Bacillibactin and Bacillomycin Analogues with Cytotoxicities against Human Cancer Cell Lines from Marine *Bacillus* sp. PKU-MA00093 and PKU-MA00092

Mengjie Zhou, Fawang Liu, Xiaoyan Yang, Jing Jin, Xin Dong, Ke-Wu Zeng, Dong Liu,

Yingtao Zhang, Ming Ma* and Donghui Yang*

State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines,

School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District,

Beijing 100191, China.

Mengjie Zhou and Fawang Liu contributed equally

*Correspondence: mma@bjmu.edu.cn; ydhui@bjmu.edu.cn

Supplementary Informations (SI)

Table S1. The homologues of the 21 "positive" strains and their PCR products.	S3
Table S2. The ¹ H and ¹³ C NMR data of compounds 3 and 4 in DMSO- d_6 .	S4
Table S3. The ¹ H and ¹³ C NMR data of compound 5 in pyridine- d_5 .	S5
Table S4. The ¹ H and ¹³ C NMR data of compound 6 in pyridine- d_5 .	S6
Table S5. The ¹ H and ¹³ C NMR data of compound 7 in pyridine- d_5 .	S7
Table S6. The ¹ H and ¹³ C NMR data of compound 8 in pyridine- d_5 .	S8
Table S7. The ¹ H and ¹³ C NMR data of compound 9 in pyridine- d_5 .	S9
Table S8. The 1 H NMR data of compound 10 in pyridine- d_{5} .	S10
Figure S1. Nonribosomal peptides from marine-derived <i>Bacillus</i> species.	S11
Figure S2. The agarose gel electrophoresis analysis of the 21 "positive" PCR products.	S12
Figure S3. The phylogenetic analysis of strains PKU-MA00092 and PKU-MA00093.	S13
Figure S4-S10. The ¹ H NMR, COSY, ¹³ C NMR, HSQC, HMBC, HRESIMS and	
IR spectra of compound 1.	S14-20
Figure S11. The MS/MS analysis of compound 1.	S21
Figure S12-18. The ¹ H NMR, COSY, APT, HSQC, HMBC, HRESIMS and IR	
spectra of compound 2.	S22-28
Figure S19. The MS/MS analysis of compound 2.	S29
Figure S20-23. The ¹ H NMR, APT, HMBC, HRESIMS spectra of compound 3.	S30-33
Figure S24-26. The ¹ H NMR, ¹³ C NMR, HRESIMS spectra of compound 4.	S34-36
Figure S27-33. The ¹ H NMR, COSY, ¹³ C NMR, HSQC, HMBC, ROSEY and	
HRESIMS spectra of compound 5.	S37-43
Figure S34-36. The ¹ H NMR, ¹³ C NMR, HRESIMS spectra of compound 6.	S44-46
Figure S37-39. The ¹ H NMR, ¹³ C NMR, HRESIMS spectra of compound 7.	S47-49
Figure S40-42. The ¹ H NMR, ¹³ C NMR, ESIMS spectra of compound 8.	S50-52
Figure S43-45. The ¹ H NMR, ¹³ C NMR, ESIMS spectra of compound 9.	S53-55
Figure S46-48. The ¹ H NMR, COSY, ESIMS spectra of compound 10.	S56-58
Figure S49. The Marfey's analysis of compound 5.	S59

Table S1. The homologues of the 21 "positive" strains based on 16S rRNA comparison, and the homologues of their PCR products. The right three columns show the identities of the highest homologues with the PCR products, the accession numbers of the highest homologues of the PCR products and the predicted amino acid substrates (the numbers in parentheses show the percentage identities with nearest signatures) of the A domains by using the web server NRPSpredictor2 [1], respectively.

