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Abstract: The marine environment is the largest aquatic ecosystem on Earth and it harbours 

microorganisms responsible for more than 50% of total biomass of prokaryotes in the world. All 

these microorganisms produce extracellular polymers that constitute a substantial part of the 

dissolved organic carbon, often in the form of exopolysaccharides (EPS). In addition, the production 

of these polymers is often correlated to the establishment of the biofilm growth mode, during which 

they are important matrix components. Their functions include adhesion and colonization of 

surfaces, protection of the bacterial cells and support for biochemical interactions between the 

bacteria and the surrounding environment. The aim of this review is to present a summary of the 

status of the research about the structures of exopolysaccharides from marine bacteria, including 

capsular, medium released and biofilm embedded polysaccharides. Moreover, ecological roles of 

these polymers, especially for those isolated from extreme ecological niches (deep-sea hydrothermal 

vents, polar regions, hypersaline ponds, etc.), are reported. Finally, relationships between the 

structure and the function of the exopolysaccharides are discussed. 

Keywords: exopolysaccharides; chemical characterization; capsular polysaccharide; purification; 

EPS; extremophile; marine; NMR; GC-MS; structure/activity relationship. 

 

1. Introduction 

Polysaccharides are the most abundant organic material in the world. They are ubiquitous, as 

they can be recovered from plants, animals, algae and microorganisms in soil, water and atmosphere. 

The chemical structure of a polysaccharide comprises monomers called monosaccharides (Table 1), 

linked to each other through glycosidic linkages. They can be constituted of one type of 

monosaccharide, in homopolysaccharides, or by several types, usually up to ten, in 

heteropolysaccharides. They can display either a regular repeating unit, or random, or block 

distribution of monosaccharides. Various types of inorganic and organic substituents (sulphates, 

phosphates, acetates, ethers, amino acids, lactates and pyruvates) can decorate the polysaccharide 

backbone that in turn can be linear or branched. Arms can show different lengths and include the 

same monosaccharide types or different ones. Additionally, branches can be distributed in a regular 

or random way on the backbone. Finally, polysaccharides sizes range between 50 Da up to several 

thousand KDa. 

With this high grade of variableness about the primary structure, it is easy to expect a huge 

number of polysaccharide structures that can be find in nature. These structures determine particular 

properties, with a precise biological function for the microorganism life that we are now beginning 

to understand [1]. 
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Table 1. Typical monosaccharide components of marine EPS. 

Monosaccharides Example 

Pentoses arabinose (Ara), ribose (Rib), xylose (Xyl) 

Hexoses glucose (Glc), galactose (Gal), mannose (Man) 

Deoxy-hexoses quinovose (Qui), fucose (Fuc), rhamnose (Rha) 

Uronic acids  glucuronic acid (GlcA), galacturonic acid (GalA), mannuronic acid (ManA) 

Amino sugars  glucosamine (GlcN), galactosamine (GalN), mannosamine (ManN) 

Uncommon sugars  3-deoxy-D-manno-2-octulosonic acid (Kdo), neuraminic acid (Neu) 

Polysaccharides have industrial applications in the paper, food, biotechnological, textile, 

cosmetic and pharmaceutical industry due to their properties, such as mechanical strength, 

emulsifying, adhesive, rheological, metal-complexing, hydrocolloids forming. Nowadays, 

polysaccharides represent a possible ecological substitute of petroleum industry, as their sources are 

renewable and not pollutant. In addition, they are biodegradable, usually not toxic and their 

enzymatic or chemical degradation can produce biofuel together with many simple molecules, which 

are able to form industrial polymers and fine chemicals [2]. 

The common sources of industrial polysaccharide are plants, animals, fungi, algae and bacteria. 

However, fungi and bacteria have the advantage to give a high structure reproducibility due to the 

severely monitored conditions of microorganism growth. This is not possible for plant and animal 

sources, for which the polysaccharide structures depend on climate, environmental and feed 

conditions. According to these preliminary remarks, the research of new microorganisms for 

obtaining polysaccharides, with novel structures and properties virtually useful for new or improved 

industrial applications, is nowadays demanding. 

Microorganisms populate every niche on Earth. In particular, marine habitats represent a large 

and unique environment where diverse communities of bacteria perform fundamental activities for 

the survival of planet’s ecosystem [3]. Oceans microorganisms account for approximately half of the 

primary production of organic substances on earth [4] and, among these, exopolysaccharides occupy 

a prominent position. These polymers are included into the dissolved organic carbon (DOC) in 

marine environments and contribute to several processes, such as particle formation, sedimentation 

and cycling of dissolved metals [5,6]. 

Exopolysaccharides (EPSs1) are glycopolymers that microorganisms secrete in their surrounding 

environment. They include capsular polysaccharides (in this review named CPSs), if polymers are 

strictly associated to cell membrane and medium released exopolysaccharides (in this review named 

MRPs) (Figure 1). These last can be found in the surrounding liquid medium or embedded into 

biofilms. 

 

Figure 1. Schematic picture illustrating the typology of exopolysaccharides (EPSs): medium released 

exopolysaccharides (MRPs) and capsular polysaccharides (CPSs). 

                                                 
1 Sometimes the acronym EPS is used for ‘extracellular polymeric substances’ to indicate several organic compounds 

(polysaccharides, nucleic acids, proteins, lipids, etc.) secrete from microorganisms into their surrounding environment. In this 

review, EPS indicates only exopolysaccharides. 

EPSs

CPS

MRP
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The growing interest in renewable sources situates exopolysaccharides as important products of 

microbial biotechnologies aimed to convert discarded materials into bioenergy and biomaterials, in 

order to contribute to a reduction in economic dependence on fossil fuels [7]. 

To this aim, scientists have addressed their attention to oceans, which cover 71% of the Earth’s 

surface, with an average depth of 3.8 km, an average pressure of 38 MPa (corresponding to 375 atm) 

and an average temperature of 2 °C. These features cause the existence of various extreme habitats in 

marine ecosystem, including deep-sea, hydrothermal vents, volcanic and hydrothermal marine areas, 

marine salterns and salts lake and sea ice in polar regions, niches where extremophilic bacteria thrive 

and can virtually produce peculiar exopolysaccharide structures. 

Many reviews have been already published about exopolysaccharides from marine bacteria and 

marine extremophiles [8–18]. They deal with bacterial growth conditions, genomic profile and/or 

polysaccharide properties, biological activity and applications. Instead, very few at our knowledge, 

discuss on the possible relationships between the detailed chemical structure of exopolysaccharides 

and their properties. The lack of this type of review depends mainly on the high complexity of 

exopolysaccharide structures and last but not least, on the difficulty to ascertain the polysaccharide 

purity. As consequence, the usual chemical characterization of exopolysaccharides based on 

monosaccharide composition could not have any value for the relationships with properties or 

activities of exopolysaccharides, without a full polysaccharide structure determination. The 

development of analytical purification techniques and the sophisticated 1H- and 13C-NMR 1-D and 2-

D sequences approaches allow nowadays to obtain sound detailed polysaccharide primary structures 

and, in rare cases, conformational investigations, which are important to get information on higher 

structures. 

Aim of this review is to collect the majority of papers containing structural characterization 

focusing on relationships with polysaccharide activities or properties. A better understanding of the 

structure property relationships of marine bacteria EPSs is important to evaluate their ecological roles 

and for exploring their possible biotechnological and industrial applications. 

2. Purification and Characterization Methodologies 

This section focuses on purification and characterization methods targeting marine 

exopolysaccharides. Firstly, general EPS visualization methods are described, followed by specific 

descriptions of isolation and purification depending on the polymer localization (Figure 2). 

Visualization of polysaccharide material during the microbial growth on agar plates can be 

reached through colorimetric methods. It is well known that some monosaccharides are able to 

interact with dyes and this phenomenon can be used to quickly and easily identify the presence of 

EPS [19]. Among these dyes, Alcian Blue is sensitive to the presence of negative charges of the 

polymer [8,20], while Aniline Blue [21], Congo Red [22] and Calcofluor White [23] are able to detect 

glucan polysaccharides. 

The electrophoresis is the optimal technique for screening the presence of ionic polysaccharides 

as well as for following the purification during the various steps. Electrophoresis on polyacrylamide 

gels (SDS- or DOC-PAGE) of carbohydrates containing molecules is familiar to people working on 

polysaccharides structural elucidation [24]. Indeed, lipopolysaccharides (LPSs), proteoglycans and 

charged polysaccharides can be analysed with this technique. Two different staining methods can be 

used, the silver staining [25] and the Alcian Blue [26,27]. The last one needs the presence of negative 

charges to be effective. 

Exopolysaccharides can be also identified by bacteria phenotypes, both in liquid and solid 

media. Usually, a “mucoid” strain indicates that the microorganism is able to produce exopolymeric 

substances but only the determination of carbohydrates content can ensure the presence of 

exopolysaccharides [28,29]. A number of colorimetric assays has been developed for detecting 

carbohydrates in a sample. Most of them rely on the action of concentrated (or near concentrated) 

sulphuric acid, causing the hydrolysis of all glycosidic linkages with a resulting dehydration of the 

monosaccharides, producing derivatives of furfural. These products react with several reagents, such 

as phenol [30], m-hydroxy-diphenyl [31] and carbazole [32], to give coloured compounds. 
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EPSs can be extracted by a plethora of physicochemical methods. All of them are able to use 

external forces to ensure the complete detachment of the polymer from the cells or the complete 

recovery from the medium. Centrifugation, filtration, dialysis, precipitation, alkaline extraction, 

metals complexation by EDTA or crown ether and ultrasonication are among the most used methods. 

It is important to underline that care should be taken when using such methods, in order to avoid 

cells lysis. However, the extent of cells lysis during these procedures is difficult to evaluate [33]. 

