1.907	2.563

С	3.343	2.124	0.39	Н	-2.699	2.293	1.809
С	-1.614	2.355	1.683	Н	-1.336	3.417	1.669
С	-5.563	-0.268	-0.218	Н	-5.747	0.106	-1.232
С	-3.883	-1.921	-1.062	Н	-6.282	-1.072	-0.025
С	-4.122	-0.781	-0.058	Н	-5.766	0.548	0.482
0	2.81	-1.442	2.815	Н	-4.681	-2.671	-0.947
0	3.401	-1.098	0.67	Н	-3.946	-1.519	-2.085
0	3.163	0.142	-2.76	Н	-4.037	-1.226	0.944
0	2.947	-2.074	-1.38	Н	3.247	-0.806	-2.969
0	-2.606	-2.515	-0.828	Н	2.314	-2.755	-1.101
Н	0.226	-1.229	2.95	Н	-2.49	-3.227	-1.476
Н	-4.128	1.819	-1.333				

Conforma	ation 2a3						
Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	-0.235	-1.843	0.872	Н	-2.162	-1.293	1.56
С	-2.902	2.147	-0.066	Н	-2.107	-1.902	-0.069
С	0.967	-1.538	0.356	Н	-0.968	3.054	-0.318
С	-2.951	0.824	-0.275	Н	-1.658	3.357	1.272
С	2.135	-2.367	0.772	Н	0.896	2.37	1.281
С	-1.585	-1.231	0.63	Н	1.037	0.692	1.747
С	-1.576	2.6	0.481	Н	1.065	-0.761	-1.643
С	0.625	1.353	0.975	Н	-1.032	0.167	-0.871
С	1.454	-0.516	-0.649	Н	0.635	1.451	-1.166
С	-1.59	0.2	0.075	Н	2.847	1.664	-1.701
С	1.274	1.033	-0.382	Н	3.653	0.463	0.977
С	2.708	1.617	-0.611	Н	2.255	3.734	-0.38
С	3.647	0.511	-0.121	Н	2.996	3.005	1.059
С	-0.929	1.284	1.007	Н	3.978	3.37	-0.366
С	2.987	-0.762	-0.683	Н	-2.452	1.102	2.579
С	2.997	3.005	-0.036	Н	-0.98	0.162	2.9
С	-1.361	1.098	2.477	Н	-0.963	1.918	3.086
С	-3.754	-0.645	-2.198	Н	-3.088	-1.492	-1.996
С	-4.921	-0.759	0.078	Н	-3.251	0.014	-2.913
С	-4.132	0.124	-0.917	Н	-4.652	-1.037	-2.689
0	2.163	-3.317	1.527	Н	-5.167	-0.164	0.963
0	3.264	-1.905	0.175	Н	-4.324	-1.619	0.41
0	4.988	0.573	-0.603	Н	-4.836	0.915	-1.212
0	3.443	-1.028	-1.962	Н	5.201	1.492	-0.83
0	-6.172	-1.199	-0.455	Н	4.361	-0.684	-1.983
Н	-0.232	-2.692	1.556	Н	-5.988	-1.913	-1.085
Н	-3.704	2.837	-0.319				