Positive strains	Closest relatives by blastn	Homologues of PCR products	Identities	Accession numbers	Predicted amino acids
PKU-MA00072	Bacillus licheniformis	NRPS [Bacillus licheniformis]	96%	EHK82944.1	Leu (90%)
PKU-MA00082	Rhodococcus pyridinivorans	NRPS [Rhodococcus sp.]	96%	WP_052227234	Phe (60%)
PKU-MA00090	Bacillus licheniformis	NRPS [Bacillus licheniformis]	99%	WP_044789674.1	Leu (90%)
PKU-MA00091	Bacillus paralicheniformis	NRPS [Bacillus licheniformis]	96%	AAD32132.1	Asp (90%)
PKU-MA00092	Bacillus velezensis	NRPS [Bacillus amyloliquefaciens]	97%	WP_060675312.1	Glu (90%)
PKU-MA00093	Bacillus endophyticus	NRPS [Bacillus licheniformis]	99%	WP_011197536.1	Leu (90%)
PKU-MA00095	Bacillus sonorensis	NRPS [Bacillus licheniformis]	96%	WP_044789674.1	Leu (90%)
PKU-MA00096	Bacillus sonorensis	NRPS [Bacillus licheniformis]	96%	WP_044789674.1	Leu (90%)
PKU-MA00103	Bacillus licheniformis	NRPS [Bacillus licheniformis]	96%	WP_044789674.1	Leu (90%)
PKU-MA00110	Bacillus sonorensis	NRPS [Bacillus paralicheniformis]	96%	WP_059231730.1	Asp (90%)
PKU-MA00117	Rhodococcus pyridinivorans	NRPS [Rhodococcus sp.]	98%	WP_033096084.1	Thr (90%)
PKU-MA00125	Bacillus licheniformis	NRPS [Bacillus paralicheniformis]	91%	WP_059231730.1	Asp (90%)
PKU-MA00147	Bacillus licheniformis	NRPS [Bacillus licheniformis]	96%	WP_044789674.1	Leu (90%)
PKU-MA00149	Rhodococcus pyridinivorans	NRPS [Rhodococcus pyridinivorans]	96%	WP_006553896.1	Orn (90%)
PKU-MA00152	Rhodococcus pyridinivorans	NRPS [Rhodococcus pyridinivorans]	99%	WP_006554805.1	Phe (50%)
PKU-MA00156	Bacillus oceani strain	NRPS [Rhodococcus sp.]	99%	WP_037218052.1	Phe (60%)
PKU-MA00173	Streptomyces sedi strain	NRPS [Micromonospora sp.]	98%	EEP74799.1	Cys (50%)
PKU-MA00181	Nocardiopsis dassonvillei	NRPS [Bacillus licheniformis]	99%	WP_044789674.1	Leu (90%)
PKU-MA00183	Brevibacillus parabrevis	NRPS [Brevibacillus sp.]	96%	WP_007729123.1	Leu (80%)
PKU-MA00191	Mycobacterium neoaurum	NRPS [Mycobacterium sp.]	82%	WP_057167572.1	Alaninol (80%)
PKU-MA00197	Bacillus licheniformis	NRPS [Rhodococcus rhodochrous]	86%	WP_016693962.1	Gln (60%)

1. Rottig, M.; Medema M.H.; Blin, K.; Weber, T.; Rausch, C.; Kohlbacher, O. NRPSpredictor2--a web server for predicting NRPS adenylation domain specificity. *Nucleic. Acids Res.* 2011, *39*, W362-367.

	3		_	4	
position	$\delta_{ m H},$ mult.(J in Hz)	$\delta_{ m C}$ type	position	$\delta_{ m H}$, mult.(J in Hz)	$\delta_{ m C}$ type
1, 1', 1"		168.4, C	1		168.6, C
2, 2', 2"	4.59,br s	56.6, CH	2	4.10, br s	57.5, CH
3, 3', 3"	5.31, d (6.8)	70.8, CH	3	4.20, d (6.0)	66.2, CH
4, 4', 4"	1.18, d (6.1)	16.5, CH ₃	4	1.04, d (6.3)	20.1, CH ₃
5, 5', 5"		169.8, C	5		172.0, C
6, 6', 6"	4.28, d (13.6)	42.5, CH ₂	6	4.00, d (3.7)	42.1, CH ₂
	4.05, m				
7, 7', 7"		169.3, C	7		169.6, C
8, 8', 8"		115.7, C	8		115.2, C
9, 9', 9"		148.5, C	9		149.4, C
10, 10', 10"		146.1, C	10		146.2, C
11, 11', 11"	6.93, d (7.8)	118.8, CH	11	6.93, d (8.3)	118.8, CH
12, 12', 12"	6.70, t (7.8)	118.2, CH	12	6.70, t (8.3)	118.0, CH
13, 13', 13"	7.33, d (7.8)	118.0, CH	13	7.31, d (8.3)	117.6, CH
2, 2', 2"-NH	8.31, br s		2-NH	7.86, d (8.3)	
6, 6', 6"-NH	9.18, br s		6-NH	9.09, m	
9, 9', 9"-OH	11.97, br s				
10, 10', 10"-OH	9.31, br s				

Table S2. The ¹H (400 MH_Z) and ¹³C NMR (100 MH_Z) data of compounds 3 and 4 in DMSO- d_6 .

