Supporting Information

Terpenoids from the Soft Coral Sinularia sp. Collected in Yongxing Island

Guo-Fei Qin, Xu-Li Tang, Yan-Ting Sun, Xiang-Chao Luo, Jing Zhang, Leen van Ofwegen,

Ping-Jyun Sung, Ping-Lin Li, and Guo-Qiang Li

Experimental sect	ion	S3
1. Animal mat	erial	S 3
Computational det	ails	S3
1. Stable confo	ormers of compound (1-3)	S3
2. ¹³ C NMR ca	lculations details to support the assigned carbon and relative configuration of (1)	S6
3. ECD calcula	ations details for (1) to determine the absolute configuration	S16
1D and 2D NMR	spectra of new compounds (1-5)	S17
Figure SS1	The positive ESIMS spectrum of sinuketal (1)	S17
Figure SS2	The positive HRESIMS spectrum of sinuketal (1)	S18
Figure SS3	¹ H NMR (500 MHz, CDCl ₃) spectrum of sinuketal (1)	S19
Figure SS4	Amplificatory ¹ H NMR spectrum of sinuketal (1)	S20
Figure SS5	¹³ C NMR (125 MHz, CDCl ₃) spectrum of sinuketal (1)	S21
Figure SS6	DEPT spectrum of sinuketal (1)	S22
Figure SS7	HMQC spectrum of sinuketal (1)	S23
Figure SS8	Partial HMQC spectrum of sinuketal (1)	S24
Figure SS9	¹ H- ¹ H COSY spectrum of sinuketal (1)	S25
Figure SS10	Partial ¹ H- ¹ H COSY spectrum of sinuketal (1)	S26
Figure SS11	Key HMBC spectrum of sinuketal (1)	S27
Figure SS12	Partial HMBC spectrum of sinuketal (1) (A)	S28
Figure SS13	Partial HMBC spectrum of sinuketal (1) (B)	S29
Figure SS14	Partial HMBC spectrum of sinuketal (1) (C)	S30
Figure SS15	NOESY spectrum of sinuketal (1)	S31
Figure SS16	Key amplificatory NOESY spectrum of sinuketal (1)	S32
Figure SS17	The positive HRESIMS spectrum of sinulin A (2)	S33
Figure SS18	¹ H NMR (500 MHz, CDCl ₃) spectrum of sinulin A (2) and compound (6)	S34
Figure SS19	¹³ C NMR (125 MHz, CDCl ₃) spectrum of sinulin A (2) and compound (6)	S35
Figure SS20	DEPT spectrum of sinulin A (2) and compound (6)	S36
Figure SS21	HMQC spectrum of sinulin A (2) and compound (6)	S37

Table of Contents

-S1/S64-

Figure SS22	$^{1}\text{H}-^{1}\text{H}$ COSY spectrum of sinulin A (2) and compound (6)	S38
Figure SS23	HMBC spectrum of sinulin A (2) and compound (6)	S39
Figure SS24	NOE spectrum of sinulin A (2)	S40
Figure SS25	The positive HRESIMS spectrum of sinulin B (3)	S41
Figure SS26	¹ H NMR (500 MHz, CDCl ₃) spectrum of sinulin B (3)	S42
Figure SS27	¹³ C NMR (125 MHz, CDCl ₃) spectrum of sinulin B (3)	S43
Figure SS28	DEPT spectrum of sinulin B (3)	S44
Figure SS29	HMQC spectrum of sinulin B (3)	S45
Figure SS30	¹ H- ¹ H COSY spectrum of sinulin B (3)	S46
Figure SS31	HMBC spectrum of sinulin B (3)	S47
Figure SS32	NOESY spectrum of sinulin B (3)	S48
Figure SS33	The positive HRESIMS spectrum of sinulin C (4)	S49
Figure SS34	¹ H NMR (500 MHz, CDCl ₃) spectrum of sinulin C (4)	S50
Figure SS35	¹³ C NMR (125 MHz, CDCl ₃) spectrum of sinulin C (4)	S51
Figure SS36	DEPT spectrum of sinulin C (4)	S52
Figure SS37	HMQC spectrum of sinulin C (4)	S53
Figure SS38	¹ H- ¹ H COSY spectrum of sinulin C (4)	S54
Figure SS39	HMBC spectrum of sinulin C (4)	S55
Figure SS40	NOESY spectrum of sinulin C (4)	S56
Figure SS41	The positive HRESIMS spectrum of sinulin D (5)	S57
Figure SS42	¹ H NMR (500 MHz, CDCl ₃) spectrum of sinulin D (5)	S58
Figure SS43	¹³ C NMR (125 MHz, CDCl ₃) spectrum of sinulin D (5)	S59
Figure SS44	DEPT spectrum of sinulin D (5)	S60
Figure SS45	HMQC spectrum of sinulin D (5)	S61
Figure SS46	¹ H- ¹ H COSY spectrum of sinulin D (5)	S62
Figure SS47	HMBC spectrum of sinulin D (5)	S63
Figure SS48	NOESY spectrum of sinulin D (5)	S64

Experimental section

1. Animal material.

All collections of the soft coral *Sinularia* sp. were carried out in Yongxing Island of South China Sea in November 2012 and were frozen immediately. The specimen was identified by Dr. Leen van Ofwegen (Nationaal Natuurhistorisch Museum, Leiden, The Netherlands). The voucher specimen (No. XS-2012-04) was deposited at State Key Laboratory of Marine Drugs, Ocean University of China, P. R. China.

sp.

Computational details

1. Stable conformers of compounds of (1-3)

Figure S1. Stable conformers of compound 1 with 1a, 1b, 1c and 1d configurations, respectively.

2a1 (59.5%)

2a2 (38.8%)

2a3 (1.6%)

2b1 (58.8%)

2b2 (38.5%)

2b3 (1.6%)

2b4 (1.1%)

Figure S2. Stable conformers of compound **2** with 3*R*9*R*10*R* (**2a**) and 3*S*9*S*10*S* (**2b**) configurations, respectively.

Figure S3. Stable conformers of compound **3** with 5*R*6*S*7*S*10*S* (**3a**) and 5*S*3*R*9*R*10*R* (**3b**) configurations, respectively.

2. ¹³C NMR calculations details to support the assigned carbon and relative

configuration of 1

Table S1. Important thermodynamic parameters (a.u.) of the optimized compound **1** with **1a**, **1b**, **1c** and **1d** at B3LYP/DGDZVP level in the gas phase.

		81			
conformations	E+ZPE	G	conformations	E+ZPE	G
1a1	-811.279900	-811.323160	1b1	-811.279901	-811.323163
1a2	-811.279831	-811.323152	1b2	-811.280189	-811.322862
1a3	-811.280190	-811.322864	1b3	-811.278429	-811.322143
1a4	-811.280202	-811.322817	1b4	-811.278429	-811.322142
1a5	-811.278427	-811.322358	1b5	-811.278429	-811.322133
1a6	-811.278429	-811.322145			
1c1	-811.280859	-811.324337	1d1	-811.280859	-811.324337
1c2	-811.280504	-811.324011	1d2	-811.280504	-811.324011
1c3	-811.278638	-811.321634	1d3	-811.278638	-811.321634
1c4	-811.278212	-811.321239	1d4	-811.278212	-811.321239
1c5	-811.277544	-811.320458	1d5	-811.277544	-811.320458

Table S2. Optimized Z-Matrixes of compound **1** in the Gas Phase (Å) at B3LYP/6-31G(d,p) level.

