Supplementary Materials

Bis-Indolyl Benzenoids, Hydroxypyrrolidine Derivatives and Other Constituents from Cultures of the Marine Sponge-Associated Fungus Aspergillus candidus KUFA0062

Suradet Buttachon^{1, 2}, Alice A. Ramos^{1, 2}, Ângela Inácio^{1, 2}, Tida Dethoup³, Luís Gales^{1,} ⁴, Michael Lee⁵, Paulo M. Costa^{1, 2}, Artur M. S. Silva⁶, Nazim Sekeroglu⁷, Eduardo Rocha^{1, 2}, Madalena M. M. Pinto^{2, 8}, José A. Pereira^{1, 2*}, Anake Kijjoa^{1, 2*}

¹ *ICBAS*-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal. E-mail: <u>ankijjoa@icbas.up.pt</u> (A.K.), <u>erocha@icbas.up.pt</u> (E.R.), <u>jpereira@icbas.up.pt</u> (J.A.P), <u>pmcosta@icbas.up.pt</u> (P.M.C).

² Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Lexões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal. E-mail: <u>nokrari_209@hotmail.com</u> (S.B), <u>ramosalic@gmail.com</u> (A.A.R), angelainacio@gmail.com (A.I).

³ Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10240, Thailand. E-mail: <u>tdethoup@yahoo.com.</u>

⁴ Instituto de Biologia Molecular e Celular (i3S-IBMC), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal. E-mail: <u>lgales@ibmc.up.pt.</u>

⁵ Department of Chemistry, University of Leicester, University Road, Leicester LE 7 RH, UK. E-mail: <u>ml34@leicester.ac.uk.</u>

⁶ Departamento de Química & QOPNA, Universidade de Aveiro, 3810-193 Aveiro, Portugal. E-mail: <u>artur.silva@ua.pt.</u>

⁷ Medicinal and Aromatic Plant Programme, Plant and Animal Sciences Department, Vocational School, Kilis 7 Aralık University, 79000, Kilis, Turkey. E-mail: <u>nsekeroglu@gmail.com.</u>

⁸ Laboratório de Química Orgânica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-3 13 Porto, Portugal. E-mail: <u>madalena@ff.up.pt</u>

Figure S1. Structures of palmitic acid, clionasterol and ergosterol 5,8-endoperoxide isolated from *Aspergillus candidus* KUFA 006231.

Figure S2. ¹H NMR spectrum of clionasterol (CDCl₃, 300.13 MHz).

Figure S3. ¹³C NMR spectrum of clionasterol (CDCl₃, 75.4 MHz).

Figure S4. ¹H NMR spectrum of ergosterol-5,8-endoperoxide (CDCl₃, 300.13 MHz).

Figure S5. ¹³C NMR spectrum of ergosterol-5,8-endoperoxode (CDCl₃, 75.4 MHz).

Figure S6. ¹H NMR spectrum of chrysophanic acid (1a) (CDCl₃, 300.13 MHz).

Figure S7. ¹³C NMR spectrum of chrysophanic acid (1a) (CDCl₃, 75.4 MHz).

Figure S9. ¹³C NMR spectrum of emodin (1b) (DMSO, 75.4 MHz).

Figure S10. ¹H NMR spectrum of asterriquinol D dimethylether (**2a**) (DMSO, 300.13 MHz).

Figure S11. ¹³C NMR spectrum asterriquinol D dimethylether (2a) (DMSO, 75.4 MHz).

Figure S12. ¹H NMR spectrum of petromurin C (2b) (DMSO, 300.13 MHz).

Figure S13. ¹³C NMR spectrum petromurin C (2b) (DMSO, 75.4 MHz).

Figure S14. ¹H NMR spectrum of kumbicin B (2c) (DMSO, 300.13 MHz).

Figure S15. ¹³C NMR spectrum kumbicin B (2c) (DMSO, 75.4 MHz).

Figure S16. ¹H NMR spectrum of kumbicin A (2d) (DMSO, 300.13 MHz).

Figure S17. ¹³C NMR spectrum kumbicin A (2d) (DMSO, 75.4 MHz).

Figure S18. ¹H NMR spectrum of candidusin D (2e) (DMSO, 300.13 MHz).

Figure S19. ¹³C NMR spectrum of candidusin D (2e) (DMSO, 75.4 MHz).

Figure S20. ¹H NMR spectrum of 2"-oxoasterriquinol D methyl ether (3) (DMSO, 300.13 MHz).

Figure S21. ¹³C NMR spectrum of 2"-oxoasterriquinol D methyl ether (3) (DMSO, 75.4 MHz).

Figure S22. ¹H NMR spectrum of kumbicin D (4) (DMSO, 300.13 MHz).

Figure S23. ¹³C NMR spectrum of kumbicin D (4) (DMSO, 75.4 MHz).

Figure S24. ¹H NMR spectrum of preussin (5a) (DMSO, 300.13 MHz).

Figure S25. ¹³C NMR spectrum of preussin (5a) (DMSO, 75.4 MHz).