 

Figure 2. General scheme illustrating detection, extraction and purification of exopolysaccharides 

from microorganism’s planktonic and sessile growth. 
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2.1. Extraction from Cell-bound Polysaccharides: Capsular Polysaccharides (CPSs) 

Exopolysaccharide isolation is different depending on the polymer localization. Capsular 

polysaccharides, visualized by Transmission Electron Microscopy [34] and/or light microscopy [35], 

are mainly recovered from the cells (Figure 2). Indeed, they are strictly associated to the membrane 

and form ionic interactions with the molecules included in the membrane. The first step consists in 

the separation of cells from growth medium by centrifugation. During this operation, some CPS 

molecules could pass into the growth medium, distributing the polymers into the two phases. It turns 

out that the polymer yield calculation is quite complex. 

Then, the isolation of capsular polysaccharides proceeds with a solvent extraction of the cells, 

usually by saline solution [36] or by the hot phenol/water method [37,38]. Since with the last 

procedure LPSs are extracted from the cells together with the CPSs, an acetic acid hydrolysis is 

demanding to remove the glycolipid portion (lipid A) from the polysaccharide sample. After 

extraction and taking into consideration the sample characteristics, anionic exchange 

chromatography and/or gel filtration are usually performed. 

2.2. Extraction from Growth Medium: Medium-released Polysaccharides (MRPs) 

MRP-EPSs can be obtained from the growth medium, after centrifugation or filtration of the 

cells. Then, the supernatant is treated with various chemical substances in order to obtain a 

precipitate (Figure 2). The majority of the reports indicate alcohol precipitation as the main method 

for obtaining polysaccharidic material, either by ethanol or 2-propanol. In addition, acetone [39] or 

detergent salts such as the cetylpyridinium chloride [40], can be used. However, since it is hard to 

directly obtain a purified polysaccharide, the chromatographic step is determining. 

2.3. Extraction of EPS from Biofilm 

Extraction of polysaccharides from biofilm is much more difficult, due to the necessity to firstly 

break down the interactions between the EPSs and the complex matrix, mainly constituted by 

proteins and nucleic acids, where they are embedded [41]. EPSs can be extracted from biofilm by 

EDTA [42–44], NaOH [43], NaCl [45] and formaldehyde [46]. EPSs can also be extracted by 

centrifugation, as reported for Pseudomonas aeruginosa [47]. After extraction and precipitation by 

ethanol, chromatographies are requested to obtain a pure sample of EPS. 

2.4. Methods for Structural Characterization 

To solve the complete primary structure of an oligo-/polysaccharidic chain the following 

questions must be addressed: (i) the monosaccharide composition, with their absolute configuration; 

(ii) the anomeric configurations of the monosaccharides; (iii) the ring size of each monosaccharide; 

(iv) the glycosylation sites; (v) the sequence of the monosaccharides; (vi) the presence and the 

positions of the appended groups (Figure 3). 

 

Figure 3. General flow diagram for the characterization of polysaccharide primary and secondary 

structures performed during each step of purification. 
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Current analytical methods to characterize a polysaccharidic chain exploit both chemical and 

spectroscopic methods. Glycosyl analysis is usually performed to establish the type and the relative 

amount of the monosaccharides constituting the investigated polymer. Chemical derivatization of 

monosaccharides is necessary to perform such analysis by Gas Chromatography Mass Spectrometry 

(GC-MS). Therefore, a portion of the polysaccharide is usually subjected to a complete degradation 

with acids, with two different procedures, owing to the different stability of some monosaccharides. 

The sample can be either hydrolysed in water and treated with dry acid methanol in a solvolysis 

reaction (methanolysis). After neutralization and concentration, the sugars are converted into their 

alditol acetates (AA) [48] or acetylated methyl glycosides (MGA), respectively [49]. The components 

are separated into the GC column and identified by their relative retention times and Electron 

Ionization-Mass Spectrometry (EI-MS) fragmentation patterns [50]. 

For the determination of absolute D or L configurations, the solvolysis is performed with an 

optical chiral pure alcohol, such as 2-(+)-butanol or 2-(+)-octanol [51]. The diastereoisomeric butyl- or 

octyl-glycosides obtained, can be acetylated and analysed by GC-MS and the configuration can be 

deduced by comparison with authentic standards. 

The determination of the ring size and the glycosylation sites of the monosaccharides is obtained 

through the analysis of the partially methylated alditol acetates. These are achieved by a complete 

methylation of the polysaccharide in alkaline conditions, followed by the acid hydrolysis, the 

reduction with a deuterated reagent of anomeric positions and acetylation [52]. The observed 

fragments in MS spectra of GC-MS chromatograms are diagnostic for the specific substitution pattern 

of methyl and acetyl groups. 

Spectroscopic methods include Infrared Spectroscopy (IR) and Nuclear Magnetic Resonance 

(NMR). FT-IR can furnish several information about polysaccharide structures, such as the type of 

sugar rings, the presence of amino sugars, uronic acids and sulphate groups. Nevertheless, infrared 

spectroscopy is not suitable for an in-depth structural analysis. 

Instead, Nuclear Magnetic Resonance provides the most useful tool in the field of structural 

determination of polysaccharides. Anomeric resonances in both 1H and 13C spectra are usually 

displayed in a different region with respect to the carbinolic signals, thus helping in determining not 

only the alpha or beta anomeric configuration of each single residue but also in establishing, in a quite 

confident way, the number and their relative proportions [53]. Finally, the observation of long-range 

scalar couplings between anomeric signals and proton/carbon resonances of attachment points in 

modern 2-D techniques (HMBC), together with the measurement of nuclear Overhauser effects 

(NOE) between protons two consecutive residues, give information about the sequence. Mono- and 

two-dimensional spectra of both 1H and 13C nuclei provide essential and definitive information on 

the primary structure of a carbohydrate chain. The detailed use of NMR in carbohydrates structural 

elucidation have been extensively reviewed in dedicated papers [54–57]. 

All these methods allow the determination of the primary structure of EPSs, that is only the first 

step to understand the relationship between the polysaccharidic structure and its function and/or 

activity. Therefore, secondary structure definition, that is the conformation of the polymer in a 

solution and in some cases, supramolecular structures characterization, are mandatory to define the 

shape of the macromolecules in solution. 

Among the methods used for secondary structure determination, NMR NOEs measurement 

coupled with Molecular Mechanics (MM) and Molecular Dynamics (MD) simulations [58], Circular 

Dichroism [59] and Small-Angle Neutron Scattering (SANS) [60], are the most used. 

3. Structure of Exopolysaccharides (EPSs) from Marine Bacteria and Archaebacteria 

In the following sections, the structural features of EPSs produced by marine bacteria will be 

reported. The reported EPSs come from species belonging to both Archaea and Bacteria domains. 

Since many bacteria are ubiquitous, in this review we have considered only marine strains. 
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3.1. Alteromonas 

The Gram-negative genus Alteromonas, belonging to the Alteromonadaceae family, was 

established by Baumann and co-workers [61] for marine Gram-negative heterotrophic bacteria 

requiring sodium to grow [62]. Several species belong to this genus and A. macleodii was designated 

as the type species [61]. Numerous rod-shaped bacteria, which produced EPS, were isolated from 

alvinellids: Alteromonas macleodii sub. fijiensis biovar deepsane HYD 657, Alteromonas HYD-1545 and 

Alteromonas sp. strain 1644. 

Alteromonas macleodii subsp. fijiensis biovar deepsane HYD 657 [63,64] produces a high 

molecular weight exopolysaccharide, named deepsane. This EPS was found to contain different type 

of sugars carrying sulphate, lactate and pyruvate substituents (Table 2). Deepsane is currently used 

in cosmetics due to its protective effect on keratinocytes. 

Table 2. Examples of marine bacterial exopolysaccharides. 

Microorganism Source 
EPS Structure or Monosaccharide 

Composition 

Functions and 

Applications 
Reference 

Alteromonas 

A. macleodii sub. 

fijiensis biovar 

deepsane HYD 657 

Deep-sea 

hydrothermal 

vent polychaete 

annelid 

Fuc:Rha:Glc:Gal:Man:GlcA:GalA 

1:2.5:2.6:5.9:1.4:2:1.9 

Sulphate, lactate and pyruvate groups 

Cosmetic, 

keratinocytes 

protection 

[63,64] 

A. strain HYD-

1545 

Hydrothermal 

vent polychaete 

annelid 

Gal, Glc, GlcA, GalA, GalX 

2.5:3:2:2:1 

X = pyruvate 

- [65] 

A. macleodii sub. 

fijiensis strain 

ST716 

Deep-sea 

hydrothermal 

vent 

Structure, Figure 4a Gel forming  [66,67] 

A. strain JL2810 Sea water Structure, Figure 4b 
Biosorption of 

heavy metal 
[68,69] 

A. infernus GY785 
Hydrothermal 

vent 
Structure, Figure 4c Metal recover [70,71] 

A. hispanica F32 
Hypersaline 

inland 

Glc:Man:Rha:Xyl 18:63:7:12 

Sulphate and phosphate groups 
- [72] 

Bacillus 

B. strain B3-15 

halophile 

Marine hot 

spring 
Man - [73,74] 

B. strain B3-72 

thermophile 

Hydrothermal 

vent 

EPS1, Man:Glc 0.3:1 

EPS2, Man:Glc1:0.2 
- [75] 

B. strain I-450 

haloalkaliphile 
Mudflats Glc, Gal, Fru Gel forming [76,77] 

Cobetia marina 

DSMZ 4741 
Coast Structure, Figure 4d - [78] 

Colwellia 

C. psychrerythraea 

34H 

psychrophile 

Sea sediments, 

sea ice 
Structure, Figure 4e Anti-freeze [37] 

C. psychrerythraea 

34H 

Sea sediments, 

sea ice 
Structure, Figure 4f Anti-freeze [79,80] 

C. psychrerythraea 

34H 

Sea sediments, 

sea ice 
Structure, Figure 4g 

No anti-freeze 

activity 
[81] 

Flavobacterium 

uliginosum MP-55 
Sea weed 

Glc:Man:Fuc 7:2:1. 

Marinactan 
 [82] 

  



Mar. Drugs 2018, 16, 69 8 of 35 

 

Table 2. Cont. 

