Peniginsengins B–E, New Farnesylcyclohexenones from the Deep Sea-Derived Fungus *Penicillium* sp. YPGA11

Zhongbin Cheng ^{1,4,†}, Wei Xu ^{2,†}, Lijun Liu ¹, Shumin Li ¹, Wangjun Yuan ^{1,3}, Zhuhua Luo ², Jingjie Zhang ¹, Yongjun Cheng ¹, and Qin Li ^{1,3,*}

- ¹ College of Pharmacy, Henan University, Kaifeng 475004, China; czb360@126.com (Z.C.); 15736871748@163.com (L.L.); lishumin417@163.com (S.L.); yuanwangjun@henu.edu.cn (W.Y.); zhang521571@163.com (J.Z.); chyj15926@163.com (Y.C.)
- ² Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; xuwei@tio.org.cn (W.X.); luozhuhua@tio.org.cn (Z.L.)
- ³ Eucommia Ulmoides Cultivation and Utilization of Henan Engineering Laboratory, Kaifeng 475004, China
- ⁴ College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
- * Correspondence: liqin6006@163.com (Q.L.); Tel.: +86-371-2388-3849
- + These authors contributed equally to this work.

Abstract: Chemical examination of the EtOAc extract of the deep sea-derived fungus *Penicillium* sp. YPGA11 resulted in the isolation of four new farnesylcyclohexenones, peniginsengins B–E (**1**–**4**), and a known analog peniginsengin A (**5**). The structures of compounds **1**–**4** were determined on the basis of comprehensive analyses of the nuclear magnetic resonance (NMR) and mass spectroscopy (MS) data, and the absolute configurations of **1**, **2**, and **4** were determined by comparisons of experimental electronic circular dichroism (ECD) with calculated ECD spectra. Compounds **1**–**5**, characterized by a highly oxygenated 1-methylcyclohexene unit and a (4*E*,8*E*)-**4**,8-dimethyldeca-**4**,8-dienoic acid side chain, are rarely found in nature. Compounds **2**–**4** exhibited antibacterial activity against *Staphylococcus aureus*.

Keywords: Penicillium sp.; deep sea-derived fungus; farnesylcyclohexenones; antibacterial

Content

Figure S1	¹ H NMR Spectrum of 1 in DMSO- d_6 (400 MHz)1		
Figure S2	¹³ C NMR Spectrum of 1 in DMSO- d_6 (100 MHz)1		
Figure S3	HSQC Spectrum of 1 in DMSO- d_6 (400 MHz)2		
Figure S4	¹ H- ¹ H COSY Spectrum of 1 in DMSO- d_6 (400 MHz)2		
Figure S5	HMBC Spectrum of 1 in DMSO- d_6 (400 MHz)		
Figure S6	NOESY Spectrum of 1 in DMSO- d_6 (400 MHz)		
Figure S7	¹ H NMR Spectrum of 2 in Methanol- d_4 (600 MHz)		
Figure S8	¹³ C NMR Spectrum of 2 in Methanol- d_4 (150 MHz)4		
Figure S9	HSQC Spectrum of 2 in Methanol- d_4 (600 MHz)		
Figure S10	¹ H- ¹ H COSY Spectrum of 2 in Methanol- d_4 (600 MHz)		
Figure S11	HMBC Spectrum of 2 in Methanol- d_4 (600 MHz)		
Figure S12	NOESY Spectrum of 2 in Methanol- d_4 (600 MHz)		
Figure S13	¹ H NMR Spectrum of 3 in Methanol- d_4 (600 MHz)7		
Figure S14	¹³ C NMR Spectrum of 3 in Methanol- d_4 (150 MHz)7		
Figure S15	HSQC Spectrum of 3 in Methanol- d_4 (600 MHz)		
Figure S16	¹ H- ¹ H COSY Spectrum of 3 in Methanol- d_4 (600 MHz)		
Figure S17	HMBC Spectrum of 3 in Methanol- <i>d</i> ₄ (600 MHz)9		
Figure S18	NOESY Spectrum of 3 in Methanol- d_4 (600 MHz)9		
Figure S19	¹ H NMR Spectrum of 4 in Methanol- d_4 (600 MHz)10		
Figure S20	¹³ C NMR Spectrum of 4 in Methanol- d_4 (150 MHz)10		
Figure S21	HSQC Spectrum of 4 in Methanol- <i>d</i> ₄ (600 MHz)11		