				5			_	
position	$\delta_{ m H}$, mult.(J in Hz)	$\delta_{\rm C}$, type	position	$\delta_{ m H}$, mult.(J in Hz)	$\delta_{\rm C}$, type	position	$\delta_{ m H}$, mult.(J in Hz)) $\delta_{\rm C}$, type
L-Asn-1			14-NH	8.90, br s		31	4.83 ^c , m	59.7, CH
1	5.27, m	53.1, CH	16-NH ₂	8.51, br s; 7.88, br s		32	4.97, m	66.5, CH
2	3.04 ^{<i>a</i>} , m; 3.02 ^{<i>a</i>} , m	37.5, CH ₂	L-Pro			33	1.35 ^{<i>d</i>} , m	21.2, CH ₃
3		172.0, C	18	4.73, t (6.6)	62.6, CH	34		171.4, CH
4		174.0, C	19	2.12, m; 2.11, m	30.1 ^b , CH ₂	31-NH	8.09, d (8.6)	
1-NH	8.90, br s		20	1.88, m; 1.69, m	25.3, CH ₂	D-β-AA		
3-NH ₂	8.32, br s; 7.82, br s		21	4.25, m; 4.06, m	48.9, CH ₂	35		173.0, C
D-Tyr			22		172.7, C	36	2.63, m; 2.43, m	42.2, CH ₂
5	5.33, m	56.2, CH	L-Glu			37	4.62, m	47.8, CH
6	3.71, dd (4.5, 14.0); 3.38, m	36.8, CH ₂	23	4.86 ^c , m	55.6, CH	38	1.59, m; 1.51, m	36.0, CH ₂
7		129.0, C	24	2.81, m; 2.66, m	28.2, CH ₂	39	1.34 ^{<i>d</i>} , m	$26.4,\mathrm{CH}_2$
8,12	7.50, d (8.0)	131.7, CH	25	3.00 ^{<i>a</i>} , m; 2.98 ^{<i>a</i>} , m	32.4, CH ₂	40	1.19-1.16 ^e	29.91 ^b , CH ₂
9, 11	7.09, d (8.0)	116.5, CH	26		174.1, C	41	1.19-1.16 ^e	29.94 ^b , CH ₂
10		157.8, C	27		173.6, C	42	1.19-1.16 ^e	30.18 ^b , CH ₂
13		173.1,C	23-NH	8.26, br s		43	1.19-1.16 ^e	30.20 ^b , CH ₂
5-NH	9.64, br s		D-Ser			44	1.19-1.16 ^e	30.22 ^b , CH ₂
D-Asn-2			28	4.89 ^c , m	58.4, CH	45	1.19-1.16 ^e	30.24 ^b , CH ₂
14	5.41, m	50.6, CH	29	4.36, m	63.9, CH ₂	46	1.19-1.16 ^e	32.4, CH ₂
15	3.59, m; 3.19, dd (4.6, 15.2)	38.2, CH ₂	30		172.0, C	47	1.24, m	23.2, CH ₂
16		173.0, C	28-NH	8.80, br s		48	0.85, t (6.7)	14.6, CH ₃
17		172.8, C	L-Thr			37-NH	8.04, d (9.2)	

Table S3. The ¹H (400 MH_Z) and ¹³C NMR (100 MH_Z) data of compound **5** in pyridine- d_5 .

a, c, d, e Overlapped. ^bAssignments may be interchanged.