Microorganism Source 
EPS Structure or Monosaccharide 

Composition 

Functions and 

Applications 
Reference 

Geobacillus 

G. strain 4004 

thermophile 
Sea water 

EPS1, Man:Glc:Gal 0.5:1:0.3 

EPS2, Man:Glc:Gal 1:0.3:traces 

EPS3, Gal:Man:GlcN:Ara 1:0.8:0.4:0.2 

- [83] 

G. tepidamans V264 

thermophile 
Hot spring Glucan 

Immunomodulant, 

anti-viral 
[84] 

G. 

thermodenitrificans 

thermophile 

Shallow marine 

vent 
Man, Glc  [85] 

Hahella chejuensis 

strain 96CJ1035 

Marine 

sediments  

Glc:Gal 1:6.8 

Traces of xylose and ribose 
Emulsifier [86,87] 

Halomonas 

H. eurihalina F2-7 Dead Sea 

Glc:Man:Rha 2.9:1.5:1 

Uronic acids, amino sugars, sulphate 

groups 

Emulsifier [88,89] 

H. maura 

halophile 
Solar saltern 

Man:Gal:Glc:GlcA 34.8:14:29.3:21.9 

Sulphate groups 

Viscous, 

pseudoplastic 
[90,91] 

H. sp. OKOH 

halophile 

Bottom 

sediments 
No structure Flocculant [92] 

H. sp AAD6 (JCM 

15723) 
Soil saltern Levan - [93,94] 

H. alkaliantarctica 

strain CRSS 
Salt lake 

EPS1, Mannan 

EPS2, Xylo-mannan 

EPS3, Fructo-glucan 

- [95] 

Hyphomonas 

H. strain MHS-3 
Shallow marine 

sediments 
GalNAcA Adhesion [96–98] 

H. strainVP-6 Vent region No structure Adhesion [99] 

Idiomarina 

I. fontislapidosi F23T Lagoon 
Glc, Man, Xyl, Rha 

Sulphate and phosphate groups 

Emulsifier, metal 

binding 
[72] 

I. ramblicola R22T 
Water-course 

 

Glc, Man, Xyl, Rha 

Sulphate and phosphate groups  

Emulsifier, metal 

binding 
[72] 

Polaribacter sp. 

SM1127 

psychrophile 

Artic brown alga 

Laminaria 

Rha:Fuc:GlcA:Man:Glc:GlcN 

0.8:7.4:21.4:23.4:17.3:1.6:28.0 

Cryoprotectant, 

anti-oxidant 
[100] 
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Table 2. Cont. 

Microorganism Source 
EPS Structure or Monosaccharide 

Composition 

Functions and 

Applications 
Reference 

Pseudoalteromonas 

P. strain HYD721 
Deep-sea 

hydrothermal vent 
Structure, Figure 4n - [101] 

P. strain TG12 Sea-water 

Rha:Fuc:Gal:GalNAc:Glc:GlcNAc 

1.2:0.5:0.9:0.7:10.4:24.8 

Man:Xyl:MurA:GalA:GlcA 

4.8:27.7:0.3:23.1:5.6 

Metal binding [102] 

P. ulvae TC14 Marine biofilm 

LB-EPS, Glc, uronic acids 

TB-EPS, Glc, uronic acids 

Sol-EPS, Glc 

Anti-biofilm [103] 

P. ruthenica Sea-water Man, traces of uronic acids Pseudoplastic [104] 

P. sp. strain MD12-

642 

Marine 

sediments  

GalA:GlcA:Rha:GlcNAc 

44:28:15:14 
Viscosity [105] 

P. haloplanktis 

TAC125 

psychrophile 

Antarctic sea 

water 

Man, Glc 

Phosphate groups 
- [106] 

P. sp. strain 

SM20310 

psychrophile 

Arctic sea-ice 
Rha:Xyl:Man:Gal:Glc:GalNAc:GlcNAc 

2.1:0.9:71.7:9.0:10.7:1.5:4.0 
Cryoprotectant [107] 

P. arctica KOPRI 

21653 

psychrophile 

Sea-side 

sediments 

Glc:Gal 

1.5:1 
Cryoprotectant [108] 

P. elyakovii Arcpo 

15 psychrophile 
Not reported 

Man:GalA 

3.3:1 
Cryoprotectant [40] 

P. sp. CAM025 

psychrophile 

Particles form 

Antarctic sea 

Glc:GalA:Rha:Gal 

1:0.5:0.1:0.08  
Adhesion [109] 

P. sp. CAM036 

psychrophile 

Particles from 

Southern Ocean 

GalA:Glc:Man:GalNAc:Ara 

1:0.8:0.84:0.36:0.13 
- [109] 

P. sp. SM9913 

psychrophile 

Deep-sea 

sediment 
Glc, Gal, Xyl, Ara Metal binding [110] 

P. sp. MER144 

psychrophile 

Terra Nova Bay, 

Ross Sea 

Antarctic 

Glc:Man:GalN:Ara:GlcA:GalA:Gal 

1:0.36:0.26:0.06:0.06:0.05:0.03 
- [111] 

Pseudomonas 

P. sp. NCMB 2021 Not reported 

Pol A, Glc:Gal:GlcA:GalA 

1.45:1.18:0.64:0.43 

Pol B, GlcNAc, deoxy-Hex, Kdo 

metal binding (A) 

Adhesion (B) 
[112] 

P. sp. S9 

psychrophile 
Polar basin 

Glc:GlcNAc:GalNAc 

28:35:37 
Adhesion [113] 

P. sp. WAK1 

Brown seaweed 

Undaria 

pinnatifida 

Gal:Glc 2:1 

Sulphate groups 
Anti-cancer [114] 

P. stutzeri 273 
Marine 

sediments  

GlcN:Rha:Glc:Man 

35.4:28.6:27.2:8.7 

Anti-biofilm,  

anti-biofouling, 

antioxidant 

[115] 

P. sp. ID1 
Marine 

sediments 

Glc:Gal:Fuc 

2:1:1 
Cryoprotectant [116] 

Rhodococcus 

R. sp. 33 

Contaminate site 

near a chemical 

plant  

Structure, Figure 4m - [117,118] 

R. erythropolis PR4 Ocean 

FR2 

Structure, Figure 4m 
Emulsifier [119] 

FR1 

Glc:GlcN:GlcA:Fuc 

2:1:1:1 

-  

Salipinger mucosus 

A3T 

halophile 

Solar saltern 

Glc:Man:Gal:Fuc 

1.5:2.5:2.5:1 

Sulphate and phosphate groups 

Metal binding, 

emulsifier, 

pseudoplastic 

[120] 
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Table 2. Cont. 

Microorganism Source 
EPS Structure or Monosaccharide 

Composition 

Functions and 

Applications 
Reference 

Shewanella 

S. oneidensis MR-4 Dead Sea Structure, Figure 4o - [38] 

S. colwelliana 
Associate 

bivalve 
Man:Glc:Gal:pyruvate 1:2:2:4  - [121] 

Vibrio 

V. diabolicus 

Deep-Sea 

hydrothermal vent 

A. pompejana 

Structure, Figure 4p 

Filler of bone 

defects in rat 

calvaria 

[122,123] 

V. alginolyticus Sea water 
Glc:Xyl:RibN:AraN 

2:1:9:1 

Shearing 

properties 
[124] 

V. alginolyticus 

CNCM I 4994 
Sea water Structure, Figure 4q - [125] 

V. harveji VB23 Sea water 
Gal:Glc:Rha:Fuc:Man:Rib:Ara:Xyl 

10.08:3.6:0.7:0.15:1.56:0.2:0.3:0.45 
Emusilfier [126] 

V. furnissii 

strain VB0S3 
Sea water 

Gal:Glc:Rha:Fuc:Man:Rib:Ara 

5.21:4.68:1.0:0.79:1.43:0.16:0.19 
Emusilfier [127] 

V. sp. QY101 Laminaria thallus 
Glc:Gal:GlcA:GalA:Rha:Fuc:GlcN:Man 

6.57:6.89:21.47:23.05:23.9:3.61:12.15:2.36 
Anti-biofilm  [128] 

Zooglea sp. 

KCCM100376 
Seaweed Undaria 

CBP, Glc:Gal:Man 1:2:2 

WSP, Glc:Gal:Man 2:2:3 

Water-holding 

capacity 
[39] 

The exopolysaccharide produced by Alteromonas HYD-1545 was composed of uronic acids and 

neutral sugars, of which, one galactose unit is substituted by a pyruvic group. This polysaccharide 

showed a good heavy-metal-binding capability, providing in this way protection to the polychete 

worm [65]. 

The deep-sea bacterium Alteromonas macleodii subsp. fijiensis strain ST716 produced an EPS with 

a good intrinsic viscosity similar to the xanthan’s [66]. The polymer was constituted by a branched 

hexasaccharide repetitive unit containing Glc, GlcA, Gal and GalA and terminating with a 4,6-O-(1-

carboxyethylidene)-Manp (Figure 4a, Table 2) [67]. 

Alteromonas sp. JL2810 was isolated from the surface seawater of the South China [68]. The 

exopolysaccharide produced was purified from the culture medium by adding cold ethanol, followed 

by an anion-exchange chromatography. NMR analysis of the pure EPS showed a trisaccharide 

repeating unit containing rhamnose, mannose and galacturonic acid (Figure 4b, Table 2). JL2810 EPS 

showed high capacity to absorb heavy metals (Cu2+, Ni2+ and Cr6+) [69]. 

Raguènés et al. [70] reported EPS structural features produced by Alteromonas infernus strain 

GY785. This bacterium, isolated near an active hydrothermal vent, produces two different 

polysaccharides: a water-soluble EPS (EPS1) and a not-soluble EPS (EPS 2) embedded in a gelatinous 

matrix containing also bacterial cells. Chemical analysis, performed only for EPS1, revealed an acidic 

polysaccharide containing galactose, glucose, galacturonic and glucuronic acids (Figure 4c, Table 2) 

[70]. An in-depth characterization of the polymer was achieved by studying oligosaccharide fractions 

obtained from an acidic hydrolysis. The polysaccharide structure consists of a nonasaccharide 

repeating unit decorated with sulphate groups [71]. The high content of uronic acids correlated to the 

metal binding ability and it makes the polymer a good candidate in the waste-water treatment and 

metal recovery. 

