Supplementary Materials

Angucycline Glycosides from an Intertidal Sediments Strain *Streptomyces* sp. and Their Cytotoxic Activity against Hepatoma Carcinoma Cells

Aihong Peng^{1,2}, Xinying Qu¹, Fangyuan Liu¹, Xia Li¹, Erwei Li^{2,*} and Weidong Xie^{1,*}

¹ Department of Pharmacy, College of Marine Science, Shandong University at Weihai, Weihai 264209, China; e-mails: pengahsdu@163.com (A.P.); quxinying321@163.com (X.Q.); fangyuan617@outlook.com (F.L.); xiali@sdu.edu.cn (X.L.)

² State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

* Correspondence: wdxie@sdu.edu.cn (W.X.); liew@im.ac.cn (E.L.); Tel.: +86-631-568-8303 (W.X.); +86-10-6480-6141 (E.L.)

Contents

Figure S1. HR-ESI-MS of saquayamycin B (4). **Figure S2**. ¹H-NMR spectrum (500 MHz, acetone- d_6) of saquayamycin B (4). **Figure S3**. ¹³C-NMR spectrum (125 MHz, acetone- d_6) of saquavamycin B (4). Figure S4. DEPT-135 spectrum (125 MHz, acetone-d₆) of saquayamycin B (4). Figure S5. HMQC spectrum (500 MHz, acetone- d_6) of saquayamycin B (4). Figure S6. HMBC spectrum (500 MHz, acetone- d_6) of saquayamycin B (4). **Figure S7**. ¹H-¹H COSY spectrum (500 MHz, acetone- d_6) of saquayamycin B (4). Figure S8. NOESY spectrum (500 MHz, acetone- d_6) of saquayamycin B (4). Figure S9. HR-ESI-MS of 1. **Figure S10**. ¹H-NMR spectrum (500 MHz, DMSO- d_6) of **1**. Figure S11. ¹³C-NMR (APT) spectrum (125 MHz, DMSO-d₆) of 1. Figure S12. HMQC spectrum (500 MHz, DMSO-d₆) of 1. Figure S13. HMBC spectrum (500 MHz, DMSO-d₆) of 1. Figure S14. 1 H- 1 H COSY spectrum (500 MHz, DMSO-d₆) of 1. Figure S15. NOESY spectrum (500 MHz, DMSO-d₆) of 1. Figure S16. HR-ESI-MS of 2. Figure S17. ¹H-NMR spectrum (500 MHz, DMSO-d₆) of 2. Figure S18. ¹³C-NMR (APT) spectrum (125 MHz, DMSO-d₆) of 2. Figure S19. HMQC spectrum (500 MHz, DMSO-d₆) of 2. Figure S20. HMBC spectrum (500 MHz, DMSO-d₆) of 2. Figure S21. 1 H- 1 H COSY spectrum (500 MHz, DMSO-d₆) of 2. Figure S22. NOESY spectrum (500 MHz, DMSO-d₆) of 2. Figure S23. HR-ESI-MS of 3. **Figure S24**. ¹H-NMR spectrum (500 MHz, acetone-d₆) of **3**. Figure S25. ¹³C-NMR (APT) spectrum (125 MHz, acetone- d_6) of 3. Figure S26. HMQC spectrum (500 MHz, acetone-d₆) of **3**. Figure S27. HMBC spectrum (500 MHz, acetone-d₆) of **3**. Figure S28. 1 H- 1 H COSY spectrum (500 MHz, acetone-d₆) of **3**.

Figure S29. NOESY spectrum (500 MHz, acetone-d₆) of 3.

Figure S1. HR-ESI-MS of saquayamycin B (4).

Figure S2. ¹H-NMR spectrum (500 MHz, acetone- d_6) of saquayamycin B (4).

Figure S3. ¹³C-NMR spectrum (125 MHz, acetone- d_6) of saquayamycin B (4).

Figure S4. DEPT-135 spectrum (125 MHz, acetone-d₆) of saquayamycin B (4).

Figure S5. HMQC spectrum (500 MHz, acetone-d₆) of saquayamycin B (4).

Figure S6. HMBC spectrum (500 MHz, acetone-d₆) of saquayamycin B (**4**).

Figure S7. ¹H-¹H COSY spectrum (500 MHz, acetone-d₆) of saquayamycin B (**4**).

Figure S8. NOESY spectrum (500 MHz, acetone-d₆) of saquayamycin B (4).

Figure S9. HR-ESI-MS of 1.

Figure S10. ¹H-NMR spectrum (500 MHz, DMSO-d₆) of **1**.

Figure S12. HMQC spectrum (500 MHz, DMSO-d₆) of 1.

Figure S13. HMBC spectrum (500 MHz, DMSO-d₆) of 1.

Figure S14. 1 H- 1 H COSY spectrum (500 MHz, DMSO-d₆) of **1**.

Figure S15. NOESY spectrum (500 MHz, DMSO-d₆) of 1.

Figure S16. HR-ESI-MS of 2.

Figure S18. ¹³C-NMR (APT) spectrum (125 MHz, DMSO-d₆) of 2.

Figure S19. HMQC spectrum (500 MHz, DMSO-d₆) of 2.

Figure S20. HMBC spectrum (500 MHz, DMSO-d₆) of 2.

Figure S21. 1 H- 1 H COSY spectrum (500 MHz, DMSO-d₆) of **2**.

Figure S22. NOESY spectrum (500 MHz, DMSO-d₆) of 2.

Figure S23. HR-ESI-MS of 3.

Figure S24. ¹H-NMR spectrum (500 MHz, acetone-d₆) of **3**.

Figure S25. ¹³C-NMR (APT) spectrum (125 MHz, acetone-d₆) of **3**.

Figure S26. HMQC spectrum (500 MHz, acetone-d₆) of 3.

Figure S27. HMBC spectrum (500 MHz, acetone-d₆) of **3**.

Figure S28. 1 H- 1 H COSY spectrum (500 MHz, acetone-d₆) of **3**.

Figure S29. NOESY spectrum (500 MHz, acetone- d_6) of **3**.