Figure S22	¹ H- ¹ H COSY Spectrum of 4 in Methanol- d_4 (600 MHz)11	
Figure S23	HMBC Spectrum of 4 in Methanol- <i>d</i> ₄ (600 MHz)	12
Figure S24	NOESY Spectrum of 4 in Methanol- d_4 (600 MHz)	12
Figure S25	HRESIMS spectra of 1	13
Figure S26	HRESIMS spectra of 2	13
Figure S27	HRESIMS spectra of 3	14
Figure S28	HRESIMS spectra of 4	14
Tables S1	NMR data of 3 in DMSO- d_6	15

Figure S2. ¹³C NMR Spectrum of 1 in DMSO- d_6 (100 MHz).

Figure S6. NOESY Spectrum of 1 in DMSO-*d*₆ (400 MHz)

Figure S8. ¹³C NMR Spectrum of 2 in Methanol-*d*₄ (150 MHz).

Figure S9. HSQC Spectrum of 2 in Methanol- d_4 (600 MHz).

Figure S10. COSY Spectrum of 2 in Methanol-*d*₄ (600 MHz).

Figure S12. NOESY Spectrum of 2 in Methanol-*d*₄ (600 MHz).

Figure S13. ¹H NMR Spectrum of **3** in Methanol- d_4 (600 MHz).

Figure S14. ¹³C NMR Spectrum of 3 in Methanol- d_4 (150 MHz).

Figure S15. HSQC Spectrum of 3 in Methanol-*d*₄ (600 MHz).

Figure S16. COSY Spectrum of 3 in Methanol-*d*₄ (600 MHz).

Figure S17. HMBC Spectrum of 3 in Methanol-*d*₄ (600 MHz).

Figure S18. NOESY Spectrum of 3 in Methanol-*d*₄ (600 MHz).

Figure S20. ¹³C NMR Spectrum of 4 in Methanol-*d*₄ (150 MHz).

Figure S21. HSQC Spectrum of 4 in Methanol-*d*₄ (600 MHz).

Figure S22. COSY Spectrum of 4 in Methanol-*d*₄ (600 MHz).

Figure S24. NOESY Spectrum of 4 in Methanol-*d*₄ (600 MHz).

Figure S25. HRESIMS spectrum of 1

Figure S26. HRESIMS spectrum of 2

Figure S28. HRESIMS spectrum of 4

	3		
NO.	$\delta_{ m H}{}^a$	$\delta_{\mathrm{C}}{}^{b}$	
1	4.05, m	65.2, CH	
2		62.0, C	
3	3.13, d (2.3)	59.4, CH	
4	4.07, d (2.3)	66.2, CH	
5		132.8, C	
6	5.07, m	123.9, CH	
7	1.62, s	15.5, CH ₃	
17	2.77, d (14.4, 8.7)	30.7, CH ₂	
1	2.01, d (14.4, 8.7)		
2'	5.07, m	118.8, CH	
3'		137.4, C	
4′	1.97, m	39.2, CH ₂	
5'	2.04, m	25.9, CH ₂	
6'	5.07, m	124.0, CH	
7′		133.7, C	
8'	2.14, m	34.2, CH ₂	
9′	2.25, m	32.7, CH ₂	
10'		174.2, C	
11′	1.55, s	15.9, CH ₃	
12'	1.60, s	16.1, CH ₃	

Table S1. ¹H and ¹³C NMR Data of Compounds 3 in DMSO-*d*₆

^a Recorded at 400 MHz, ^b Recorded at 100 MHz, chemical shifts are in ppm, coupling constants J is in Hz.