

Supplementary Materials

Anti-Phytopathogenic and Cytotoxic Activities of Crude Extracts and Secondary Metabolites of Marine-Derived Fungi

Dong-Lin Zhao ^{1,†}, Dan Wang ^{1,†}, Xue-Ying Tian ¹, Fei Cao ², Yi-Qiang Li ^{1,*} and Cheng-Sheng Zhang ^{1,*}

- ¹ Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; zhaodonglin@caas.cn (D.-L.Z.); zihuafenglin@163.com (D.W.); dongqingyuxue@163.com (X.-Y.T.)
- ² College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China; caofei542927001@163.com
- * Correspondence: liyiqiang@caas.cn (Y.-Q.L.); zhchengsheng@126.com (C.-S.Z.); Tel.: +86-0532-6671-5517 (Y.-Q.L.); +86-0532-8870-2115 (C.-S.Z.)
- ⁺ These authors contributed equally to this work.

Received: 30 November 2017; Accepted: 15 January 2018; Published: date

List of Supplementary Materials

 Table S1. Identification and phylogenetic affiliations of the isolated marine-derived fungal

 strains

Figure S1. Effect of alterperylenol (4) on C. michiganensis cell growth

Figure S2. TEM images of C. michiganensis

Figure S3. Effect of alterperylenol (4) on the membrane potential of C. michiganensis

Figure S4. 1H NMR (500 MHz, DMSO-d6) spectrum of compound 1

Figure S5. ¹³C NMR (125 MHz, DMSO-d6) spectrum of compound 1

Figure S6. HRESIMS spectrum of compound 1

Figure S7.¹H NMR (500 MHz, DMSO-d₆) spectrum of compound 2

Figure S8. ¹³C NMR (125 MHz, DMSO-d₆) spectrum of compound 2

Figure S9. 1H NMR (500 MHz, acetone-d₆) spectrum of compound 3

Figure S10. ¹³C NMR (125 MHz, acetone-d₆) spectrum of compound 3

Figure S11. 1H NMR (500 MHz, acetone-d₆) spectrum of compound 4

Figure S12. ¹³C NMR (125 MHz, acetone-d₆) spectrum of compound 4

Figure S13. Lowest energy conformers

Strain	Closest identified relative	Accession number	Similarity (%)	Seq. Length (bp)	Overlap (bp)
P1	Alternaria tenuissima	MF356594	99	568	563
P2	Alternaria porri	MF356600	99	568	564
P3	Alternaria mali	MF356576	99	565	561
P4	Alternaria brassicae	MF356574	99	568	566
P5	Alternaria brassicae	MF356599	100	566	563
P6	Alternaria brassicae	MF356589	99	563	559
P7	Alternaria alternata	MF356593	99	555	555
P8	Alternaria sp.	KY945340	99	574	570
P9	Alternaria sp.	MF356588	99	557	553
P10	Alternaria sp.	MF356598	99	576	573
P11	Fusarium oxysporum	MF356597	100	535	534
P12	Fusarium oxysporum	MF356591	100	523	523
P13	Fusarium oxysporum	MF356595	100	515	515
P14	Fusarium oxysporum	KY945341	99	539	534
P15	Fusarium fujikuroi	MF356596	100	544	544
P16	Fusarium incarnatum	MF356578	100	549	545
P17	Fusarium solani	MF356592	100	570	551
P18	Fusarium equiseti	KY945342	100	529	529
P19	Penicillium oxalicum	KY945343	100	521	521
P20	Penicillium chrysogenum	MF356580	99	699	695
P21	Nigrospora oryzae	MF356577	99	532	528
P22	Nigrospora sp.	MF356575	99	530	528
P23	Nigrospora sp.	MF356601	99	554	545
P24	Nigrospora sp.	MF356586	100	544	540
P25	Mucor irregularis	MF356572	99	626	623
P26	Mucor racemosus	MF356581	99	601	600
P27	Mucor circinelloides	MF356573	100	617	617
P28	Diaporthe infecunda	MF356587	99	568	545
P29	Diaporthe goulteri	MF356582	100	536	536
P30	Marasmiellus sp.	MF356590	98	668	656
P31	Phomopsis sp.	MF356579	98	572	551

Table S1. Identification and phylogenetic affiliations of the isolated marine-derived fungal strains.

Figure S1. Effect of alterperylenol (4) on C. michiganensis cell growth

Figure S2. TEM images of *C. michiganensis* (a) bacteria treated with alterperylenol (4) at concentration of 4×MIC for 12 h; (b) untreated bacteria

Figure S3. Effect of alterperylenol (4) on the membrane potential of C. michiganensis

Figure S4. ¹H NMR (500 MHz, DMSO) spectrum of compound 1

Figure S5. ¹³C NMR (125 MHz, DMSO) spectrum of compound 1

Figure S6. HRESIMS spectrum of compound 1

Figure S7. ¹H NMR (500 MHz, DMSO) spectrum of compound 2

Figure S8. ¹³C NMR (125 MHz, DMSO) spectrum of compound 2

Figure S12. ¹³C NMR (125 MHz, acetone-d₆) spectrum of compound 4

Figure S13. Lowest energy conformers, G (B3LYP/6-311++G(2d,p) energy)