		1a1				1a2					
С	0.130217	-0.891599	-0.653646	С	0.128344	-0.875207	-0.668463	С	-0.181202	-1.028416	0.522675
С	-0.605926	0.362887	-0.083345	С	-0.603844	0.372596	-0.082932	С	0.626918	0.242758	0.110097
С	1.582973	-0.728653	-1.096476	С	1.58475	-0.71988	-1.091258	С	-1.632326	-0.852845	0.956419
С	2.361087	-0.870219	0.225693	С	2.361483	-0.874924	0.241528	С	-2.397861	-0.775145	-0.38745
С	2.975563	0.411157	0.809325	С	2.982739	0.400104	0.81795	С	-2.932552	0.6049	-0.779702
С	2.011105	1.58797	1.086312	С	2.019227	1.576976	1.090164	С	-1.905882	1.757706	-0.846589
С	1.33867	2.161693	-0.152533	С	1.349149	2.160002	-0.145994	С	-1.221625	2.096587	0.471136
С	-0.08715	1.750902	-0.509912	С	-0.08129	1.762539	-0.498839	С	0.182151	1.569753	0.759191
С	1.984735	3.054257	-0.912455	С	1.999602	3.048642	-0.90685	С	-1.832017	2.8899	1.359716
С	-2.107066	0.185599	-0.490841	С	-2.106449	0.202554	-0.48869	С	2.12743	-0.087345	0.433095
С	-2.221297	-1.258735	-1.030459	С	-2.223036	-1.230911	-1.056585	С	2.135971	-1.571199	0.878841
С	-0.844573	-1.517857	-1.65536	С	-0.845422	-1.481574	-1.683293	С	0.740098	-1.806906	1.462023

-S6/S64-

С	-3.118537	0.591478	0.609259	С	-3.113534	0.585567	0.623553	С	3.114911	0.203893	-0.721332
С	-3.132219	-0.352583	1.822937	С	-3.121268	-0.382743	1.818013	С	4.550734	-0.19945	-0.347858
С	-4.53622	0.749688	0.036947	С	-4.533529	0.754737	0.060272	С	3.091602	1.670876	-1.177078
Н	-0.515982	0.28688	1.002883	Н	-0.510479	0.286734	1.002097	Н	0.509135	0.330416	-0.973243
0	0.277989	-1.868389	0.409436	0	0.268625	-1.870587	0.381096	0	-0.363733	-1.867602	-0.648593
0	1.381519	-1.304078	1.188271	0	1.361811	-1.318955	1.186183	0	-1.414476	-1.149975	-1.378629
0	3.352236	-1.850042	0.022746	0	3.40948	-1.80912	0.150352	0	-3.503526	-1.644374	-0.433326
Н	1.870105	-1.567062	-1.735551	Н	1.865057	-1.546213	-1.752481	Н	-1.963016	-1.749159	1.491176
Н	1.795159	0.203689	-1.618206	Н	1.815656	0.214015	-1.602381	Н	-1.820671	0.009148	1.594662
Н	3.465667	0.140399	1.75479	Η	3.472352	0.115749	1.755437	Н	-3.407331	0.49314	-1.760321
Н	3.76476	0.733803	0.122173	Н	3.772581	0.71791	0.129192	Н	-3.727041	0.85571	-0.068815
Н	2.603418	2.37912	1.558803	Н	2.612871	2.364305	1.56702	Н	-2.451837	2.642686	-1.190709
Н	1.268845	1.269232	1.823218	Н	1.274443	1.259962	1.825596	Н	-1.168479	1.528922	-1.621203
Н	-0.763981	2.481892	-0.04185	Η	-0.75158	2.491517	-0.018433	Н	0.893148	2.334904	0.419638
Н	-0.225872	1.882885	-1.590636	Η	-0.226466	1.906351	-1.577228	Н	0.320383	1.513732	1.846888
Н	1.544475	3.462734	-1.818401	Н	1.55891	3.463275	-1.809854	Н	-1.381431	3.131553	2.318911
Н	2.976079	3.415567	-0.651166	Η	2.995092	3.400594	-0.648737	Н	-2.803204	3.33342	1.15599
Н	-2.286412	0.857638	-1.343855	Н	-2.289388	0.891599	-1.327071	Н	2.432659	0.526904	1.294726
Н	-3.042471	-1.378794	-1.743444	Н	-3.042482	-1.335031	-1.773962	Н	2.935178	-1.794109	1.591187
Н	-2.383528	-1.969552	-0.214425	Н	-2.389289	-1.957108	-0.255126	Н	2.279302	-2.2215	0.00781
Н	-0.615134	-2.573214	-1.82873	Н	-0.619838	-2.534751	-1.876346	Н	0.450527	-2.860002	1.530012
Н	-0.750423	-0.990596	-2.61306	Н	-0.747603	-0.937507	-2.631096	Н	0.660452	-1.371851	2.466191
Н	-2.801859	1.582831	0.968265	Н	-2.795367	1.569581	1.000662	Н	2.799278	-0.417459	-1.573153
Н	-3.720137	0.083268	2.637594	Н	-3.702648	0.037905	2.645193	Н	5.239567	0.004758	-1.174437
Н	-2.12741	-0.553799	2.206495	Н	-2.114526	-0.594086	2.190866	Н	4.631019	-1.263099	-0.106508
Н	-3.587823	-1.317089	1.574572	Н	-3.581257	-1.34092	1.5535	Н	4.902078	0.369019	0.522404
Н	-5.234077	1.100826	0.804662	Н	-5.228222	1.090519	0.837614	Н	3.801907	1.831164	-1.995247
Н	-4.558004	1.469479	-0.788837	Н	-4.558698	1.49081	-0.750942	Н	2.10575	1.978576	-1.53796
Н	-4.919756	-0.204608	-0.342148	Н	-4.918646	-0.191925	-0.336063	Н	3.376804	2.343658	-0.358693
Н	3.76225	-2.031372	0.880556	Н	3.008657	-2.664863	-0.05996	Н	-3.158392	-2.545318	-0.354014
		1a4				1a5				1a6	
С	-0.181962	-1.038321	0.510164	С	-0.137875	-0.967705	0.675118	С	-0.142915	-0.982156	0.660364
С	0.628287	0.236769	0.108507	С	0.700971	0.269178	0.219265	С	0.703181	0.256527	0.217001
С	-1.630105	-0.859602	0.962707	С	-1.613251	-0.760125	0.999834	С	-1.614589	-0.762783	1.007045
С	-2.395261	-0.777082	-0.370069	С	-2.290144	-0.780934	-0.392509	С	-2.295018	-0.77323	-0.373254
С	-2.926378	0.607215	-0.772305	С	-2.789562	0.567443	-0.918882	С	-2.785097	0.581451	-0.90702
С	-1.900572	1.762296	-0.847664	С	-1.753019	1.710064	-1.003455	C	-1.742619	1.71993	-1.002049
С	-1.215013	2.09775	0.470178	С	-1.154997	2.145031	0.327917	С	-1.139194	2.148043	0.328986
С	0.184579	1.561406	0.762875	С	0.225578	1.641753	0.741263	С	0.234675	1.628634	0.746141
С	-1.822577	2.896803	1.355492	С	-1.818272	2.99974	1.115969	С	-1.794073	3.011634	1.114337
С	2.128002	-0.096537	0.431796	С	2.172627	-0.042349	0.664339	С	2.172399	-0.06589	0.662153
С	2.135624	-1.585447	0.860393	С	2.148401	-1.485163	1.226296	С	2.142142	-1.518651	1.196942