				6			_	
position	$\delta_{ m H}$, mult.(J in Hz)	$\delta_{\rm C}$, type	position	$\delta_{ m H}$, mult.(J in Hz)	$\delta_{\rm C}$, type	position	$\delta_{ m H}$, mult.(J in Hz)	$\delta_{\rm C}$, type
L-Asn-1			16-NH ₂	8.87 ^{<i>d</i>} , br s; 7.92, br s		33	1.36 ^{<i>i</i>} , d (5.8)	21.1, CH ₃
1	5.31 ^{<i>a</i>} , m	53.3, CH	L-Pro			34		172.1°, CH
2	3.07 ^b , m; 3.03 ^b , m	37.5, CH ₂	18	4.75, t (6.7)	62.4, CH	31-NH	8.43 ^{<i>d</i>} , br s	
3		173.5 ^c , C	19	2.12, m; 2.10, m	30.2 ^{<i>f</i>} , CH ₂	D-β-AA		
4		172.8 ^c , C	20	1.86, m; 1.64 ^g , m	25.3, CH ₂	35		173.2 ^c , C
1-NH	8.97 ^{<i>d</i>} , br s		21	4.26, m; 4.05, m	48.9, CH ₂	36	2.65, m; 2.54, m	$42.5,\mathrm{CH}_2$
3-NH ₂	8.58 ^{<i>d</i>} , br s; 7.87, br s		22		172.1°, C	37	4.64, m	47.9, CH
D-Tyr			L-Glu			38	1.64 ^g , m; 1.47 ^j , m	36.1, CH ₂
5	5.31 ^{<i>a</i>} , m	56.3, CH	23	4.94 ^{<i>h</i>} , m	55.8, CH	39	1.34 ^{<i>i</i>} , m	26.4, CH ₂
6	3.76, m; 3.48, m	36.7, CH ₂	24	2.80, m; 2.69, m	28.0, CH ₂	40	1.19-1.16 ^k	29.9 ^{<i>f</i>} , CH ₂
7		129.2, C	25	3.15 ^e , m; 2.98 ^b , m	32.4, CH ₂	41	1.19-1.16 ^k	30.2 ^{<i>f</i>} , CH ₂
8, 12	7.51, d (7.7)	131.6, CH	26		175.8, C	42	1.19-1.16 ^k	30.2 ^{<i>f</i>} , CH ₂
9, 11	7.09, d (7.7)	116.5, CH	27		171.5, C	43	1.19-1.16 ^k	30.3 ^{<i>f</i>} , CH ₂
10		157.8, C	23-NH	8.20 ^{<i>d</i>} , br s		44	1.19-1.16 ^k	30.3 ^{<i>f</i>} , CH ₂
13		173.9 ^c , C	D-Ser			45	1.19-1.16 ^k	30.5 ^{<i>f</i>} , CH ₂
5-NH	9.59, br s		28	4.98 ^{<i>h</i>} , m	58.3, CH	46	1.19-1.16 ^k	39.6, CH ₂
D-Asn-2			29	4.42, m; 4.36, m	63.9, CH ₂	47	1.47 ^{<i>j</i>} , m	28.5, CH
14	5.52, m	50.4, CH	30		173.8 ^c , C	48	0.84, d (6.3)	23.1, CH ₃
15	3.63, m; 3.19 ^e , m	38.3, CH ₂	28-NH	8.87 ^{<i>d</i>} , br s		49	0.84, d (6.3)	23.1, CH ₃
16		173.5 ^c , C	L-Thr			37-NH	8.15 ^{<i>d</i>} , br s	
17		172.9 ^c , C	31	4.93 ^{<i>h</i>} , m	59.7, CH			
14-NH	9.22 ^{<i>d</i>} , br s		32	4.98 ^{<i>h</i>} , m	66.7, CH			

Table S4. The ¹H (400 MH_z) and ¹³C NMR (100 MH_z) data of compound **6** in pyridine- d_{5} .

a, b, e, g, h, i, j, kOverlapped. c, d, f Assignments may be interchanged.