Figure S26. ¹H NMR spectrum of preussin C (5b) (DMSO, 500.13 MHz).

Figure S27. ¹³C NMR spectrum of preussin C (5b) (DMSO, 125.4 MHz).

Figure S28. COSY spectrum of preussin C (5b) (DMSO, 500.13 MHz).

Figure S29. HSQC spectrum of preussin C (5b) (DMSO, 500.13 MHz).

Figure S30. HMBC spectrum of preussin C (5b) (DMSO, 500.13 MHz).

Figure S31. NOESY spectrum of preussin C (5b) (DMSO, 500.13 MHz).

Figure S32. ¹H NMR spectrum of (3S, 6S)-3,6-dibenzylpiperazine-2,5-dione (6) (DMSO, 300.13 MHz).

Figure S33. 13 H NMR spectrum of (3*S*, 6*S*)-3,6-dibenzylpiperazine-2,5-dione (6) (DMSO, 75.4 MHz).

Figure S34. ¹H NMR spectrum of 4-(acetylamino)benzoic acid (7) (DMSO, 300.13 MHz).

Figure S35. ¹³C NMR spectrum of 4-(acetylamino)benzoic acid (7) (DMSO, 75.4 MHz).

Table 1S. ¹ H NMR (DMSO, 300.13 MHz) of 2a-d.
--

	$\delta_{\rm H} \left(J \text{ in Hz} \right)$				
Position	2a	2b	2c	2d	
NH-1'	11.29, d (1.9)	10.98, d (2.0)	11.15, d (1.9)	10.97, d (2.1)	
2'	7.47, d (2.5)	7.36, d (2.5)	7.43, d (2.5)	7.35, d (2.5)	
3'	-	-	-	-	
4'	7.42, d (7.5)	6.74, d (2.3)	6.88, d (2.4)	6.73, d (2.2)	
5'	7.10, ddd (7.5, 7.5, 1.1)	-	-	-	
6'	7.12, ddd (7.5, 7.5, 1.1)	6.63, dd (8.6, 2.3)	6.78, dd (8.7, 2.4)	6.63, dd (8.6, 2.3)	
7'	7.45, d (7.5)	7.22, d (8.6)	7.33, d (8.7)	7.22, d (8.6)	
NH-1"	11.29, d (1.9)	11.28, d (1.9)	11.29, d (1.9)	10.97, d (2.1)	
2"	7.47, d (2.5)	7.46, d (2.5)	7.47, d (2.5)	7.35, d (2.5)	
3"	-	-	-	-	
4"	7.42, d (7.5)	7.41, d (7.5)	7.42, d (7.5)	6.73, d (2.2)	
5"	7.01, ddd (7.5, 7.5, 1.1)	7.01, ddd (7.5, 7.5, 1.1)	7.01, ddd (7.5, 7.5, 1.1)	-	
6"	7.12, ddd (7.5, 7.5. 1.1)	7.12, ddd (7.5, 7.5. 1.1)	7.12, ddd (7.5, 7.5. 1.1)	6.63, dd (8.6, 2.3)	
7"	7.45, d (7.5)	7.44, d (7.5)	7.44, d (7.5)	6.73, d (2.3)	
OMe-1	3.44, s	3.44, s	3.46, s	3.43, s	

OMe-2	3.44, s	3.44, s	3.43, s	3.43, s
OMe-4	3.44, s	3.44, s	3.43, s	3.43, s
OMe-5	3.44, s	3.44, s	3.46, s	3.43, s
OMe-5'	-	-	3.72, s	-
OMe-5"	-	-	-	-
OH-5'	-	8.57, brs	-	8.57, brs
OH-5"	-	-	-	8.57, brs

δ_{H} , type					
Position	2a	2b	2c	2d	
1	147.6, C	147.6, C	147.6, C	147.6, C	
2	147.6, C	147.6, C	147.6, C	147.6, C	
3	122.2, C	121.9, C	122.0, C	122.3, C	
4	147.6, C	147.6, C	147.6, C	147.6, C	
5	122.2, C	147.6, C	147.6, C	147.6, C	
6	147.6, C	122.5, C	122.2, C	122.3, C	
2'	125.2, CH	125.5, CH	126.0, CH	125.5, CH	
3'	106.9, C	106.1, C	106.7, C	106.2, C	
4'	120.3, CH	104.2, CH	102.0, C	104.2, CH	
5'	118.7, CH	150.4, C	153.4, C	150.4, C	
6'	120.8, CH	111.1,CH	110.9, CH	111.1, CH	
7'	111.4, CH	111.6, CH	111.9, CH	111.6, CH	
8'	135.9, C	130.4, C	131.0, C	130.4, C	
9'	127.0, C	127.9, C	127.4, C	127.9, C	
2"	125.2, CH	125.2, CH	125.2, CH	125.5, CH	
3"	106.9, C	107.0, C	106.9, C	106.2, C	
4"	120.3, CH	120.2, CH	120.3, CH	104.2, CH	
5"	118.7, CH	118.7, CH	118.7, CH	150.4, C	
6"	120.8, CH	120.8, CH	120.8, CH	111.1, CH	
7"	111.4, CH	111.4, CH	111.4, CH	111.6, CH	
8"	135.9, C	135.9, C	135.9, C	130.4, C	
9"	127.0, C	127.1, C	127.0, C	127.9, C	
OMe-1	60.3, CH ₃	60.3, CH ₃	60.3, CH ₃	60.3, CH ₃	
OMe-2	60.3, CH ₃	60.3, CH ₃	60.3, CH ₃	60.3, CH ₃	
OMe-4	60.3, CH ₃	60.3, CH ₃	60.3, CH ₃	60.3, CH ₃	
OMe-5	60.3, CH ₃	60.3, CH ₃	60.3, CH ₃	60.3, CH ₃	