Alteromonas hispanica F32, a moderate halophilic bacterium isolated from hypersaline habitat in 

Spain, produces an exopolysaccharide when grown in MY medium supplemented with 7.5% (w/v) of 

sea-salts. The molecular weight reported was 1.9 × 107 Da, the highest reported for this type of 

microorganism. Chemical analysis revealed the presence of Glc, Man, Rha and Xyl as 

monosaccharide components, together with sulphate and phosphate groups (Table 2). A. hispanica 

EPS showed to be a more efficient emulsifier respect to the commercial surfactants [72]. 
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3.2. Bacillus and Geobacillus 

The family of Bacillaceae comprises the rod-shaped bacteria which form endospores. They are 

mostly saprophytes, having a wide diversity of physiological characteristics. Their ability to form 

hardy spores enables them to be widely distributed in nature, from Arctic environments to hot 

springs and desert sands and from fresh water to salt or marine sediments. Very few reports are 

available on EPSs production from Bacillus and Geobacillus genera. Usually, genus Geobacillus 

comprises a group of Gram-positive thermophilic bacteria that can grow over a range of 45–75 °C. 

Geobacillus strain 4004 isolated from geothermal sea sand in Italy (Ischia Island) and able to grow 

at 60 °C as optimal temperature, released an exopolysaccharide in the culture medium. The EPS 

fraction, recovered by cold-ethanol precipitation, was further purified and three different EPS 

fractions (named EPS 1–3) were obtained (Table 2). EPS 1 and EPS 2 contained Man, Glc and Gal; EPS 

3 showed the presence of Gal, Man, GlcN and Ara. A preliminary structural characterization was 

carried out only for EPS 3: the 1H and 13C NMR spectra revealed that this polymer essentially consists 

of two sugars having a gluco- and galacto- configurations and three with a manno- configuration. In 

addition, the molecular weight for EPS was found to be about 1 × 106 Da [83]. 

Geobacillus tepidamans strain V264 was isolated from Velingrad hot spring (Bulgaria) at 79 °C and 

pH 7.8. The microorganism synthesized an exopolysaccharide showing a glucan-like structure, with 

a molecular weight higher than 1 × 106 Da (Table 2). The bio-polymer isolated from this bacterium 

was found to be anti-cytotoxic in brine shrimps [84]. 

Arena et al. [85] reported the immunomodulatory and antiviral effects of an EPS produced by a 

strain of Geobacillus thermodenitrificans, isolated from a shallow marine vent of Vulcano island, in Italy. 

The EPS showed a molecular weight of 400 KDa and displayed mannose and glucose as main 

monosaccharidic components (Table 2) [85]. 

Bacillus licheniformis strain B3-15 is a halophilic and thermotolerant bacterium, isolated from the 

shallow marine hot springs at Vulcano island (Italy). It is reported to produce an exocellular 

polysaccharide when grown on kerosene as carbon source [73]. The EPS obtained after ethanol 

precipitation, was desalted on Sephadex G-50 and further purified on a DEAE-Sepharose CL-6B. The 

most abundant fraction gave an EPS essentially constituted by mannose (Table 2) [73], with the ability 

to enhance the metal immobilisation (e.g. cadmium immobilisation). In addition, antiviral and 

immunomodulatory effects of EPS were evaluated: data suggested that EPS treatment impaired HSV-

2 replication in human peripheral blood mononuclear cells (PBMC) [74]. 

Still from Porto Levante (Vulcano, Italy), another thermophilic Bacillus strain B3-72 was found 

to be able to produce two exocellular polysaccharides (EPS1 and EPS2) (Table 2). EPS1 and EPS2 

structures were based on mannose and glucose in a relative ratio of 0.3:1 and 1:0.2, respectively [75]. 

The haloalkalophilic bacterium Bacillus sp. I-450, recovered from mudflats (Korea), displayed 

interesting flocculating activity. The polysaccharide consisted of neutral sugars such as glucose, 

galactose and fructose (Table 2). The polymer, observed by SEM microscopy, showed a porous 

surface, where the water molecules are entrapped. In addition, the small pores structure may also be 

responsible of the polymer compactness, of the gel stability when subjected to external forces and of 

the maintenance of the texture properties during storage [76,77]. 
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Figure 4. Repeating units of EPS and CPS structures from marine bacteria and archaebacteria. (a) Alteromonas macleodii subsp. fijiensis strain ST716; (b) Alteromonas 

strain Jl2810; (c) Alteromonas infernus GY 785; (d) Cobetia marina DSMZ 4741; (e) Colwellia psychrerythraea 34H CPS (4 °C); (f) Colwellia psychrerythraea 34H EPS (4 °C); 

(g) Colwellia psychrerythraea 34H CPS (8 °C); (h) Haloferax mediterranei; (i) Haloferax gibbonsi ATCC 33959; (l) Haloferax denitrificans ATCC 35960; (m) Rhodococcus 

erythropolis PR4 and Rhodococcus sp. 33; (n) Pseudoalteromonas strain HYD 721; (o) Shewanella oneidensis MR-4; (p) Vibrio diabolicus (m); (q) Vibrio alginolyticus CNCM 

I-4994. 
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3.3. Colwellia 

The genus Colwellia comprises heterotrophic and halophilic Gammaproteobacteria. It contains 

12 psychrophilic species [129,130] and among them Colwellia psychrerythraea 34H (Cp34H) is the one 

best characterized [131–133]. Cp34H was isolated from enriched Arctic marine sediments at −1 °C and 

it is considered a model organism for cold-adaptation mechanisms [134]. This strain, when grown in 

marine broth at 4 °C, is able to produce cryoprotectant carbohydrate polymers, an EPS [79,80] and a 

CPS [37]. In addition, it has been reported that these polymers can be useful for overcoming threshold 

requirements for dissolved organic carbon in cold environments [132]. 

The repeating unit of both CPS and EPS have been completely delucidated and both contain 

amino sugars and uronic acids (Figures 4e and 4f, Table 2). Another common feature is the presence 

of an amino acidic decoration, consisting of a threonine and an alanine in CPS and EPS, respectively. 

The shape of these two polymers in aqueous solution can explain the ice recrystallization inhibition 

(IRI) activity, measured for both molecules. 

When Colwellia is grown at 8 °C, it is able to produce a third polysaccharide, which is not 

endowed with antifreeze activity. This is a polymer containing amino sugars and aminouronic acids 

and it is not decorated by amino acids (Figure 4g, Table 2) [81]. It has been hypothesized that the lack 

of these substituents does not settle the equilibrium between the hydrophobic and the hydrophilic 

regions necessary to the establishment of the IRI activity. 

3.4. Halomonas 

Halomonas species are moderately halophilic microorganisms that represent one of the major 

microbial communities populating marine and saline environments [135]. Several Halomonas spp. 

have been reported as EPS producers, especially those isolated from high salt concentration habitats 

[93,136]. 

H. eurihalina strain F2-7, previously named Volcaniella eurihalina, is a moderately halophilic 

bacterium isolated from a solar saltern at Alicante. H. eurihalina produced an exopolysaccharide in 

several culture media supplemented with hydrocarbons. Chemical analysis suggested as major 

components rhamnose, glucose and mannose, with a higher content of uronic acids, acetyl and 

sulphate groups (Table 2) [88]. EPS from F2-7 resulted a good emulsifier when growth in 

hydrocarbons media and showed an interesting application in bioremediation of pollutants [89]. 

Sulphated polysaccharides are quite uncommon among prokaryotic; nevertheless, another species of 

Halomonas, named maura, has been reported to produce a sulphated exopolysaccharide, the name of 

which is mauran. This polymer revealed to be interesting for its potential biotechnological 

application. Indeed, it showed to share some features with xanthan such as, for example, the ability 

to form a double helix [90,91]. In addition, solutions of this polymer showed a thixotropic and a 

pseudo-plastic behaviour, with viscosity not changing in the presence of high salt concentrations or 

extreme pH values. The monosaccharides composition (Table 2) reflects the xanthan’s, except for the 

presence of galactose. Finally, the chelating properties of mauran offers the possibility to use it in bio-

remediation. 

Halomonas sp. OKOH was isolated from the bottom sediment of Algoa Bay of South Africa. The 

bacterium was reported to produce an exopolysaccharide. The phenol-sulphuric acid method 

revealed a high carbohydrate content, suggesting the polysaccharidic nature of EPS (Table 2). The 

polymer showed good bioflocculant activity, enhanced in the presence of glucose and urea, used as 

carbon and nitrogen source, respectively [92]. 

The EPS released in the growth medium of Halomonas sp. AAD6 (JCM 15723) has been found to 

be a levan [93]. Levans are polymers constituted by -(2→6)-fructofuranosyl residues (Table 2), with 

antibacterial [137], anti-cancer and anti-oxidant [138] activities and with probiotic potential [139]. 

Since levan production is very expensive, an industrial production of this product from Halomonas 

sp. AAD6 has been considered and many efforts have been devoted to obtaining a large-scale 

production from low-costs substrates [94]. 
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Halomonas alkaliantarctica strain CRSS, isolated from salt sediments near the salt lake in Cape 

Russell in Antarctica, has been shown to produce different EPSs when grown in different conditions 

[95]. After precipitation of the cell-free supernatant with ethanol, the EPS fraction from each growth 

medium was further investigated. In all conditions, the glycosyl composition indicated the presence 

of neutral polysaccharides (Table 2). In particular, it was deduced that CRSS produced on complex 

media a mannan and a xylo-mannan, whereas on minimal medium, it produced a fructo-glucan [95]. 

3.5. Hyphomonas 

Members of Hyphomonas genus are Gram-negative bacteria, which are usually colonizer of 

marine environments. Species of the genus Hyphomonas divide by budding, forming a flagellated cell 

at the tip of the prosthecum [140]. Two marine Hyphomonas strains, MHS-3 and VP-6, are reported to 

produce exopolysaccharides. Hyphomonas strains MHS-3, isolated from shallow marine sediments in 

Puget Sound, produces colonies with different morphology, ranging from a slime-producing (MHS-

3) to a non-slime-producing (MHS-3 rad) phenotypes [96]. The EPS produced may be involved in the 

first phase of adhesion process for the formation of the biofilm matrix. 