				7			_	
position	$\delta_{ m H}$, mult.(J in Hz)	$\delta_{\rm C}$, type	position	$\delta_{ m H}$, mult.(J in Hz)	$\delta_{\rm C}$, type	position	$\delta_{ m H}$, mult.(<i>J</i> in Hz)	δ_{C} , type
L-Asn-1			16-NH ₂	8.39, br s; 7.90, br s		33	1.35 ^g , m	21.1, CH ₃
1	5.30 ^{<i>a</i>} , m	53.1, CH	L-Pro			34		172.0, CH
2	3.06 ^b , m; 3.02 ^b , m	37.5, CH ₂	18	4.73, m	62.5, CH	31-NH	8.39, br s	
3		173.2, C	19	2.12, m	30.1 ^c , CH ₂	D-β-AA		
4		172.89, C	20	1.88, m; 1.66 ^d , m	$25.3, \mathrm{CH}_2$	35		173.2, C
1-NH	8.99, br s		21	4.23, m; 4.04, m	48.9, CH ₂	36	2.64 ^f , m; 2.44, m	42.2, CH ₂
3-NH ₂	8.56, br s; 7.85, br s		22		172.8, C	37	4.62, m	47.8, CH
D-Tyr			L-Glu			38	1.66 ^d , m; 1.47 ^h , m	35.9, CH ₂
5	5.31 ^{<i>a</i>} , m	56.2, CH	23	4.87 ^e , m	55.6, CH	39	1.34 ^{<i>g</i>} , m	26.4, CH ₂
6	3.72, m; 3.39, m	36.8, CH ₂	24	2.80, m; 2.67 ^f , m	28.1, CH ₂	40	1.21-1.15 ^{<i>i</i>}	29.9 ^c , CH ₂
7		129.0, C	25	3.00 ^b , m; 2.97 ^b , m	$32.0,\mathrm{CH}_2$	41	1.21-1.15 ⁱ	30.0°, CH ₂
8, 12	7.49, d (7.4)	131.6, CH	26		175.9, C	42	1.21-1.15 ⁱ	30.1°, CH ₂
9, 11	7.08, d (7.4)	116.4, CH	27		171.5, C	43	1.21-1.15 ⁱ	30.1°, CH ₂
10		157.8, C	23-NH	8.11,br s		44	1.21-1.15 ⁱ	30.2 ^c , CH ₂
13		174.0, C	D-Ser			45	1.21-1.15 ⁱ	30.2°, CH ₂
5-NH	9.66, br s		28	4.88 ^e , m	58.3, CH	46	1.21-1.15 ⁱ	30.2 ^c , CH ₂
D-Asn-2			29	4.37, m	$63.8, \mathrm{CH}_2$	47	1.21-1.15 ⁱ	30.6°, CH ₂
14	5.42, m	50.6, CH	30		174.0,C	48	1.45 ^{<i>h</i>} , m	23.2, CH ₂
15	3.56, m; 3.21, m	38.2, CH ₂	28-NH	8.78,br s		49	0.88, t (7.4)	14.4, CH ₃
16		173.5, C	L-Thr			37-NH	8.11, br s	
17		172.93,C	31	4.85 ^e , m	59.7, CH			
14-NH	8.92, br s		32	4.96, m	66.5, CH			

Table S5. The ¹H (400 MH_z) and ¹³C NMR (100 MH_z) data of compound 7 in pyridine- $d_{5.}$

a,*b*,*c*, *d*, *e*, *f*, *g*, *h*, *i* Overlapped. ^{*c*} Assignments may be interchanged.