 Table 2S. ¹³C NMR (DMSO, 75.4 MHz) of 2a-d.

OMe-5'	-	-	55.2, CH ₃	-
OMe-5"	-	-	-	-

Table 3S. Comparison of ¹ H and ¹³ C NMR	(DMSO, 300.13 and 75.4 MHz) of 3 with
2"-oxoasterriquinol D methyl ether (CDCl3	, 300.13 and 75.4 MHz).

3			2"-oxoastern ether [17]	riquinol D methyl
Position	$\delta_{\rm C}$, type	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$, type	$\delta_{\rm H} (J \text{ in Hz})$
1	148.3, C	-	148.6, C	-
2	147.2, C	-	147.4, C	-
3	124.2, C	-	123.7, C	-
4	147.1, C	-	147.5, C	-
5	147.0, C	-	147.8, C	-
6	124.2, C	-	123.5, C	-
1'	-	11.31, d (2.0)	-	8.37, brs
2'	125.4, CH	7.44, d (2.4)	124.3, CH	7.29, d (3)
3'	106.3, C	-	108.4, C	-
4'	120.2, CH	7.36, d (8.0)	121.1, CH	7.54, d (6)
5'	118.8, CH	6.99, dd (7.1, 7.5)	119.7, CH	7.11, dd (9, 6)
6'	120.9, CH	7.11, ddd (7.5, 7.5, 1.1)	121.9, CH	7.19, m
7'	111.4, CH	7.43, d (8.8)	110.9, CH	7.41, d (9)
8'	135.9, C	-	135.8, C	-
9'	126.8, C	-	127.1, C	-
1"	-	10.52, brs	-	7.81, brs
2"	177.9, CO	-	179.3, CO	-
3"	43.6, CH	4.96, s	44.0, CH	5.15, s
4"	123.4, CH	6.99, d (7.6)	124.0, CH	7.07, d (6)
5"	121.2, CH	6.92, ddd (7.1, 7.1, 1.0)	122.3, CH	6.98, dd (9, 6)
6"	127.6, CH	7.20, ddd (7.9, 7.9, 1.4)	127.7, CH	7.22, m

7"	109.0, CH	6.90, d (7.6)	109.2, CH	6.93, d (9)
8"	143.1, C	-	141.5, C	-
9"	130.8, C	-	130.9, C	-
OMe-1	61.9, CH ₃	3.93,s	62.0, CH ₃	4.00, s
OMe-2	59.3, CH ₃	3.19, s	60.5, CH ₃	3.50, s
OMe-4	59.6, CH ₃	3.22, s	59.9, CH ₃	3.30, s
OMe-5	60.2, CH ₃	3.44, s	60.1, CH ₃	3.30, s

Table 4S. ¹H and ¹³C NMR data (DMSO, 300.13 and 75.4 MHz) of kumbicin D (4).

Position	δ_C , type	$\delta_{\rm H} (J \text{ in Hz})$
1	182.9, CO	-
2	153.4, C	-
3	124.4, C	-
4	187.3, CO	-
5	142.3, C	-
6	136.3, C	-
7	27.5, CH ₂	3.21, d (6.9)
8	121,2, CH	5.02, t (6.3)
9	132.4, C	-
10	25.4, CH ₃	1.55, s
11	17.5, CH ₃	1.26, s
1'	-	11.61, brs
2'	127.3, CH	7.45, d (2.7)
3'	106.9, C	-
4'	119.9, CH	7.35, d (8.0)
5'	119.3, CH	7.05, dd (7.9, 7.9)
6'	121.3, CH	7.15, ddd (7.0, 7.0, 1.0)
7'	111.7, CH	7.46, d (8.0)

8'	135.9, C	-
9'	126.7, C	-
1"	-	11.55, brs
2"	128.9, CH	7.60, d (2.7)
3"	104.5, C	-
4"	120.8, CH	7.39, d (8.0)
5"	119.4, CH	7.05, dd (7.9, 7.9)
6"	121.4, C	7.16, ddd (7.0, 7.0, 1.0)
7"	111.8, CH	7.47, d (8.0)
8"	135.8, C	-
9"	126.6, C	-
OMe-2	59.9, CH ₃	3.74, s