Conformation 2a4							
Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	0.082	-1.506	-1.294	Н	1.954	-1.853	-0.413
С	2.907	2.028	0.614	Н	2.035	-0.902	-1.867
С	-1.085	-1.261	-0.675	Н	0.971	2.868	1.048
С	2.915	0.698	0.451	Н	1.736	3.61	-0.356
С	-2.346	-1.863	-1.176	Н	-0.882	1.183	-1.766
С	1.462	-1.021	-0.939	Н	-0.798	2.738	-0.976
С	1.61	2.657	0.175	Н	-0.802	-0.668	1.385
С	-0.566	1.672	-0.838	Н	0.952	0.052	0.829
С	-1.423	-0.415	0.524	Н	-1.101	1.585	1.252
С	1.54	0.25	-0.075	Н	-3.114	2.519	0.616
С	-1.441	1.147	0.307	Н	-4.734	0.361	0.761
С	-2.955	1.533	0.163	Н	-3.382	0.655	-1.822
С	-3.679	0.498	1.038	Н	-3.03	2.387	-1.846
С	0.978	1.562	-0.733	Н	-4.585	1.808	-1.24
С	-2.891	-0.812	0.836	Н	1.185	0.974	-2.846
С	-3.511	1.591	-1.27	Н	2.634	1.739	-2.167
С	1.54	1.751	-2.16	Н	1.21	2.716	-2.563
С	3.626	-1.211	1.984	Н	2.869	-1.912	1.615
С	4.785	-0.881	-0.262	Н	4.491	-1.795	2.31
С	4.052	-0.196	0.904	Н	3.208	-0.696	2.856
0	-2.54	-2.555	-2.152	Н	4.166	-1.671	-0.709
0	-3.375	-1.503	-0.345	Н	4.994	-0.137	-1.046
0	-3.558	0.912	2.394	Н	4.801	0.467	1.358
0	-3.094	-1.629	1.95	Н	-3.623	0.103	2.932
0	6	-1.43	0.25	Н	-2.404	-2.312	1.989
Н	0.028	-2.179	-2.15	Н	6.424	-1.922	-0.47
Н	3.719	2.596	1.063				

Optimized Z-matrixes of compound 2b

Conformation 2b1							
Atom	Χ	Y	Ζ	Atom	Χ	Y	Z
С	-0.199	2.177	0.056	Н	1.723	2.379	-0.814
С	3.168	-1.295	-0.8	Н	1.726	2.139	0.909
С	-1.27	1.419	0.341	Н	2.114	-2.037	-2.575
С	2.997	-0.181	-0.07	Н	1.38	-2.481	-1.036
С	-2.628	2.02	0.366	Н	-0.56	-1.311	-2.544
С	1.252	1.786	-0.021	Н	-0.875	0.351	-2.111
С	1.918	-1.673	-1.558	Н	-0.753	-0.346	1.48
С	-0.436	-0.579	-1.733	Н	1.018	-0.234	0.608

С	-1.411	-0.047	0.662	Н	-0.817	-1.962	-0.119
С	1.541	0.287	-0.203	Н	-2.755	-2.496	-1.257
С	-1.273	-1.059	-0.541	Н	-4.586	-1.224	0.27
С	-2.741	-1.449	-0.931	Н	-3.41	0.46	-1.821
С	-3.504	-1.369	0.401	Н	-4.437	-0.93	-2.177
С	1.089	-0.355	-1.559	Н	-2.882	-0.75	-2.995
С	-2.883	-0.167	1.142	Н	1.059	1.473	-2.786
С	-3.397	-0.611	-2.04	Н	1.31	-0.018	-3.697
С	1.556	0.497	-2.761	Н	2.638	0.663	-2.743
С	4.816	1.571	0.127	Н	5.404	1.138	-0.691
С	4.956	-0.544	1.497	Н	4.164	2.338	-0.302
С	4.005	0.478	0.851	Н	5.506	2.066	0.821
0	-2.978	3.152	0.108	Н	5.599	-1	0.727
0	-3.537	1.061	0.728	Н	5.615	-0.028	2.204
0	-3.233	-2.56	1.131	Н	3.454	0.951	1.676
0	-3.086	-0.343	2.512	Н	-3.347	-2.335	2.071
0	4.276	-1.542	2.252	Н	-2.488	0.235	3.015
Н	-0.406	3.233	-0.123	Н	3.648	-1.961	1.639
Н	4.077	-1.89	-0.839				