С	0.739472	-1.828737	1.439313	С	0.714911	-1.673206	1.731158	С	0.709419	-1.708556	1.70261
С	3.118858	0.206907	-0.716739	С	3.285489	0.192013	-0.391131	С	3.291479	0.18348	-0.383475
С	4.553974	-0.198371	-0.342589	С	3.485516	1.68231	-0.709941	С	3.510157	1.678591	-0.665542
С	3.09603	1.677687	-1.160107	С	3.107528	-0.605741	-1.693842	С	3.109877	-0.579646	-1.706369
Н	0.513772	0.33061	-0.974826	Н	0.643428	0.281305	-0.87092	Н	0.649456	0.275963	-0.873374
0	-0.368197	-1.861831	-0.669144	0	-0.249091	-1.892054	-0.439605	0	-0.263939	-1.88848	-0.465489
0	-1.428313	-1.137102	-1.375274	0	-1.246751	-1.229699	-1.287282	0	-1.271096	-1.211368	-1.287117
0	-3.445129	-1.714223	-0.309899	0	-3.396126	-1.649155	-0.445964	0	-3.356379	-1.697035	-0.310818
Н	-1.966138	-1.76291	1.477454	Η	-1.981565	-1.615155	1.576105	Η	-1.990842	-1.624596	1.563506
Н	-1.802745	0.000812	1.607182	Η	-1.837604	0.145954	1.560974	Η	-1.817429	0.142935	1.576535
Н	-3.401159	0.5062	-1.758064	Н	-3.201169	0.384584	-1.917205	Н	-3.199728	0.411977	-1.910368
Н	-3.719691	0.863798	-0.062264	Η	-3.626274	0.871388	-0.280894	Η	-3.617168	0.894978	-0.267732
Н	-2.446668	2.648066	-1.189973	Н	-2.268507	2.567714	-1.448861	Н	-2.253969	2.581418	-1.44513
Н	-1.165332	1.530952	-1.623267	Η	-0.966804	1.420754	-1.706519	Н	-0.961233	1.423065	-1.706956
Н	0.900389	2.326334	0.433177	Η	0.959593	2.378774	0.388329	Н	0.976249	2.36328	0.404388
Н	0.315331	1.498248	1.85107	Н	0.297164	1.668476	1.836471	Н	0.298976	1.646248	1.841937
Н	-1.373285	3.136592	2.315699	Н	-1.429125	3.310053	2.082346	Н	-1.403715	3.318145	2.08137
Н	-2.790118	3.346809	1.148467	Н	-2.772874	3.42656	0.819261	Н	-2.742841	3.449665	0.81511
Н	2.430993	0.508053	1.301144	Н	2.404202	0.623848	1.508577	Н	2.40212	0.583627	1.519969
Н	2.934435	-1.816439	1.570685	Н	2.901353	-1.633482	2.006927	Н	2.897373	-1.685352	1.971729
Н	2.280066	-2.225509	-0.018076	Н	2.350039	-2.214997	0.4363	Н	2.337169	-2.234303	0.392337
Н	0.448158	-2.881847	1.492183	Н	0.413372	-2.717163	1.86037	Н	0.401501	-2.752319	1.813948
Н	0.659519	-1.407048	2.449194	Н	0.569655	-1.161144	2.690633	Н	0.569804	-1.211782	2.671009
Н	2.806632	-0.407161	-1.575097	Н	4.214654	-0.162328	0.080579	Н	4.214815	-0.192729	0.082682
Н	5.245212	0.013789	-1.165212	Н	4.358772	1.827773	-1.354981	Н	4.388827	1.829274	-1.302081
Н	4.634403	-1.263992	-0.110377	Н	3.640176	2.274498	0.198858	Н	3.665944	2.247301	0.257942
Н	4.90208	0.362675	0.533776	Н	2.621158	2.098634	-1.240092	Н	2.653778	2.117197	-1.190737
Н	3.80939	1.845584	-1.97415	Н	3.985276	-0.475409	-2.33577	Н	3.997266	-0.454865	-2.336089
Н	2.111231	1.987414	-1.522144	Η	2.985405	-1.67764	-1.516929	Н	2.959969	-1.652087	-1.55626
Н	3.377419	2.343876	-0.335028	Н	2.235392	-0.267357	-2.263013	Н	2.252349	-0.206568	-2.276165
Н	-3.848533	-1.756077	-1.188728	Н	-3.063381	-2.542212	-0.276137	Н	-3.706306	-1.799672	-1.2074
		1b1				1b2				1b3	
С	-0.130142	-0.891437	-0.653879	С	0.1812	-1.028572	0.522589	С	0.142946	-0.98218	0.660382
С	0.605844	0.363018	-0.08345	С	-0.6269	0.242721	0.110044	С	-0.703165	0.256514	0.217017
С	-1.582961	-0.728683	-1.09658	С	1.632288	-0.852938	0.956482	С	1.614597	-0.762716	1.00707
С	-2.360922	-0.870371	0.225739	С	2.397839	-0.77518	-0.387426	С	2.29504	-0.773195	-0.373207
С	-2.97536	0.410925	0.80965	С	2.932655	0.604837	-0.779641	С	2.78512	0.58149	-0.906922
С	-2.010976	1.587829	1.08654	С	1.906127	1.757749	-0.846489	С	1.742605	1.719932	-1.002037
С	-1.338776	2.161675	-0.15239	С	1.221706	2.096539	0.471161	С	1.139122	2.148133	0.32894
С	0.087014	1.751007	-0.509975	С	-0.182108	1.569677	0.7591	С	-0.2347	1.62863	0.746185
С	-1.985073	3.054187	-0.912179	С	1.832008	2.889776	1.35987	С	1.793897	3.011887	1.114198
С	2.107054	0.185901	-0.49081	С	-2.12739	-0.087326	0.4331	С	-2.172384	-0.065934	0.662137