				8			_	
position	$\delta_{ m H}$, mult.(J in Hz)	$\delta_{\rm C}$, type	position	δ_{H} , mult.(J in Hz)	$\delta_{\rm C}$, type	position	$\delta_{ m H}$, mult.(J in Hz)	$\delta_{\rm C}$, type
L-Asn-1			16-NH ₂	8.60 ^{<i>d</i>} , br s; 7.94, br s		33	1.37 ^{<i>i</i>} , m	21.0, CH ₃
1	5.32 ^{<i>a</i>} , m	53.2, CH	L-Pro			34		171.5°, CH
2	3.14 ^b , m; 3.10 ^b , m	37.2, CH ₂	18	4.75, t (6.6)	62.3, CH	31-NH	8.60 ^{<i>d</i>} , br s	
3		173.36°, C	19	2.11, m	30.16 ^e , CH ₂	D-β-AA		
4		172.2 ^c , C	20	1.87, m; 1.63 ^f , m	25.4, CH ₂	35		173.44 ^c , C
1-NH	9.06 ^{<i>d</i>} , br s		21	4.20, m; 3.99, m	48.8, CH ₂	36	2.66 ^h , m; 2.60 ^h , m	42.5, CH ₂
3-NH ₂	8.46 ^{<i>d</i>} , br s; 7.87, br s		22		173.1 ^c , C	37	4.65, m	48.0, CH
D-Tyr			L-Glu			38	1.61 ^{<i>f</i>} , m; 1.47 ^{<i>j</i>} , m	36.2, CH ₂
5	5.32 ^{<i>a</i>} , m	56.4, CH	23	4.94 ^g , m	55.7, CH	39	1.32 ^{<i>i</i>} , m	26.5, CH ₂
6	3.72, m; 3.46, m	36.8, CH ₂	24	2.77, m; 2.66 ^{<i>h</i>} , m	28.0, CH ₂	40	1.22-1.16 ^k	30.0 ^e , CH ₂
7		129.2, C	25	2.97, m; 2.95, m	32.1, CH ₂	41	1.22-1.16 ^k	30.23 ^e , CH ₂
8, 12	7.49, d (7.8)	131.6, CH	26		175.9, C	42	1.22-1.16 ^k	30.23 ^e , CH ₂
9, 11	7.09, d (7.8)	116.5, CH	27		171.5, C	43	1.22-1.16 ^k	30.31 ^e , CH ₂
10		157.8, C	23-NH	8.34 ^{<i>d</i>} , br s		44	1.22-1.16 ^k	30.31 ^e , CH ₂
13		173.9 ^c , C	D-Ser			45	1.22-1.16 ^k	30.33 ^e , CH ₂
5-NH	9.58, br s		28	4.95 ^g , m	58.1, CH	46	1.22-1.16 ^k	30.6 ^e , CH ₂
D-Asn-2			29	4.43, m; 4.38, m	63.8, CH ₂	47	1.22-1.16 ^k	38.2, CH ₂
14	5.46, m	50.6, CH	30		173.44 ^c , C	48	1.47 ^{<i>j</i>} , m	28.5, CH
15	3.57, m; 3.18 ^b , m	37.6, CH ₂	28-NH	8.91 ^{<i>d</i>} , br s		49	0.84, d (6.5)	23.1, CH ₃
16		173.44 ^c , C	L-Thr			50	0.84, d (6.5)	23.1, CH ₃
17		173.1 ^c , C	31	4.92 ^g , m	59.8, CH	37-NH	8.32 ^{<i>d</i>} , br s	
14-NH	9.25 ^{<i>d</i>} , br s		32	5.00 ^g , m	67.0, CH			

Table S6. The ¹H (400 MH_Z) and ¹³C NMR (100 MH_Z) data of compound 8 pyridine- $d_{5.}$

a, b, f, g, h, i, j, k Overlapped. ^c, d, e Assignments may be interchanged.