Confor	mation 2b2						
Atom	Х	Y	Ζ	Atom	Χ	Y	Ζ
С	-0.042	-1.622	-1.204	Н	-1.857	-2.088	-0.262
С	-3.045	1.73	0.76	Н	-2.049	-1.159	-1.717
С	1.127	-1.272	-0.642	Н	-2.066	3.368	-0.32
С	-2.944	0.396	0.647	Н	-1.178	2.748	1.07
С	2.404	-1.787	-1.194	Н	0.705	1.138	-1.76
С	-1.441	-1.229	-0.808	Н	0.521	2.693	-0.99
С	-1.832	2.45	0.234	Н	0.915	-0.676	1.424
С	0.381	1.615	-0.83	Н	-0.922	-0.089	0.917
С	1.454	-0.374	0.524	Н	0.977	1.598	1.244
С	-1.572	0.045	0.045	Н	2.889	2.69	0.56
С	1.33	1.18	0.294	Н	4.696	0.686	0.638
С	2.801	1.697	0.104	Н	4.354	2.122	-1.347
С	3.64	0.72	0.944	Н	2.736	2.558	-1.903
С	-1.145	1.383	-0.667	Н	3.244	0.865	-1.895
С	2.957	-0.649	0.751	Н	-1.364	0.728	-2.759
С	3.304	1.808	-1.345	Н	-2.854	1.385	-2.057
С	-1.764	1.488	-2.079	Н	-1.53	2.467	-2.512
С	-3.413	-1.642	2.129	Н	-4.227	-2.235	2.561
С	-4.815	-1.201	0.043	Н	-2.733	-2.335	1.624
С	-3.983	-0.572	1.18	Н	-2.863	-1.175	2.952
0	2.61	-2.5	-2.15	Н	-4.183	-1.83	-0.601

0	3.445	-1.288	-0.444	Н	-5.588	-1.849	0.473
0	3.518	1.095	2.312	Н	-4.695	0.032	1.759
0	3.146	-1.524	1.837	Н	3.588	0.271	2.828
0	-5.502	-0.217	-0.726	Н	4.055	-1.872	1.784
Н	0.028	-2.311	-2.045	Н	-4.869	0.508	-0.871
Н	-3.872	2.241	1.248				
Confor	mation 2b3						
Atom	Χ	Y	Ζ	Atom	Χ	Y	Ζ
С	0.092	1.788	-1.247	Н	2.036	1.358	-1.976
С	3.231	-1.741	-0.012	Н	1.986	2.133	-0.411
С	-1.041	1.438	-0.614	Н	2.037	-3.264	-1.042
С	3.131	-0.405	0.014	Н	1.425	-2.784	0.537
С	-2.306	2.107	-1.027	Н	-0.607	-2.548	-1.022
С	1.507	1.348	-1.015	Н	-0.952	-0.977	-1.703
С	1.925	-2.404	-0.369	Н	-0.904	0.914	1.462
С	-0.431	-1.476	-0.878	Н	1.194	0.109	0.677
С	-1.353	0.515	0.545	Н	-0.333	-1.288	1.254
С	1.686	0.006	-0.297	Н	-2.498	-1.648	1.93
С	-1.044	-1.037	0.462	Н	-3.457	-0.792	-0.819
С	-2.407	-1.707	0.837	Н	-2.651	-3.285	-0.661
С	-3.459	-0.747	0.282	Н	-3.565	-3.531	0.832
С	1.102	-1.256	-1.028	Н	-1.815	-3.805	0.814
С	-2.903	0.634	0.678	Н	0.929	-0.412	-3.051
С	-2.616	-3.165	0.427	Н	1.089	-2.171	-3
С	1.43	-1.238	-2.534	Н	2.508	-1.149	-2.709
С	5.635	-0.008	0.231	Н	5.813	-0.831	0.934
С	4.06	1.105	1.827	Н	5.785	-0.394	-0.782
С	4.222	0.576	0.391	Н	6.394	0.76	0.42
0	-2.484	2.939	-1.893	Н	4.106	0.258	2.53
0	-3.339	1.653	-0.265	Н	4.901	1.777	2.056
0	-4.741	-1.052	0.792	Н	4.147	1.451	-0.27
0	-3.371	0.965	1.943	Н	-5.37	-0.413	0.42
0	2.82	1.8	1.95	Н	-2.894	1.756	2.247
Н	-0.038	2.538	-2.027	Н	2.744	2.105	2.868
Н	4.126	-2.308	0.229				