The capsule-like exopolysaccharide, produced by MHS-3, is recognized by a GalNAc-specific 

lectin, suggesting that it contains the amino sugar N-acetylgalactosamine (Table 2). MHS-3 EPS is an 

acidic polysaccharide, as confirmed by HPAE and IR analyses and may contain N-acetyl-

galactosaminuronic acid, due to the binding to the cationic polyferritin [97]. Moreover, it has been 

reported that MHS-3 EPS has also the ability to sequester gold cations, thus confirming the ionic 

interactions between the EPS and metal ions [98]. 

Another prosthecatum bacterium, Hyphomonas VP-6, produces two different EPSs, a capsule and 

holdfast EPS, involved in the first step of biofilm formation (Table 2) [99]. 

3.6. Idiomarina 

Mata et al. [72] reported the production of EPSs from two γ-proteobacteria belonging to 

Alteromonadaceae family, Idiomarina fontislapidosi F23 and Idiomarina ramblicola R22.  

Idiomarina fontislapidosi F23 was isolated from Fuente de Piedra lagoon in Spain [136], while 

Idiomarina ramblicola R22 from Spanish rambla, a steep-sided water course, often dry but subject to 

flash flooding [136]. Each bacterium produced two different molecular-mass EPSs, mainly composed 

of Glc, Man, Xyl and Rha, with traces of sulphate and phosphate groups (Table 2). The EPSs  

produced very stable emulsions, composed of small and uniform droplets, making them good 

emulsifier agents [72]. 

3.7. Pseudoalteromonas 

The genus Alteromonas, belonging to the family Alteromonadaceae, was determined by 

Baumann and co-workers [61] to be a genus of marine Gram-negative heterotrophic bacteria. Later, 

the genus Alteromonas was revised in 1995 to contain only one species, A. macleodii, while the 

remaining species were reclassified as Pseudoalteromonas [141,142]. 

Pseudoalteromonas species have been isolated from cold environments (sea-ice, deep sea, Arctic 

ocean) as well as from marine sea-water. Among these last isolates, there is Pseudoalteromonas strain 

HYD721, a Gram-negative bacterium recovered from a deep-sea hydrothermal vent. The strain, when 

grown at 25 °C, released a polysaccharide into the growth medium, the structure of which has been 

completely elucidated [101]. The polymer displays an octasaccharide repeating unit, decorated with 

a sulphate group (Table 2, Figure 4n). The presence of sulphate groups is quite unusual for 

Pseudoalteromonas genus (marine microorganisms). Sulphated polysaccharides extracted from 

seaweeds or animals display a huge number of biological functions [143,144]; nevertheless, no assays 

have been reported for strain HYD721. 

Many EPS have found to be involved in metal binding, due to the presence of functional anionic 

groups, such as carboxyl, phosphoryl, sulfhydryl and hydroxyl groups. These groups can complex 

both in vivo [145] and in vitro [146] heavy metals, as in the case of the EPS purified from 
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Pseudoalteromonas sp. strain TG12, named PE12 [102]. This polymer is a heteropolysaccharide mainly 

constituted by Glc, GlcN, Xyl and GalA. The sugar analysis revealed also minor components  

(Table 2). The presence of negative charges of the uronic acids, together with monosaccharides 

hydroxyl groups has been found to be responsible of the desorption of metals bound to marine 

sediments [102]. More interestingly is the emulsifying activity of PE12, able to produce stable 

emulsions with various food oils even at very low concentration (0.02%). An anti-biofilm activity was 

revealed for a pool of polysaccharides isolated from Pseudoalteromonas ulvae strain TC14 grown in 

sessile conditions [103]. These polymers—named LB-EPS and TB-EPS depending on whether they 

are loosely or tightly bound to the cells—and the medium soluble EPS (Sol-EPS), inhibit the biofilm 

of some marine bacterial strains. Their monosaccharide composition was similar, since all of them 

showed to contain glucose, while only for LB-EPS and TB-EPS an uronic acids content was revealed 

(Table 2). After various purification steps, TB-EPS was found to be composed of two polysaccharides, 

of which one is an α-glucan, as suggested by its 1H NMR spectrum, while the other is an 

heteropolysaccharide. A comparison of P. ulvae polysaccharides production grown in planktonic 

conditions revealed a higher content of the Sol-EPS. 

Pseudoalteromonas ruthenica, isolated from the sea water samples collected from the vicinity of 

the Bay of Bengal on the coast of India, is able to produce an EPS with interesting properties for 

potential industrial application [104]. Indeed, the polymer solutions indicated a non-Newtonian 

behaviour, revealing that it is pseudoplastic in nature. GC-MS analysis revealed that the polymer was 

mainly constituted by mannose, with a low content of uronic acids (Table 2). The last EPS isolated 

from a non extremophilic Pseudoalteromonas is the one produced by the strain MD12-642. Again, the 

authors report the capacity of the polymer to confer viscosity to the medium, which suggests 

potential applications [105]. The galacturonic acid is the most abundant monosaccharide (44%), 

followed by glucuronic acid (28%), rhamnose (15%) and glucosamine (14%). 

Pseudoalteromonas genus is frequently found in cold environments. Among these, there are 

isolates from sea-ice, Antarctic sea-water, Arctic ocean and deep-sea. The cold-adapted 

Pseudoalteromonas haloplanktis TAC125, isolated from Antarctic sea water, is a Gram-negative 

bacterium, the genome of which has been annotated in 2005 [147]. It is able to grow even at sub-zero 

temperatures and it has been considered a good model for the cold adaptation [147]. The production 

of EPS for this microorganism has been reported for three different grown temperatures, namely 4, 

15 and 25 °C [106]. In all the cases, the medium contained both carbohydrates and proteins and the 

purification afforded a phosphomannan structure (Table 2), as indicated by NMR spectra and 

chemical analysis. Some differences were displayed for the EPS structures obtained at the three 

different temperatures. In particular, a different phosphorylation content was found, being that of 

EPS recovered at 25 °C the highest (4.1%), followed by 4 °C (1.4%) and 15 °C (1.1%). In addition, the 

sample obtained at 15 °C was less branched, indicating a more linear structure [106]. 

A mannan structure was also recovered from the medium of Pseudoalteromonas strain SM 20310, 

an Arctic sea-ice isolate [107]. This microorganism was selected among 110 isolates obtained from 

samples collected for cold-active enzyme study. It is well known that the organic matter in marine 

environments is constituted by high molecular weight polymers produced by microorganisms [148]. 

These polymers, which in a large amount are polysaccharides, may have different roles, among which 

is the cryoprotection. The mannan from the strain SM 20310 has been tested for a cryoprotection 

activity during freeze-thaw cycles of both E. coli and the strain itself cells (Table 2). The results gave 

indications about a significant improvement of the freeze-thaw survival ratio of both E. coli and strain 

20310, thereby suggesting that this EPS may have a universal impact on microorganism 

cryoprotection [107]. Moreover, Liu et al. [107] demonstrated that the EPS could enhance the high-

salinity tolerance of SM20310, thus facilitating the adaptation of the strain to the sea ice environment. 

A cryoprotection role was also found for the exopolysaccharides purified from the two species, 

Pseudoalteromonas arctica KOPRI 21653 [108] and Pseudoalteromonas elyakovii Arcpo 15 [40]. The EPS 

purification method was the same for both strains, even if the biochemical characteristics of the two 

exopolysaccharides were completely different. Indeed, the glycosyl composition of the arctica 

polymer revealed only neutral sugar, whereas that of elyakovii species indicated also uronic acids 
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(Table 2). As both neutral and acidic EPS have been found to display cryoprotection to microorganism 

cells, it is hard to deduce how the glycosyl composition can influence the activity. 

EPS from marine isolates also play a role in the attachment to surfaces [11], driving marine 

particle formation including marine microgels, marine snow and biofilms. Hydrophobic interactions 

could be responsible of cells aggregation and therefore the sugar composition of the EPS, together 

with secreted proteins, can influence this phenomenon [6]. Two Pseudoalteromonas strains, named 

CAM 025 and CAM 036, were isolated from particles collected in melted Antarctic sea ice and from 

particles captured by a plankton net towed through the Ocean, respectively. Both the EPSs isolated 

contain uronic acids, as well as amino sugars, neutral sugars and sulphate groups (Table 2) [109]. The 

negative charges, due to both carboxylic and sulphate groups, are suggested to be responsible of the 

“sticky” quality of the EPS in marine environment. In addition, Mancuso-Nichols et al. [149] 

speculated on the possibility that metal ions, such as dissolved iron, interact with organic ligands, 

thus suggesting a further ecological implications of EPS polymers. 

A bio-sorption capacity and a flocculation behaviour has been attributed to the EPS isolated from 

Pseudoalteromonas strain SM 9913 [110]. This polymer, obtained in large quantity (5.25 g/L) under 

optimal growth conditions (15 °C, 52 h), is also able to bind a wide range of metal cations, suggesting 

an ecological role in concentrating metal ions to improve the biochemical interactions with the 

environment [9]. The glycosyl analysis for this EPS indicated mainly glucose, with arabinose, xylose 

and a minor content of mannose (Table 2). The complete structure was identified by methylation 

analysis and by NMR spectra and it was found to have a linear arrangement of α-(1→6) linkage of 

glucose residues with a high grade of acetylation. 

The psychrotroph Pseudoalteromonas sp. MER144 belongs to a pool of 606 isolates of Antarctic 

origin and it has been selected on the basis of its mucous growth on agar plates [111]. To obtain the 

highest production of the EPS material, many variables were tested, such as different values of carbon 

source, temperature, pH, NaCl concentration and incubation time. The optimal growth was reached 

at 4 °C, at pH 7, with a 3% of NaCl, using sucrose as carbon source. After purification, the EPS material 

showed to still contain proteins, together with a polysaccharide containing neutral sugars and uronic 

acids (Table 2). Caruso et al. [111] demonstrated that in presence of heavy metals Pseudoalteromonas 

sp. MER 144 is able to increase the production of EPS, suggesting that this could represent an 

adaptation mechanism to the tested stressed conditions.  