				9				
position	$\delta_{ m H}$, mult.(J in Hz)	$\delta_{\rm C}$, type	position	$\delta_{ m H}$, mult.(J in Hz)	$\delta_{\rm C}$, type	position	$\delta_{ m H}$, mult.(J in Hz)) $\delta_{\rm C}$, type
L-Asn-1			16-NH ₂	8.61 ^{<i>c</i>} , br s; 7.94, br s		33	1.38 ^{<i>i</i>} , m	20.9, CH ₃
1	5.32 ^{<i>a</i>} , m	53.1, CH	L-Pro			34		171.4°, CH
2	3.13 ^b , m; 3.08 ^b , m	37.1, CH ₂	18	4.75, t (6.6)	62.2, CH	31-NH	8.61 ^{<i>d</i>} , br s	
3		173.3 ^c , C	19	2.12, m	30.0 ^e , CH ₂	D-β-AA		
4		172.5 ^c , C	20	1.88, m; 1.64 ^f , m	25.3, CH ₂	35		173.0, C
1-NH	9.01 ^{<i>d</i>} , br s		21	4.28, m; 4.05, m	48.7, CH ₂	36	2.65 ^h , m; 2.55, m	42.4, CH ₂
3-NH ₂	8.43 ^{<i>d</i>} , br s; 7.86, br s		22		173. 6 ^c , C	37	4.65, m	48.0, CH
D-Tyr			L-Glu			38	1.64 ^f , m; 1.46, m	35.9, CH ₂
5	5.32 ^{<i>a</i>} , m	56.3, CH	23	4.92 ^g , m	55.6, CH	39	1.38 ^{<i>i</i>} , m	26.4, CH ₂
6	3.76, m; 3.47, m	36.6, CH ₂	24	2.81, m; 2.68 ^{<i>h</i>} , m	27.8, CH ₂	40	1.24-1.17 ^j	29.8 ^e , CH ₂
7		129.2, C	25	3.01 ^b , m; 2.99 ^b , m	32.4, CH ₂	41	1.24-1.17 ^j	29.8 ^e , CH ₂
8, 12	7.50, d (7.9)	131.5, CH	26		175.8, C	42	1.24-1.17 ^j	30.15 ^e , CH ₂
9, 11	7.09, d (7.9)	116.4, CH	27		171.4, C	43	1.24-1.17 ^j	30.15 ^e , CH ₂
10		157.7, C	23-NH	8.25 ^{<i>d</i>} , br s		44	1.24-1.17 ^j	30.15 ^e , CH ₂
13		173.7 ^c , C	D-Ser			45	1.24-1.17 ^j	30.21 ^e , CH ₂
5-NH	9.63, br s		28	4.95 ^g , m	58.0, CH	46	1.24-1.17 ^j	30.21 ^e , CH ₂
D-Asn-2			29	4.43, m; 4.38, m	63.7, CH ₂	47	1.24-1.17 ^j	30.21 ^e , CH ₂
14	5.46, m	50.4, CH	30		172.1 ^c , C	48	1.24-1.17 ^j	31.9, CH ₂
15	3.62, m; 3.21 ^b , m	37.6, CH ₂	28-NH	8.88 ^{<i>d</i>} , br s		49	1.24, m	23.2, CH ₂
16		173.3 ^c , C	L-Thr			50	0.87, t (6.4)	14.5, CH ₃
17		173.2 ^c , C	31	4.90 ^g , m	59.8, CH	37-NH	8.23 ^{<i>d</i>} , br s	
14-NH	9.20 ^{<i>d</i>} , br s		32	4.96 ^g , m	66.9, CH			

Table S7. The ¹H (400 MH_z) and ¹³C NMR (100 MH_z) data of compound 9 pyridine- $d_{5.}$

a, b, f, g, h, i, jOverlapped. c. d. e Assignments may be interchanged.

			10		
position	$\delta_{ m H},$ mult.(J in Hz)	position	$\delta_{ m H}$, mult.(J in Hz)	position	$\delta_{ m H}$, mult.(J in Hz)
L-Asn-1		19	2.12, m	36	2.64 ^{<i>f</i>} , m; 2.45, m
1	4.98 ^{<i>a</i>} , m	20	1.71 ^{<i>d</i>} , m; 1.65 ^{<i>d</i>} , m	37	4.64, m
2	3.09 ^b , m; 3.08 ^b , m	21	4.27, m; 4.05, m	38	1.59 ^{<i>d</i>} , m; 1.45, m
1-NH	9.00 ^{<i>c</i>} , br s	L-Glu		39	1.35 ^{<i>g</i>} , m
3-NH ₂	8.42 ^c , br s; 7.88, br s	23	4.90 ^e , m	40	1.22-1.17 ^h
D-Tyr		24	2.82, m; 2.67 ^f , m	41	1.22-1.17 ^h
5	4.99 ^{<i>a</i>} , m	25	3.06 ^b , m; 3.02 ^b , m	42	1.22-1.17 ^h
6	3.74, m; 3.41, m	23-NH	8.15 ^{<i>c</i>} , br s	43	$1.22 - 1.17^{h}$
8, 12	7.50, d (8.2)	D-Ser		44	1.22-1.17 ^h
9, 11	7.08, d (8.2)	28	4.92 ^e , m	45	1.22-1.17 ^h
5-NH	9.74, br s	29	4.40, m; 4.37, m	46	1.22-1.17 ^h
D-Asn-2		28-NH	8.94 ^{<i>c</i>} , br s	47	1.22-1.17 ^h
14	5.70, m	L-Thr		48	1.25, m
15	3.58, m; 3.19, m	31	4.88 ^e , m	49	1.27, m;1.05, m
14-NH	9.05 ^c , br s	32	4.93 ^e , m	50	0.84, t (7.3)
16-NH ₂	8.60°, br s; 7.95, br s	33	1.35 ^{<i>g</i>} , d (6.3)	51	0.83, d (6.3)
L-Pro		31-NH	8.78 ^{<i>c</i>} , br s	37-NH	8.13 ^{<i>c</i>} , br s
18	4.75, t (6.8)	D-β-AA			

Table S8. The ¹H (400 MH_z) data of compound 10 pyridine- $d_{5.}$

a, b, d, e, f, g, h Overlapped. ^c Assignments may be interchanged.