С	2.221386	-1.258204	-1.031035	С	-2.136004	-1.571178	0.878776	С	-2.142126	-1.518688	1.196977
С	0.844631	-1.517263	-1.65586	С	-0.740158	-1.807008	1.46195	С	-0.709368	-1.708627	1.702595
С	3.118275	0.59127	0.609673	С	-3.114888	0.203973	-0.721289	С	-3.291443	0.183336	-0.383541
С	3.131953	-0.35366	1.822655	С	-4.550745	-0.199348	-0.347871	С	-3.109555	-0.579573	-1.706526
С	4.535981	0.75022	0.037655	С	-3.09159	1.670974	-1.177004	С	-3.510443	1.678431	-0.665451
Н	0.515768	0.287055	1.002768	Н	-0.50917	0.330394	-0.973326	Н	-0.649408	0.275941	-0.873355
0	-0.27763	-1.868359	0.409071	0	0.363763	-1.867579	-0.648548	0	0.264006	-1.888489	-0.465485
0	-1.381231	-1.304263	1.188091	0	1.414275	-1.149656	-1.378688	0	1.271124	-1.211351	-1.287091
0	-3.352091	-1.850202	0.022885	0	3.503341	-1.644452	-0.43352	0	3.356391	-1.697017	-0.310789
Н	-1.795379	0.203557	-1.618348	Н	1.963062	-1.749214	1.491267	Н	1.817335	0.143072	1.576502
Н	-1.870009	-1.567282	-1.73545	Н	1.82045	0.009075	1.594748	Н	1.990929	-1.624406	1.563672
Н	-3.764769	0.733571	0.122746	Н	3.727248	0.855657	-0.068854	Н	3.617115	0.895017	-0.267533
Н	-3.465192	0.139982	1.75521	Н	3.407347	0.493059	-1.760314	Н	3.199891	0.412067	-1.910218
Н	-1.268602	1.269183	1.823366	Н	1.168824	1.529254	-1.621281	Н	2.25393	2.581405	-1.445176
Н	-2.603339	2.378905	1.559094	Н	2.452323	2.642676	-1.190374	Н	0.961251	1.422977	-1.706944
Н	0.22565	1.883052	-1.590703	Н	-0.89307	2.334872	0.419582	Н	-0.976364	2.36323	0.404537
Н	0.763848	2.482016	-0.041924	Η	-0.320356	1.513663	1.846794	Η	-0.298903	1.646164	1.841987
Н	-1.544996	3.462755	-1.818172	Н	1.381373	3.13131	2.319079	Н	2.742624	3.449975	0.814928
Н	-2.97642	3.415367	-0.650728	Н	2.803211	3.333303	1.156268	Н	1.40348	3.318462	2.081187
Н	2.286601	0.858385	-1.343443	Н	-2.432563	0.526879	1.294783	Н	-2.402155	0.583604	1.519924
Н	3.04249	-1.377867	-1.744158	Н	-2.279379	-2.221429	0.007717	Н	-2.337231	-2.234369	0.392414
Н	2.383842	-1.969337	-0.215303	Н	-2.935245	-1.794111	1.591092	Η	-2.897312	-1.685329	1.971818
Н	0.615378	-2.572576	-1.8297	Н	-0.450674	-2.860143	1.529983	Η	-0.569722	-1.211951	2.671037
Н	0.750246	-0.989586	-2.61333	Н	-0.660499	-1.371961	2.466115	Н	-0.401439	-2.7524	1.813821
Н	2.801233	1.582287	0.969282	Н	-2.799256	-0.417347	-1.573145	Η	-4.214724	-0.193139	0.082504
Н	2.127096	-0.555557	2.205728	Н	-5.239584	0.005321	-1.174335	Η	-3.9971	-0.455289	-2.336129
Н	3.587997	-1.317808	1.573697	Н	-4.901965	0.368806	0.522646	Η	-2.252342	-0.205884	-2.276393
Н	3.71948	0.081811	2.637798	Η	-4.631216	-1.263083	-0.10696	Η	-2.958928	-1.651931	-1.556544
Н	5.233685	1.101026	0.805667	Η	-3.801942	1.831278	-1.995129	Η	-4.389067	1.828983	-1.302086
Н	4.919799	-0.203724	-0.342043	Н	-2.105775	1.978694	-1.537975	Η	-2.654096	2.117295	-1.190483
Н	4.557655	1.470552	-0.78766	Н	-3.376728	2.343764	-0.358598	Н	-3.666485	2.246998	0.258079
Н	-3.762014	-2.031652	0.880719	Н	3.15831	-2.545397	-0.353848	Η	3.705707	-1.80027	-1.207535
	1	1b4	1		1	1b5			1	1c1	1
С	0.142972	-0.982209	0.660344	С	0.142952	-0.982009	0.660623	С	-0.190538	-1.025399	0.396144
С	-0.703187	0.256459	0.216983	С	-0.703031	0.25664	0.217122	С	0.699994	0.226029	0.203053
С	1.614605	-0.7627	1.00707	С	1.614681	-0.762749	1.007101	С	-1.512946	-0.809392	1.136798
С	2.295088	-0.77313	-0.373174	С	2.294853	-0.773143	-0.373301	С	-2.554186	-0.668191	0.008591
С	2.785129	0.581573	-0.906867	С	2.784957	0.581533	-0.907144	С	-3.275218	0.687255	-0.090511
С	1.742571	1.71997	-1.002016	С	1.742498	1.720023	-1.002176	С	-2.449383	1.866618	-0.6534
С	1.139045	2.148152	0.328943	С	1.139301	2.148118	0.329001	С	-1.079393	2.112448	-0.041316
С	-0.234746	1.62855	0.746211	С	-0.234802	1.629181	0.745603	С	0.127022	1.386721	-0.633347
С	1.793725	3.012001	1.114173	С	1.794586	3.011115	1.114666	С	-0.927077	2.99632	0.952257