3.8. Pseudomonas 

Pseudomonas species are widespread in marine ecosystems and therefore many EPSs from this 

genus have been isolated, characterised and tested for their properties and abilities. One of the first 

species reported to produce exopolysaccharides involved in adhesion properties of the bacterium is 

the strain NCMB 2021. Two different polysaccharides have been isolated from this strain, of which 

polysaccharide A was able to form gel, with the ability to bind multivalent cations [112], in contrast 

with polysaccharide B which is not able to precipitate in the presence of cations. These properties 

may be related to the glycosyl composition (Table 2), which is completely different in the two 

polymers (Table 2). Indeed, the solution of polysaccharide B showed low viscosity, suggesting that it 

has a very flexible chain (random coil). Another EPS involved in the adhesion properties of bacterial 

cells is that from Pseudomonas sp. S9. Under laboratory conditions, the cells were grown in static and, 

after 1 to 5h of starvation, they were detected to be surrounded by an exopolymer material [113]. In 

this case, the cells did not show adhesion to hydrophobic surfaces. With extended starvation, the cells 

appeared to gradually lose the extracellular layer of polysaccharides. When the cells were grown 

under agitated conditions, the adhesion characteristic grew between 1 and 4 h of starvation, followed 

by a slow decrease in attachment with time. In this case, no exopolymer was observed around the 

cells. Three neutral sugars were revealed for the purified exopolysaccharide (Table 2), even if no 

relationships with adhesion properties of the cells were suggested. 

Sulphated exopolysaccharides are usually isolated from algae and, due to their similarity with 

glycosaminoglycans, very often display biological activity, anticoagulant, antiviral and immuno-

inflammatory activities that might find relevance in nutraceutical/functional food, 
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cosmetic/cosmeceutical and pharmaceutical applications [150]. An anti-cancer sulphated 

polysaccharide has been isolated and characterised from Pseudomonas sp. WAK1 [114]. The structure, 

obtained by methylation analysis and both mono- and two-dimensional NMR experiments, indicated 

a backbone of two sulphated galactoses, of which one is branched at 6 positions with a glucose unit 

(Table 2) [114]. This polymer, showing a cytotoxic effect towards human cancer cell lines MT-4, could 

provide an example of bacterial exopolysaccharide with suitable functions for obtaining new drugs. 

Among the most interesting bioactive polysaccharides isolated from Pseudomonas species there is the 

recently reported polymer from P. stutzeri 273, which showed anti-biofilm, anti-biofouling and 

antioxidant activities (Table 2) [115]. All these properties indicated that it could be find applications 

in challenging bacterial biofilm-associated infection, food-processing contamination and marine 

biofouling. The glycosyl analysis indicated only neutral and amino sugars, even if the presence of 

carboxylic acids was suggested by the IR spectrum [115]. Therefore, an in-depth analysis of the 

primary and secondary structures of this polysaccharide would be interesting in order to advance 

knowledge of antibiofilm activity mechanism. 

A cryoprotectant polysaccharide, containing both neutral monosaccharides and uronic acids, 

has been isolated and purified from the Antarctic cold-adapted Pseudomonassp ID1 cells (Table 2). 

Interestingly, the chemical analysis revealed also the presence of amino acids, which could be part of 

the EPS [116], a feature revealed also for Colwellia psychrerythraea 34H CPS and EPS [37,80]. In 

addition, the polysaccharide was revealed to possess the ability to form a long-term stable emulsion 

against different food and cosmetic oils, such as olive, sunflower and corn oils and cetiol V oil, 

respectively [116]. 

3.9. Rhodococcus 

Rhodococcus sp. 33, a marine bacterium of genus Rhodococcus, was isolated from Port Botany 

(Sidney), in a contaminated site near a chemical plant [151]. This bacterium is able to tolerate and 

degrade highs levels of benzene. Aizawa et al. [117] reported a different benzene-tolerance for rough 

and mucoid Rhodococcus sp. 33 cells. They demonstrated that the spontaneous mutants rough-type, 

producing very low amount of EPS, were more sensitive to benzene, resulting in an absent or reduced 

growth in the presence of the pollutant. In a different way, wild-type colonies that produced EPS 

appeared mucoid and they were resistant to benzene. These data suggested the direct involvement 

of exopolysaccharides in the protection against this pollutant [117]. The EPS, purified through an 

enzymatic digestion and gel filtration chromatography, was analysed by way of chemical and 

spectroscopic experiments. The polymer consists of a tetrasaccaridic repeating unit containing Glc, 

Gal, GlcA and Man substituted by a pyruvic acid (Table 2, Figure 4m). Authors demonstrated  

that the pyruvic residue and the uronic carboxyl group were responsible for the protecting activity, 

since the de-pyruvylated and carboxyl-reduced EPS that tested for benzene sensitivity showed no 

activity [118]. 

Rhodococcus erythropolis PR4 was isolated from Pacific Ocean, in Japan. As reported for other 

strains [152–155], R. erythropolis produces a FACEPS, a fatty acid containing exopolysaccharide.  

R. erythropolis was grown on IB agar plates at 25°C; the EPS purified through an ion exchange 

chromatography, showed two peaks, named FR1 and FR2, displaying different monosaccharide 

composition and emulsifying activity. EPS FR1 contained Glc, GlcN, Man and GlcA and did not show 

any emulsifying activity. Differently, EPS FR2 showed good activity, probably related to the different 

chemical structure. Indeed, it displays a tetrasaccharidic repeating unit containing Gal, Glc, Man and 

GlcA and a pyruvic acid substituting the mannose residue (Table 2, Figure 4m). Furthermore, only 

FR2 EPS contained stearic and palmitic acids. These data allowed the conclusion that EPS FR2—

named PR4—was the FACEPS, while FR1 was assigned as a mucoidan (Table 2) [119]. 

3.10. Shewanella 

The genus Shewanella comprises species largely distributed in marine environments, typically 

isolated from the deep-sea [156,157]. They can be both mesophiles and psychrophiles. Shewanella 

genus belongs to Gammaproteobacteria and about 60 species have been isolated and characterised. 
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Among these, there are S. onedeinsis MR-4 [158] and S. colwelliana [159,160]. Both species produce 

capsular polysaccharides. In particular, S. oneidensis polymer has been fully characterised, where 

neutral monosaccharides, amino sugars and uronic acids are included (Table 2, Figure 4o) [38]. The 

repeating unit has been identified on the basis of chemical analysis and NMR experiments. Instead, 

S. colwelliana capsule has been characterised by cross-reaction with six monoclonal anti-bodies [121], 

indicating a specific and identical epitope recognition. Unfortunately, no structure has been identified 

in this case, only glycosyl analysis and pyruvate content have been reported (Table 2) [121]. 

3.11. Vibrio 

The genus Vibrio consists of more than 100 species that occur naturally in marine, estuarine and 

freshwater systems worldwide. They occupy habitats ranging from the deep sea to shallow aquatic 

environments [161] but are also associated with a wide variety of molluscan and animals, including 

humans, for some of which are pathogens [162]. 

Many EPS associated to Vibrio bacteria have been reported, of which some are acidic 

polysaccharides (Table 2). Among these, the only complete structure so far reported for the EPS 

produced by a polychaete annelid isolate is that from Vibrio diabolicus. It consists of a linear 

tetrasaccharide repeating unit with a structure containing glucuronic acid and rich in amino sugars 

(Table 2, Figure 4p) [122]. This molecule resembles glycosaminoglycans and it has been tested as 

enhancers of bone healing. The tests revealed that the polymer was able to act as a filler of bone 

defects in rat calvaria, with new, well-structured woven bone. They have oriented collagen fibres, 

with osteoblast cells covering the bone surfaces [123]. In addition, the polymer did not show any 

inflammatory activity, thus encouraging its application in the healing process. 

Vibrio alginolyticus is a marine biofouling bacterium, able to produce large quantities of EPS [124]. 

After purification, the polysaccharide was tested for viscosity measurements. It was revealed to be a 

pseudoplastic performance, i.e. the viscosity of the solution decreases concomitantly with the shear 

rate. Authors also reported for the polymer a good stability to pH range between 5 and 10, and the 

ability to regain its pseudoplastic nature on cooling from 90 °C [124]. The glycosyl composition for 

the purified polymer indicated only neutral and amino sugars (Table 2). Instead, the EPS isolated 

from the strain CNCM I-4994 of V. alginolyticus was composed of galacturonic and N-acetyl 

glucosamine monosaccharides (Table 2, Figure 4q) [125]. This polymer is produced on an industrial 

scale as an ingredient for cosmetic applications for its mattifying and anti-inflammatory properties 

[125]. The most interesting feature of the repeating unit is the amino acidic decoration, which has also 

been reported for both C. psychrerythraea 34H CPS and EPS [37,80]. This is not surprising, because 

Vibrio and Colwellia are phylogenetically close to each other. Indeed, also the glycolipid portion of the 

LPS from C. psychrerythraea 34H [163] has been found to be similar to that of Vibrio fisheri [164]. 

Vibrio harveji strain VB23 [126] and Vibrio furnissii strain VB0S3 [127] have both been isolated 

from the Mandovi and Zuari estuarine in Goa, on the west coast of India. They are both able to 

produce an acidic exopolysaccharide with emulsifying properties. Unfortunately, only neutral sugar 

composition has been reported for both polymers, thus hampering any comparison with other Vibrio 

EPSs. An anti-biofilm activity has been reported for Vibrio sp. QY101 EPS [128]. This marine 

bacterium, isolated from a decaying thallus of Laminaria [165], was initially supposed to inhibit the 

growth of Pseudomonas for the alginate-lyase activity of the culture supernatant. However, after 

elimination of the protein content, the anti-biofilm activity was lost. Instead, ion-exchange and gel 

filtration chromatographies afforded a pure polysaccharide able to inhibit cell aggregates of 

Pseudomonas aeruginosa and Staphylococcus aureus. The polysaccharide showed to contain more than 

40% of uronic acids and about 10% of GlcNAc, revealing strong similarities with the EPS structures 

of alginolyticus and diabolicus species. 

3.12. Other EPS-producing Bacteria 

Cobetia marina (DSMZ 4741), a slightly halophilic Gram-negative bacterium isolated from littoral 

seawater in USA [166], is often found associated with microalgae. The exopolysaccharide, named L6, 

was produced at 20 °C, pH 7.6 in a fermenter. Cobetia EPS, with a molecular weight of 2.7 × 10 5 Da, 
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showed a disaccharide repeating unit containing ribose and a 7,8-pyruvilated Kdo (Table 2,  

Figure 4d). The presence of Kdo, typically a component of the LPS molecule, has been reported for 

K-antigen polysaccharide from Escherichia coli. The EPS from Cobetia marina represented the first 

example of EPS with this type of structure. The unusual substitution of the Kdo could represent a 

possible way for the bacterium to escape the viral Kdo-hydrolases, which can be considered a 

resistance mechanism [78]. 

Members of the genus Flavobacterium are widely distributed in nature, occurring mostly in 

aquatic environments, from freshwater to seawater [167]. Flavobacterium uliginosus MP-55 was 

isolated from the homogenates of sea weed collected in Japan. The marine bacterium grown in a 

medium supplemented with marine water produces a water-soluble polysaccharide. The polymer—

named marinactan—contained glucose, mannose and fucose (Table 2), with a molecular weight 

higher than 1 × 106 Da. Biological assays showed that marinactan was an antitumoral molecule against 

sarcoma 180, in both solid and ascites forms [82]. 

Hahella chejuensis strain 96 CJ10356, a Gram-negative halophilic bacterium, was isolated from 

marine sediments from Cheju Island (Republic of Korea) [86]. The monosaccharide analysis of  

EPS-R revealed a heteropolysaccharide consisting of glucose and galactose as main components, with 

xylose and ribose in minor amounts (Table 2). The molecular weight of EPS-R was approximately  

2.2 × 103 KDa. The exopolysaccharide showed a good emulsifier activity [87]. 

Polaribacter sp. SM1127, a member of the genus Polaribacter, was isolated from the brown alga 

Laminaria [168]. Bacteria of this genus have been isolated from different marine environments, mainly 

from Arctic and Antarctic regions. Polaribacter sp. SM1127 produces an exopolysaccharide containing 

Rha, Fuc, Man and Glc, together with a higher amount of GlcA and GlcN. The polysaccharide, with 

a molecular weight of 220 KDa, showed a good viscosity and antioxidant activity, thus representing 

a great potential in cosmetics as anti-ageing product. Furthermore, it showed moisture-adsorbing 

and retention ability superior to that of ialuronic acid and glycerine, both currently used in the 

cosmetic field. This enhanced activity could be related to the high percentage of GlcA, Fuc and GlcN 

residues (Table 2). In addition, the cryoprotectant role of EPS was tested on dermal fibroblast at 4 °C. 

SM1127-EPS, displaying protection to fibroblast cells, could be used as component of cream to protect 

human skin from cold injury [100]. 

The bacterium Salipiger mucosus A3T, belonging to the alfaproteobacterium class, was isolated 

from a solar saltern on the Spanish Mediterranean seaboard [169]. The production of the EPS from 

the halophilic S. mucosus was observed with all carbon sources tested and the best yield was obtained 

at a sea-salt concentration of 2.5% (w/v). The cells, stained with ruthenium red and observed to TEM, 

revealed a different morphology over the time: at beginning, the polysaccharide appeared strictly 

associated to the cells, while from the third day of incubation, it was released in the surrounding 

medium as slime. The purified EPS, showed a molecular weight of 250 KDa and resulted to be 

composed by Glc, Man, Gal and the uncommon Fuc (Table 2). In addition, the presence of sulphate 

and phosphate groups make the polysaccharide interesting, since this EPS with high charge density 

have a great potential for removing toxic metals from environment. S. mucosus EPS showed 

interesting emulsifying activity with several hydrocarbons, compared with other molecules already 

used as surfactants. Furthermore, it showed a higher emulsifying activity than xanthan with crude 

oil [120]. 

At first, bacteria belonging to the genus Zooglea were considered members of the 

Pseudomonadaceae family but later they were differentiated for the production of a gelatinous 

matrix. Indeed, the name Zooglea is derived from Greek and means animal glue, referring to the sticky 

feature of the zoogloeal matrix [170]. 

Bacterium Zooglea sp. KCCM 100376, isolated from the surface layers of the seaweed Undaria sp., 

was reported to produce two exopolysaccharides: a water-soluble polysaccharide (WSP), recovered 

in supernatant after centrifugation of growth broth and a cell-bound polysaccharide (CBP) obtained 

from the precipitate [39]. 

GLC analysis revealed the same monosaccharide composition (Glc, Gal and Man) for both 

polysaccharides, even if in different molar ratio (Table 2). In addition, IR spectra of these EPS 
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suggested the uronic acid nature for some sugars. Kwon et al. [39] demonstrated that Zoogloea sp. 

KCCM 100376 could grow and produce polysaccharides without the addition of carbon source, thus 

showing that most of the glucose added to the medium could be converted to CBP or WSP without 

increasing the cell mass [39]. The molecular weight, measured by HPSEC, resulted to be 4 × 106 Da 

and 3.4 × 106 Da for WSP and CBP, respectively. Physicochemical and rheological properties of both 

EPSs were evaluated. WSP and CBP showed good emulsifying and flocculating activity compared 

with other commercial products. In addition, the water-holding capacity (WHC) was evaluated for 

WSP and CBP. The thaw after freezing in food processing determines the loss of moisture and soluble 

proteins, compromising the integrity of the product. Data indicated that CBP displayed a water-

holding capacity higher than xanthan polymer, a common polysaccharide used in food processing 

and that the activity increased with concentration [171]. The viscosity analysed for both EPSs, was 

higher for WSP than the CBP's at any concentration assayed. In addition, it showed a good viscosity 

at high temperature, under pH variation and in presence of salt. 

3.13. Marine Archaea 

Several exopolysaccharides have been isolated from Archaea domain, mainly from 

microorganisms belonging to thermophilic and halophilic groups. The halophilic genera, Haloarcula 

and Haloferax, are reported as the main marine producers of EPS. In addition, thermoacidophilic 

members of the genera Thermococcus and Sulfolobus were observed to secrete polysaccharides [172]. 

Exopolysaccharides production from marine bacteria within the genera Haloarcula is reported 

for three halophilic isolates from the Tunisian marine saltern: Haloarcula japonica strains T5–T7 [173]. 

The exopolysaccharides, produced by the bacteria grown in a minimal medium supplemented with 

glucose, were precipitated with cold-ethanol, obtaining a good yield only for strain T5 (370 mg·L−1 

versus 30–40 mg·L−1). Sugar composition revealed the presence of Man, Gal and GlcA for H. japonica 

T5 and Man, Gal, Glc and trace of GlcA for H. japonica T6 and H. japonica T7 strains. No uronic acids 

were revealed in the EPS from Haloarcula hispanica ATCC 33960; instead, only Man, Gal with traces 

of Glc were found, together with sulphate groups (Table 3) [174]. 

Haloferax mediterranei ATCC 33500 was the first example of archaebacterium able to produce an 

exopolysaccharide, conferring to the cells a mucous feature. The presence of an EPS surrounding the 

cells was confirmed by electron microscopy analysis [175]. IR, chemical analysis and NMR 

spectroscopy allowed to obtain the primary structure, consisting of a highly charged  

trisaccharide repeating unit containing GlcNAcA and Man and decorated with sulphate groups 

(Table 3, Figure 4h) [176]. 
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Table 3. Examples of Marine Archaebacterial Exopolysaccharides. 

Microorganism Source 
EPS Structure or 

Monosaccharide Composition 

Functions and 

Applications 
Reference 

Haloarcula 

H. japonica T5 

halophile 

Marine 

saltern 

Man:Gal:GlcA 

2:1:3 
- [173] 

H. japonica T6–T7 

halophile 

Marine 

saltern 

Man:Gal:Glc:GlcA 

1:0.2:0.2:traces 
- [173] 

H. hispanica 

ATCC 33960 

halophile 

Solar saltern 

Man:Gal:Glc 

55.9:43.2:0.9 

Sulphate groups 

- [174] 

Haloferax 

H. mediterranei R-4 

ATCC 33500 

halophile 

Salt ponds Structure, Figure 4h Pseudoplastic [175,176] 

H. gibbonsii 

ATCC 33959 

halophile 

Marine 

saltern Dead 

Sea 

Structure, Figure 4i - [177] 

H. denitrificans 

ATCC 35960 

halophile 

Saltern Structure, Figure 4l - [178] 

Thermococcus litoralis 

DSM5 473 e DSM 3638 

Shallow 

marine 

Thermal 

spring 

Man Adhesion [179] 

Paramonov et al. [177] reported the EPS structural characterization from another member of the 

Archaea domain, Haloferax gibbonsii ATCC 33959, isolated from marine saltern of the Dead Sea. As 

for Haloferax mediterranei, the mucoid appearance of the colonies in H. gibbonsii was attributed to the 

presence of a polysaccharide. The EPS structure consists of a heptasaccharide repeating unit 

containing all neutral sugars (Table 3, Figure 4i) [177]. 

Haloferax denitrificans ATCC 35960 isolated from marine saltern in San Francisco Bay, releases in 

the supernatant an acidic exopolysaccharide. The polymer showed a tetramer made up of three units 

of the unusual 2,3-diacetamido-2,3-dideoxy-D-glucopyranosiduronic acid (GlcA2,3NAc) and one 

galactose (Table 3, Figure 4l) [178]. 

The hyperthermophilic Thermococcus litoralis was isolated from a shallow marine  

thermal spring near Naples, showing an optimal growth temperature of 88 °C. This bacterium 

produced an exopolysaccharide apparently containing only mannose as monosaccharide constituent 

(Table 3) [179]. 