С	-2.172387	-0.066049	0.662099	С	-2.172309	-0.065648	0.662173	С	2.010912	-0.386196	-0.34963
С	-2.142088	-1.518842	1.196819	С	-2.142095	-1.518114	1.197719	С	2.195068	-1.675576	0.495773
С	-0.709351	-1.708746	1.702503	С	-0.709312	-1.708088	1.70314	С	0.777981	-2.065935	0.990543
С	-3.29147	0.183281	-0.38353	С	-3.291221	0.182661	-0.383892	С	3.241697	0.547123	-0.426978
С	-3.510591	1.678395	-0.665228	С	-3.512161	1.677538	-0.665416	С	3.636146	1.192005	0.911422
С	-3.1095	-0.579434	-1.706606	С	-3.10773	-0.579507	-1.707149	С	4.442945	-0.181553	-1.052015
Н	-0.64944	0.275898	-0.873389	Н	-0.64916	0.275819	-0.873221	Н	0.891027	0.607409	1.217536
0	0.264094	-1.888511	-0.465529	0	0.263842	-1.888457	-0.465117	0	-0.62209	-1.586137	-0.868469
0	1.271225	-1.211338	-1.2871	0	1.270716	-1.211277	-1.287004	0	-1.813505	-0.806029	-1.209308
0	3.356483	-1.696905	-0.3107	0	3.356145	-1.696983	-0.311096	0	-3.476554	-1.720806	0.18146
Н	1.990931	-1.624412	1.563648	Н	1.990977	-1.624655	1.56342	Н	-1.782341	-1.69053	1.723314
Н	1.817337	0.143061	1.576547	Н	1.81761	0.14287	1.576666	Н	-1.483136	0.060619	1.794152
Н	3.617085	0.895146	-0.267448	Н	3.617105	0.895037	-0.267918	Н	-3.654585	0.924615	0.909107
Η	3.199938	0.412175	-1.910152	Η	3.199592	0.411969	-1.910459	Н	-4.157076	0.558436	-0.731666
Η	0.961245	1.422987	-1.706942	Η	0.960973	1.423034	-1.706855	Н	-2.327644	1.71311	-1.730555
Η	2.253873	2.58146	-1.445152	Η	2.253773	2.581458	-1.445451	Н	-3.057499	2.769664	-0.529139
Η	-0.298884	1.645998	1.84202	Η	-0.300034	1.647861	1.841312	Н	-0.113282	1.014688	-1.633091
Η	-0.976447	2.363172	0.404688	Н	-0.976168	2.363417	0.402412	Н	0.928926	2.124297	-0.754517
Η	1.403274	3.318578	2.081147	Н	1.404284	3.317477	2.081766	Н	0.047536	3.213783	1.382607
Η	2.742404	3.450191	0.814897	Н	2.743581	3.448731	0.815592	Н	-1.770656	3.539791	1.369849
Η	-2.402148	0.583405	1.519954	Н	-2.402349	0.584325	1.519567	Н	1.787314	-0.7001	-1.378634
Н	-2.33711	-2.234477	0.392194	Н	-2.337556	-2.234126	0.39351	Н	2.656734	-2.475433	-0.089181
Н	-2.897321	-1.685569	1.971601	Н	-2.897175	-1.684291	1.972764	Н	2.854545	-1.490144	1.349911
Η	-0.569755	-1.21214	2.670979	Н	-0.569454	-1.211087	2.671389	Н	0.71595	-2.027704	2.082492
Н	-0.401373	-2.752517	1.813643	Н	-0.401454	-2.751833	1.814662	Н	0.469205	-3.069085	0.684056
Н	-4.214711	-0.193348	0.082471	Н	-4.214218	-0.195115	0.081678	Н	2.975422	1.365022	-1.111812
Η	-4.389193	1.828969	-1.301889	Н	-4.390457	1.827067	-1.302756	Н	4.497024	1.85499	0.774221
Н	-2.654254	2.117418	-1.190146	Н	-2.655999	2.117763	-1.189622	Н	2.825552	1.793207	1.335371
Н	-3.666735	2.246803	0.258381	Н	-3.669754	2.245636	0.258141	Н	3.921355	0.442881	1.658525
Н	-3.997115	-0.455297	-2.336144	Н	-3.996395	-0.458854	-2.335864	Н	5.277857	0.508183	-1.215609
Н	-2.252419	-0.205465	-2.276492	Η	-2.252734	-0.20205	-2.277868	Н	4.180818	-0.625531	-2.018642
Н	-2.958596	-1.651771	-1.55675	Η	-2.952276	-1.65122	-1.557493	Н	4.804579	-0.986838	-0.402814
Н	3.706095	-1.799862	-1.207366	Н	3.704668	-1.800812	-1.208072	Н	-4.048572	-1.735217	-0.599247
		1c2				1c3				1c4	
С	-0.189187	-1.022942	0.408078	С	-0.201907	-1.049877	0.363336	С	-0.200753	-1.049108	0.372215
С	0.698123	0.228272	0.204699	С	0.726535	0.177508	0.170366	С	0.724571	0.178509	0.170471
С	-1.516669	-0.808345	1.133647	С	-1.485117	-0.800287	1.159717	C	-1.488683	-0.802125	1.156126
С	-2.561773	-0.663966	-0.00561	С	-2.570195	-0.623563	0.078085	С	-2.579624	-0.617178	0.066051
С	-3.28397	0.686183	-0.07873	C	-3.247402	0.757021	0.007142	С	-3.253604	0.760116	0.023374
С	-2.456007	1.85722	-0.65278	С	-2.411134	1.896993	-0.61881	C	-2.416456	1.890668	-0.61554
С	-1.086038	2.110093	-0.042314	С	-1.005195	2.10428	-0.078195	С	-1.009085	2.102837	-0.079668
С	0.124411	1.388707	-0.63201	С	0.148294	1.315764	-0.699097	С	0.145955	1.315963	-0.700096

-S10/S64-

С	-0.935781	2.995563	0.950299	С	-0.778149	3.008069	0.88295	С	-0.780627	3.008183	0.879822
С	2.008626	-0.385494	-0.347678	С	2.07785	-0.418148	-0.345625	С	2.076433	-0.417481	-0.34446
С	2.196892	-1.669855	0.504544	С	2.001859	-1.946984	-0.014871	С	2.003245	-1.944788	-0.007359
С	0.782326	-2.055629	1.010398	С	0.757927	-2.125508	0.872203	С	0.763066	-2.119081	0.885706
С	3.238014	0.549035	-0.432443	С	3.35475	0.230144	0.252654	С	3.353367	0.234139	0.250461
С	3.633919	1.202101	0.901512	С	4.619107	-0.317661	-0.431723	С	4.617141	-0.313831	-0.434927
С	4.438943	-0.181623	-1.055792	С	3.380883	1.765253	0.194686	С	3.377881	1.769103	0.189412
Н	0.890752	0.612316	1.217939	Н	0.894317	0.579376	1.18063	Н	0.89283	0.58309	1.179613
0	-0.6236	-1.597675	-0.851362	0	-0.695289	-1.574391	-0.89483	0	-0.698964	-1.585365	-0.880756
0	-1.795123	-0.795508	-1.214486	0	-1.89178	-0.781686	-1.172612	0	-1.878072	-0.771709	-1.178352
0	-3.563807	-1.649887	0.069314	0	-3.518204	-1.645199	0.292259	0	-3.613508	-1.564946	0.187286
Н	-1.782487	-1.681549	1.737324	Н	-1.754698	-1.674722	1.756099	Н	-1.753724	-1.671081	1.76621
Н	-1.497167	0.062308	1.790855	Н	-1.405133	0.066905	1.81633	Н	-1.417725	0.063377	1.816351
Н	-3.639613	0.926287	0.928923	Н	-3.559355	1.019873	1.023558	Н	-3.53821	1.025439	1.047116
Н	-4.172111	0.545344	-0.702497	Н	-4.169136	0.655021	-0.580626	Н	-4.182545	0.647976	-0.544292
Н	-2.335356	1.694003	-1.728563	Н	-2.348679	1.720224	-1.697389	Н	-2.358143	1.704732	-1.692747
Н	-3.064221	2.761045	-0.536474	Н	-2.980903	2.82291	-0.48148	Н	-2.985368	2.817785	-0.484293
Н	-0.110877	1.019486	-1.633799	Н	-0.158935	0.893207	-1.658933	Н	-0.158992	0.894996	-1.66115
Н	0.925586	2.128087	-0.746787	Н	0.958097	2.01991	-0.909539	Н	0.956221	2.020489	-0.907173
Н	0.038454	3.217508	1.37943	Н	0.219969	3.200046	1.268904	Н	0.218276	3.202898	1.262611
Н	-1.780944	3.536794	1.367593	Н	-1.582707	3.595614	1.317739	Н	-1.584985	3.595175	1.31571
Н	1.783591	-0.705082	-1.374515	Н	2.11746	-0.288113	-1.435428	Н	2.114684	-0.291817	-1.434705
Н	2.653853	-2.474037	-0.07806	Н	1.885942	-2.531553	-0.93188	Н	1.8834	-2.53348	-0.921173
Н	2.861158	-1.480405	1.353933	Н	2.905984	-2.307714	0.483672	Н	2.909201	-2.303214	0.48931
Н	0.725036	-2.004304	2.102136	Н	0.991434	-1.917598	1.923045	Н	0.999471	-1.903511	1.934265
Н	0.476281	-3.064301	0.717707	Н	0.310731	-3.121798	0.816798	Н	0.320711	-3.118675	0.839972
Н	2.968971	1.362333	-1.121451	Н	3.39161	-0.059005	1.315257	Н	3.392287	-0.052729	1.31365
Н	4.493905	1.865004	0.758845	Н	5.523337	0.082233	0.039576	Н	5.521622	0.087927	0.034193
Н	2.823586	1.805256	1.323123	Н	4.678787	-1.408857	-0.389795	Н	4.678342	-1.404912	-0.391092
Н	3.921335	0.457834	1.652628	Н	4.640334	-0.02567	-1.488822	Н	4.636378	-0.023788	-1.492557
Н	5.272587	0.508345	-1.224447	Н	4.314306	2.144359	0.624952	Н	4.311711	2.149475	0.617582
Н	4.175686	-0.630804	-2.019693	Η	2.557966	2.220505	0.752408	Н	2.555608	2.22485	0.7476
Н	4.803066	-0.983028	-0.403128	Н	3.329308	2.125053	-0.839912	Н	3.324516	2.126993	-0.845694
Н	-3.121807	-2.509799	0.016331	Η	-4.126492	-1.638017	-0.460605	Н	-3.208165	-2.441385	0.115746
		1c5				1d1				1d2	
С	-0.163128	-1.078043	0.221025	С	0.190538	-1.025399	0.396144	С	0.189187	-1.022942	0.408078
С	0.789888	0.123975	-0.014766	С	-0.699994	0.226029	0.203053	С	-0.698123	0.228272	0.204699
С	-1.352875	-0.812747	1.147019	С	1.512946	-0.809392	1.136798	С	1.516669	-0.808345	1.133647
С	-2.527786	-0.548961	0.183537	C	2.554186	-0.668191	0.008591	С	2.561773	-0.663966	-0.00561
С	-3.148605	0.858911	0.227734	C	3.275218	0.687255	-0.090511	С	3.28397	0.686183	-0.07873
С	-2.331133	1.987725	-0.441451	С	2.449383	1.866618	-0.6534	С	2.456007	1.85722	-0.65278
С	-0.871915	2.123096	-0.036502	С	1.079393	2.112448	-0.041316	С	1.086038	2.110093	-0.042314

-S11/S64-

С	0.184032	1.315138	-0.790636	С	-0.127022	1.386721	-0.633347	С	-0.124411	1.388707	-0.63201
С	-0.513425	2.982426	0.925464	С	0.927077	2.99632	0.952257	С	0.935781	2.995563	0.950299
С	2.06588	-0.501667	-0.666776	С	-2.010912	-0.386196	-0.34963	С	-2.008626	-0.385494	-0.347678
С	1.949111	-2.039932	-0.412666	С	-2.195068	-1.675576	0.495773	С	-2.196892	-1.669855	0.504544
С	0.796074	-2.212776	0.589998	С	-0.777981	-2.065935	0.990543	С	-0.782326	-2.055629	1.010398
С	3.431358	0.071112	-0.192168	С	-3.241697	0.547123	-0.426978	С	-3.238014	0.549035	-0.432443
С	3.655651	1.534941	-0.6014	С	-3.636146	1.192005	0.911422	С	-3.633919	1.202101	0.901512
С	3.701059	-0.104167	1.312059	С	-4.442945	-0.181553	-1.052015	С	-4.438943	-0.181623	-1.055792
Н	1.052597	0.487988	0.987364	Н	-0.891027	0.607409	1.217536	Н	-0.890752	0.612316	1.217939
0	-0.796858	-1.531539	-1.001794	0	0.62209	-1.586137	-0.868469	0	0.6236	-1.597675	-0.851362
0	-1.980751	-0.684404	-1.132613	0	1.813505	-0.806029	-1.209308	0	1.795123	-0.795508	-1.214486
0	-3.494668	-1.53985	0.452116	0	3.476554	-1.720806	0.18146	0	3.563807	-1.649887	0.069314
Н	-1.602023	-1.699548	1.733936	Н	1.782341	-1.69053	1.723314	Н	1.782487	-1.681549	1.737324
Н	-1.173365	0.023046	1.82447	Η	1.483136	0.060619	1.794152	Н	1.497167	0.062308	1.790855
Н	-3.347262	1.096212	1.27833	Η	3.654585	0.924615	0.909107	Н	3.639613	0.926287	0.928923
Н	-4.127573	0.815159	-0.267495	Η	4.157076	0.558436	-0.731666	Н	4.172111	0.545344	-0.702497
Н	-2.381691	1.847179	-1.525925	Η	2.327644	1.71311	-1.730555	Н	2.335356	1.694003	-1.728563
Н	-2.846477	2.928956	-0.219464	Н	3.057499	2.769664	-0.529139	Н	3.064221	2.761045	-0.536474
Н	-0.225256	0.944148	-1.73371	Н	0.113282	1.014688	-1.633091	Н	0.110877	1.019486	-1.633799
Н	1.002436	1.994301	-1.046794	Н	-0.928926	2.124297	-0.754517	Н	-0.925586	2.128087	-0.746787
Н	0.525832	3.120332	1.214131	Н	-0.047536	3.213783	1.382607	Н	-0.038454	3.217508	1.37943
Н	-1.244623	3.584617	1.458711	Н	1.770656	3.539791	1.369849	Н	1.780944	3.536794	1.367593
Н	2.01514	-0.32539	-1.748432	Н	-1.787314	-0.7001	-1.378634	Н	-1.783591	-0.705082	-1.374515
Н	1.696778	-2.553299	-1.344904	Н	-2.656734	-2.475433	-0.089181	Н	-2.653853	-2.474037	-0.07806
Н	2.885807	-2.475529	-0.052016	Н	-2.854545	-1.490144	1.349911	Н	-2.861158	-1.480405	1.353933
Н	1.140484	-2.060567	1.619548	Н	-0.71595	-2.027704	2.082492	Н	-0.725036	-2.004304	2.102136
Н	0.3011	-3.186463	0.538304	Н	-0.469205	-3.069085	0.684056	Н	-0.476281	-3.064301	0.717707
Н	4.188591	-0.525439	-0.722576	Н	-2.975422	1.365022	-1.111812	Н	-2.968971	1.362333	-1.121451
Н	4.687674	1.838903	-0.394167	Н	-4.497024	1.854991	0.774221	Н	-4.493905	1.865004	0.758845
Н	3.471237	1.688872	-1.670135	Н	-2.825552	1.793207	1.335371	Н	-2.823586	1.805256	1.323123
Н	3.002127	2.216365	-0.045666	Н	-3.921355	0.442881	1.658525	Н	-3.921335	0.457834	1.652628
Н	4.724287	0.203278	1.552646	Н	-5.277857	0.508183	-1.215609	Н	-5.272587	0.508345	-1.224447
Н	3.588445	-1.143615	1.635809	Н	-4.180818	-0.625531	-2.018642	Н	-4.175686	-0.630804	-2.019693
Н	3.02962	0.511345	1.921349	Н	-4.804579	-0.986838	-0.402814	Н	-4.803066	-0.983028	-0.403128
Н	-4.170776	-1.478681	-0.237806	Η	4.048572	-1.735217	-0.599247	Н	3.121807	-2.509799	0.016331
		1d3				1d4				1d5	
С	0.201907	-1.049877	0.363336	С	0.200753	-1.049108	0.372215	С	0.163128	-1.078043	0.221025
С	-0.726535	0.177508	0.170366	С	-0.724571	0.178509	0.170471	С	-0.789888	0.123975	-0.014766
С	1.485117	-0.800287	1.159717	С	1.488683	-0.802125	1.156126	С	1.352875	-0.812747	1.147019
С	2.570195	-0.623563	0.078085	С	2.579624	-0.617178	0.066051	С	2.527786	-0.548961	0.183537
С	3.247402	0.757021	0.007142	С	3.253604	0.760116	0.023374	С	3.148605	0.858911	0.227734
С	2.411134	1.896993	-0.61881	С	2.416456	1.890668	-0.61554	С	2.331133	1.987725	-0.441451