4. Structure-function Relationships and Ecological Role 

Marine ecosystems host about the half of the photosynthetic biomass produced on  

the Earth [180]. All these microbial communities have a role in fundamental processes occurring in 

marine habitats, responding to environmental changes. Indeed, the climate change—associated shifts 

in temperature alter the carbon chemistry, the nutrient and the oxygen content and it causes tropical 

storms and alterations in ocean currents [181]. Since the exopolysaccharides give a huge contribute 

to biogeochemical cycling in the ocean [6], a deep insight into the ecological function of their 

production is demanding. Starting from the chemical characterization of these polymers, it might be 

possible to find relationships between the structures and the numerous functions attributed to them 

(Figure 5). 
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Figure 5. Schematic illustration of some EPS functions. 

Most of the exopolysaccharides showing emulsifying properties include deoxyhexoses, uronic 

acids and/or fatty acids in their composition (Tables 2 and 3). These features are shared with other 

polysaccharidic surfactants, such as Arabic gum, where a subtle balance among these residues is 

responsible for the molecular conformation and, as a consequence, for the activity [182]. It is 

noteworthy that, to be a good emulsifying agent, the inclusion of a protein moiety gives a clear-cut 

improvement to the quality of the emulsifier [182,183]. Therefore, the presence of proteins in most of 

the exopolysaccharides samples for which a good emulsifying activity has been reported, is not 

surprising [14]. 

Negative charges due to uronic acids and acidic substituents, such as phosphates, sulphates and 

pyruvates, account for the highest percentage of the isolated exopolymers (Tables 2 and 3).  

Such exopolysaccharides can be considered polyelectrolytes and therefore are able to  

form ion cross-linking that are continuously formed and broken, due to the low bond energy  

(20–40 kJ·mol−1) [6]. Na+ and Ca2+ ions are abundant in marine ecosystems, allowing the formation of 

cross-linking among EPS chains with the consequent formation of microscopic gels [184]. It has been 

proposed that such gels are refractory to degradation by bacteria and may constitute a network of 

nutrient “hot spots” [185]. Bacteria can then attach to gels, using hydrolytic enzymes to give a 

biochemical process for large scale transfer of organic matter from sinking aggregates to dissolved 

molecules [186]. 

Polyanionic EPS may also have a role in controlling Fe (III) bioavailability [187], thus suggesting 

a significant contribution to the marine organic ligand pool, including siderophores. Indeed, up to 

now, only few papers describe the quantification of siderophores concentration in  

the oceans [188–190]. Instead, it has been reported that the concentration of Fe-binding ligands 

associated with EPS compete with that of siderophores, being this last an order of magnitude lower 

than that reported for EPS [191]. Therefore, it is possible to speculate that most of the here reported 

EPS structures with a high content of uronic acids and/or negative charged groups (Tables 2 and 3) 

contribute to the biogeochemical iron cycle in marine environments. 

Capsular polysaccharides are frequently found to be involved in adhesion processes and several 

EPS/CPS included in this review are reported to be “sticky.” This property is useful for both 

colonization [108] and for microbial-host interaction [63,64,103]. There is a body of evidence that a 

huge number of marine microorganisms are able to form biofilms [8,192,193]. The presence and the 
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properties of biofilms are regulated by their components. Among these, EPS have a predominant role 

in forming a cohesive matrix where cells and other molecules are strictly associated. The colonization 

of the surfaces occurs through the biofilm formation, as in the case of Pseudomonas species S9, isolated 

from marine sediments, where cells grown in starvation of nutrients were able to enhance the 

production and the release of EPS. This result translated into a pronounced effect on the degree of 

adhesion and aggregation of the bacterial cells [142]. 

The prosthecate bacterium Hyphomonas VP-6 is able to produce two different polysaccharides 

both showing adhesive properties, of which one is a holdfast EPS while the second is a capsule [99]. 

It has been reported that both are acidic and this feature is responsible for the adhesion process. The 

structure of the EPS produced by Hyphomonas MHS-3 has not been determined yet, even if its 

involvement in adhesive function of this species has been extensively studied [96]. Unfortunately, for 

this interesting EPS, only recognition of GlcNAc presence with lectins binding has been reported, 

thus precluding, at least up to now, any possible structure-function relationship finding. 

Since the microbial secretion has been recognized relevant for the biogeochemical cycling in 

marine environments [11], the variations of the pH towards more acidic values in the oceans could 

also affect the EPSs production. However, it is not easy to understand the impact of the seawater 

acidity due to the CO2 absorption, because the ions composition and the physical conditions are too 

complex and variable. Nevertheless, reported data, exploiting the effects of the increased seawater 

acidity, have been obtained under controlled laboratory conditions. For example, it has been 

observed that the reduction of calcium carbonate affects shell-forming marine organisms [194] and 

the microbial-mediated carbon cycle [195]. Interestingly, it has also been reported that the ocean 

acidification stimulates the bacterial community, facilitating the microbial recycling [196]. Finally, an 

elevated pressure of CO2 has been reported to increase biofilms production as well as the amount of 

uronic acids in their composition [197]  

One example showing a close correlation between structure and a specific property of a marine 

bacterial polysaccharide, is the anti-freezing activity of EPS and CPS in Arctic and Antarctic  

bacteria [37,80]. The EPS and CPS presence in Arctic and Antarctic systems with cryoprotectant 

functions is well documented [20,37,80,112]. In particular, diatoms exopolysaccharides have been 

described also to attach to sea-ice interfaces and to contribute to the cells survival in  

sea-ice [20,198,199]. In addition, bacterial exopolysaccharides have been reported to show anti-freeze 

properties. Indeed, although proteins are by far the most famous polymers with ice-binding 

properties, very recently two different polysaccharides isolated from Colwellia psychrerythraea 34H 

endowed with anti-freeze activity have been fully described [37,80]. These two polysaccharides are 

characterized by the presence of amino acidic decoration: the CPS is constituted by a repetitive 

tetramer resembling glycosaminoglycans (repeating unit with alternating amino sugar and uronic 

acid), decorated with threonine, whereas the EPS displays a trisaccharidic repeating unit decorated 

with alanine. These unusual polysaccharides display ice-recrystallization inhibition activity, most 

probably due to the particular shapes they assume in solution. Indeed, molecular dynamic 

calculations suggested for the CPS a model displaying a “zigzag” arrangement with threonines 

occupying external positions, thus resembling some antifreeze glycoproteins (Figure 6a) [37]. As for 

the EPS, the calculations indicated a left-handed helix, stabilised by a series of inter-residue H-bond 

interactions. In addition, the calculated tetrahedral order parameter Qk, which measures the 

propensity of a particular water molecule and its four neighbouring molecules to adopt a tetrahedral 

arrangement, indicated no tetrahedral geometry of water molecules in the sugar cage formed around 

the quinovosamine residue (Figure 6b) [80].  
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Figure 6. Molecular modelling of Colwellia psychrerythraea 34H CPS (a) and EPS (b). 

Another marine bacterium producing cryoprotectant EPS probably decorated with amino acids 

is that from Pseudomonassp ID1 [145]. It suggests that Colwellia polysaccharides may be only two 

examples of a wider assortment of polymers endowed with ice-binding properties.  

5. Biotechnological Applications of Marine EPS  

Polysaccharides are used in several industrial fields, as thickeners, stabilisers and gelling  

agents in food products and as antitumoral, antioxidant and/or prebiotic in pharmacology [200].  

They derived from a variety of sources: bacteria, fungi, algae and plants. Despite all these sources, 

the world market is dominated by polysaccharides from algae [201], like carrageenans, agar  

and alginates [202,203] and from lactic acid bacteria, due to the high number of EPSs recovered after 

the extraction. 

In the last years, EPSs produced by marine bacteria have been attracted the interest of several 

researchers for their unique properties of considerable biotechnological importance and, therefore, 

of commercial significance. Currently, despite the vast number and biodiversity of the marine EPSs, 

these polymers represent only a small fraction of the current polymers market, due to the very low 

amount of purified polysaccharide obtained. Therefore, to achieve a larger amount to be 

commercialized is necessary to proceed with an enhancement of the production. Particularly, 

microbial polysaccharides production is greatly influenced by fermentation conditions. Indeed, the 

structure, the composition and the viscosity of EPSs depend on several factors, such as the 

composition of the culture medium, the sources of carbon and nitrogen and the precursor molecules, 

the mineral salts, trace elements, the type of the strain and the fermentation conditions such as pH, 

temperature, oxygen concentration and agitation [204]. In addition, engineering modifications of 

genes involved in the polysaccharide biosynthesis could also be convenient. 

During the last years, diverse marine microbial exopolysaccharides turned out to be promising 

candidates in biotechnology field. They span from the exopolysaccharides displaying biological 

activity, exploitable in the pharmaceutical and medical industry [84,100,103,115,122], with particular 

regard to the sulphated polysaccharides [63,64,114], to the emulsifier EPSs, that find application in 

the food, pharmaceutical, cosmetic and petroleum industries [72,86–88,119,126,127]. Furthermore, it 

is important to consider the applications of the cryoprotectant and anti-freezing EPSs in many 

industrial fields [37,40,80,100,107,108,116]. 

6. Conclusions  

From the above data, it is possible to highlight the difficulty to carry out an accurate structural 

determination of a polysaccharide, which is the preliminary step to establish a relationship with its 

properties and/or functions. The same study is not possible having only the glycosyl composition 

information, which, however, are useful to explain some properties. An interesting speculation 

arising from glycosyl composition regards the land plants grown in saline water. These plants 

produced polysaccharides containing negative charged groups, as carboxyl groups [205], when 

ba
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grown under salt-stress conditions. Strikingly, marine bacteria seem to have been chosen carboxyl 

groups, instead of sulphates of sea-weeds, to make their polysaccharides negatively charged, as it 

results by the common presence of uronic acids in marine EPSs. 

In our opinion, this review suggests to further investigate on the structural determination of 

exopolysaccharides from marine bacteria, both for potential biotechnological applications and to 

study in depth their biological functions in the biofilm formation. The high difficulty to make this 

work requires further developments in the polysaccharide purification techniques, microscopic 

analyses and more sensitive spectroscopic methods. Future developments could be related to the 

establishment of correlations between the regulation of the genes responsible of exopolysaccharide 

structures and the conditions of marine environments. 
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