-S12/S64-

С	1.005195	2.10428	-0.078195	С	1.009085	2.102837	-0.079668	С	0.871915	2.123096	-0.036502
С	-0.148294	1.315764	-0.699097	С	-0.145955	1.315963	-0.700096	С	-0.184032	1.315138	-0.790636
С	0.778149	3.008069	0.88295	С	0.780627	3.008183	0.879822	С	0.513425	2.982426	0.925464
С	-2.07785	-0.418148	-0.345625	С	-2.076433	-0.417481	-0.34446	С	-2.06588	-0.501667	-0.666776
С	-2.001859	-1.946984	-0.014871	С	-2.003245	-1.944788	-0.007359	С	-1.949111	-2.039932	-0.412666
С	-0.757927	-2.125508	0.872203	С	-0.763066	-2.119081	0.885706	С	-0.796074	-2.212776	0.589998
С	-3.35475	0.230144	0.252654	С	-3.353367	0.234139	0.250461	С	-3.431358	0.071112	-0.192168
С	-4.619107	-0.317661	-0.431723	С	-4.617141	-0.313831	-0.434927	С	-3.655651	1.534941	-0.6014
С	-3.380883	1.765253	0.194686	С	-3.377881	1.769103	0.189412	С	-3.701059	-0.104167	1.312059
Н	-0.894317	0.579376	1.18063	Н	-0.89283	0.58309	1.179613	Н	-1.052597	0.487988	0.987364
0	0.695289	-1.574391	-0.89483	0	0.698964	-1.585365	-0.880756	0	0.796858	-1.531539	-1.001794
0	1.89178	-0.781686	-1.172612	0	1.878072	-0.771709	-1.178352	0	1.980751	-0.684404	-1.132613
0	3.518204	-1.645199	0.292259	0	3.613508	-1.564946	0.187286	0	3.494668	-1.53985	0.452116
Н	1.754698	-1.674722	1.756099	Н	1.753724	-1.671081	1.76621	Н	1.602023	-1.699548	1.733936
Н	1.405133	0.066905	1.81633	Н	1.417725	0.063377	1.816351	Н	1.173365	0.023046	1.82447
Н	3.559355	1.019873	1.023558	Н	3.53821	1.025439	1.047116	Н	3.347262	1.096212	1.27833
Н	4.169136	0.655021	-0.580626	Н	4.182545	0.647976	-0.544292	Н	4.127573	0.815159	-0.267495
Н	2.348679	1.720224	-1.697389	Н	2.358143	1.704732	-1.692747	Н	2.381691	1.847179	-1.525925
Н	2.980903	2.82291	-0.48148	Н	2.985368	2.817785	-0.484293	Н	2.846477	2.928956	-0.219464
Н	0.158935	0.893207	-1.658933	Н	0.158992	0.894996	-1.66115	Н	0.225256	0.944148	-1.73371
Н	-0.958097	2.01991	-0.909539	Н	-0.956221	2.020489	-0.907173	Н	-1.002436	1.994301	-1.046794
Н	-0.219969	3.200046	1.268904	Н	-0.218276	3.202898	1.262611	Н	-0.525832	3.120332	1.214131
Н	1.582707	3.595614	1.317739	Н	1.584985	3.595175	1.31571	Н	1.244623	3.584617	1.458711
Н	-2.11746	-0.288113	-1.435428	Н	-2.114684	-0.291817	-1.434705	Н	-2.01514	-0.32539	-1.748432
Н	-1.885942	-2.531553	-0.93188	Н	-1.8834	-2.53348	-0.921173	Н	-1.696778	-2.553299	-1.344904
Н	-2.905984	-2.307714	0.483672	Н	-2.909201	-2.303214	0.48931	Н	-2.885807	-2.475529	-0.052016
Н	-0.991434	-1.917598	1.923045	Н	-0.999471	-1.903511	1.934265	Н	-1.140484	-2.060567	1.619548
Н	-0.310731	-3.121798	0.816798	Н	-0.320711	-3.118675	0.839972	Н	-0.3011	-3.186463	0.538304
Н	-3.39161	-0.059005	1.315257	Н	-3.392287	-0.052729	1.31365	Н	-4.188591	-0.525439	-0.722576
Н	-5.523337	0.082233	0.039576	Н	-5.521622	0.087927	0.034193	Н	-4.687674	1.838903	-0.394167
Н	-4.678787	-1.408857	-0.389795	Н	-4.678342	-1.404912	-0.391092	Н	-3.471237	1.688872	-1.670135
Н	-4.640334	-0.02567	-1.488822	Н	-4.636378	-0.023788	-1.492557	Н	-3.002127	2.216365	-0.045666
Н	-4.314306	2.144359	0.624952	Н	-4.311711	2.149475	0.617582	Н	-4.724287	0.203278	1.552646
Н	-2.557966	2.220505	0.752408	Н	-2.555608	2.22485	0.7476	Н	-3.588445	-1.143615	1.635809
Н	-3.329308	2.125053	-0.839912	Н	-3.324516	2.126993	-0.845694	Н	-3.02962	0.511345	1.921349
Н	4.126492	-1.638017	-0.460605	Н	3.208165	-2.441385	0.115746	Н	4.170776	-1.478681	-0.237806

 Table S3. Calculated ¹³C NMR chemical shifts for 1a.

No.	1a1	1a2	1a3	1a4	1a5	1a6
1	35.2523	35.41	26.1684	26.2986	32.6373	32.9805
2	37.0144	36.7614	38.0516	37.9095	36.3566	36.0586

3	104.9012	105.2844	104.2063	104.6173	105.3647	105.6498
4	54.3011	51.2485	54.3891	51.1147	54.1606	50.919
5	115.088	113.7436	115.3219	113.8164	114.9313	113.6122
6	42.3717	45.2555	42.4407	45.2173	42.1852	45.0658
7	32.0634	33.0684	31.8604	32.8861	32.0003	32.9953
8	165.3782	165.3066	165.4338	165.3587	165.5551	165.5259
9	45.2072	45.0963	44.4643	44.3267	46.2978	46.1964
10	52.75	53.4826	50.8691	51.6025	45.0695	45.7676
11	59.4167	59.4525	59.4519	59.4799	57.883	58.0145
12	42.581	42.6586	34.8496	34.7622	35.8356	35.939
13	22.8103	22.831	23.5171	23.5212	15.7807	15.8377
14	22.4086	22.4504	16.2172	16.2323	24.3689	24.4718
15	115.8088	115.8888	115.9306	115.9952	115.5483	115.6679

Table S4. Experimental and calculated ¹³C NMR chemical shifts of **1a**.

No.	$\delta_{ m exp}$	$\delta_{ m calc}$	$\delta_{ m scalc}$
1	28.0	30.5	28.2
2	33.2	37.3	34.5
3	98.0	104.8	97.4
4	49.2	52.8	48.9
5	107.4	114.5	106.4
6	39.3	43.7	40.5
7	29.1	32.4	30.0
8	149.4	165.4	153.8
9	40.8	45.0	41.7
10	46.8	50.8	47.1
11	54.3	59.2	54.9
12	32.8	37.7	34.8
13	22.0	21.9	20.1
14	20.1	19.8	18.2
15	113.0	115.9	107.6

 δ_{calc} : unscaled chemical shifts of **1a** relative to TMS at the same level of theory; δ_{scalc} : calculated chemical shifts of **1a** after linear scaling.

Figure S4. Correlation of experimental and calculated chemical shifts of compound **1** with **1a-1h NOTE: 1a:** *3R*,*5R*,10*S*,11*S*; **1b**: *3S*,*5S*,10*R*,11*R*; **1c**: *3R*,*5R*,10*R*,11*R*; **1d**: *3S*,*5S*,10*S*,11*S*; **1e**: *3R*,*5R*,10*R*,11*S*; **1f**: *3R*,*5R*,10*S*,11*R*; **1g**: *3S*,*5S*,10*R*,11*S*; **1h**: *3S*,*5S*,10*S*,11*R*

3. ECD calculations details for 1 to determine the absolute configuration

Figure S5. The corresponding calculated ECD of structural candidates with respective 1a and 1b configurations.

Figure S6. The overlaid ECD calculated for all the structural candidates.

-S16/S64-

Figure SS1 The positive ESIMS spectrum of sinuketal (1)

D:\MS-DATA\20151022-F33321_151022085709

F33321

G%

20151022-F33321_151022085709 #118-145 RT: 0.94-1.15 AV: 28 NL: 7.16E6 T: FTMS + p ESI Full ms [170.00-1000.00]

Figure SS2 The positive HRESIMS spectrum of sinuketal (1)

Figure SS3 ¹H NMR (500MHz, CDCl₃) spectrum of sinuketal (1)

G%9

Figure SS4 Amplificatory ¹H NMR spectrum of sinuketal (1)

Figure SS5 ¹³C NMR (125MHz, CDCl₃) spectrum of sinuketal (1)

Figure SS6 DEPT spectrum of sinuketal (1)

Figure SS12 Partial HMBC spectrum of sinuketal (1) (A)

G&8

Figure SS13 Partial HMBC spectrum of sinuketal (1) (B)

G&9

Figure SS14 Partial HMBC spectrum of sinuketal (1) (C)

G30

G' 1

Figure SS16 Key amplificatory NOESY spectrum of sinuketal (1)

Figure SS17 The positive HRESIMS spectrum of sinulin A (2)

Figure SS18 ¹H NMR (500MHz, CDCI₃) spectrum of sinulin A (2) and compound (6) G⁴

Figure SS19 ¹³C NMR (125MHz, CDCI₃) spectrum of sinulin A (2) and compound (6) **G** 5

Figure SS20 DEPT spectrum of sinulin A (2) and compound (6)

Figure SS21 HMQC spectrum of sinulin A (2) and compound (6) **G** 7

Figure SS22 ¹H-¹H COSY spectrum of sinulin A (2) and compound (6) **G** 8

Figure SS24 NOE spectrum of sinulin A (2)

F5-5-2-2-2

20160527-F5-5-2-2-2_160524155154 #99-101 RT: 0.81-0.83 AV: 3 NL: 1.05E6 T: FTMS + p ESI Full ms [100.00-1500.00]

Figure SS25 The positive HRESIMS spectrum of sinulin B (3)

G(1

Figure SS27 ¹³C NMR (125MHz, CDCI₃) spectrum of sinulin B (3)

G(6

Figure SS31 HMBC spectrum of sinulin B (3)

Figure SS32 NOESY spectrum of sinulin B (3)

4/15/2016 2:30:02 PM

F4342512

20160415-F4342512_160415115125 #60 RT: 0.49 AV: 1 NL: 5.10E6 T: FTMS + p ESI Full ms [90.00-1500.00]

Figure SS33 The positive HRESIMS spectrum of sinulin C (4)

Figure SS34 ¹H NMR (500MHz, CDCl₃) spectrum of sinulin C (4)

G50

G) 1

Figure SS36 DEPT spectrum of sinulin C (4)

Figure SS40 NOESY spectrum of sinulin C (4)

Figure SS41 The positive HRESIMS spectrum of sinulin D (5)

Figure SS42 ¹H NMR (500MHz, CDCl₃) spectrum of sinulin D (5)

Figure SS43 ¹³C NMR (125MHz, CDCI₃) spectrum of sinulin D (5)

S59

Figure SS44 DEPT spectrum of sinulin D (5)

Figure SS45 HMQC spectrum of sinulin D (5)

S61

Figure SS46 ¹H-¹H COSY spectrum of sinulin D (5)

Figure SS47 HMBC spectrum of sinulin D (5)

S63

Figure SS48 NOESY spectrum of sinulin D (5)