Figure S1. Nonribosomal peptides from marine-derived Bacillus species.

Figure S2. The agarose gel electrophoresis analysis of the 21 "positive" PCR products. Positive control: PCR product using the genomic DNA of one actinomycin producing strain as the template; negative control: PCR amplification without any genomic DNA used. The size of the expected PCR products is about 700 bp.

Figure S3. The phylogenetic analysis of strain PKU-MA00092 and strain PKU-MA00093 (labeled in red) based on comparison of 16S rRNA sequences. The sequence of 16S rRNA of *Streptomyces ovlivoverticillatus* HBUM175186 was used as an outgroup. The GenBank accession numbers are shown in parentheses.

0.02

Figure S4. The ¹H NMR spectrum of compound 1 (DMSO- d_6 , 400 MHz)

Figure S5. The COSY spectrum of compound 1 (DMSO-*d*₆, 400 MHz)

Figure S6. The ¹³C NMR spectrum of compound 1 (DMSO-*d*₆, 100 MHz)

S16

Figure S7. The HSQC spectrum of compound 1 (DMSO-*d*₆, 400 MHz)

Figure S9. The HRESIMS spectrum of compound 1.

Figure S10. The IR spectrum of compound 1.

Figure S11. The MS/MS analysis of compound 1.

Figure S12. The ¹H NMR spectrum of compound 2 (DMSO-*d*₆, 400 MHz)

Figure S14. The APT spectrum of compound 2 (DMSO-*d*₆, 100 MHz)

Figure S15. The HSQC spectrum of compound 2 (DMSO-*d*₆, 400 MHz)

Figure S16. The HMBC spectrum of compound 2 (DMSO-*d*₆, 400 MHz).

Figure S17. The HRESIMS spectrum of compound 2.

Figure S18. The IR spectrum of compound 2.

Figure S19. The MS/MS analysis of compound 2.

Figure S20. The ¹H NMR spectrum of compound 3 (DMSO-*d*₆, 400 MHz)

Figure S21. The APT spectrum of compound 3 (DMSO-*d*₆, 100 MHz)

Figure S22. The HMBC spectrum of compound 3 (DMSO-*d*₆, 400 MHz).

Figure S23. The HRESIMS spectrum of compound 3.

Figure S24. The ¹H NMR spectrum of compound 4 (DMSO-*d*₆, 400 MHz)

Figure S25. The ¹³C NMR spectrum of compound 4 (DMSO-*d*₆, 100 MHz)

Figure S26. The HRESIMS spectrum of compound 4.

Figure S27. The ¹H NMR spectrum of compound 5 (pyridine-*d*₅, 400 MHz)

Figure S28. The COSY spectrum of compound 5 (pyridine-*d*₅, 400 MHz)

Figure S29. The ¹³C NMR spectrum of compound 5 (pyridine-*d*₅, 100 MH)

Figure S30. The HSQC spectrum of compound 5 (pyridine-*d*₅, 400 MHz)

Figure S31. The HMBC spectrum of compound 5 (pyridine-*d*₅, 400 MHz)

Figure S33. The HRESIMS spectrum of compound 5.

Figure S34. The ¹H NMR spectrum of compound 6 (pyridine-*d*₅, 400 MHz)

S44

Figure S35. The ¹³C NMR spectrum of compound 6 (pyridine-*d*₅, 100 MH)

Figure S36. The HRESIMS spectrum of compound 6.

Figure S37. The ¹H NMR spectrum of compound **7** (pyridine-*d*₅, 400 MHz)

Figure S38. The ¹³C NMR spectrum of compound 7 (pyridine-*d*₅, 100 MH)

Figure S39. The HRESIMS spectrum of compound 7.

Figure S41. The ¹³C NMR spectrum of compound 8 (pyridine-*d*₅, 100 MH)

Figure S42. The ESIMS spectrum of compound 8.

Figure S43. The ¹H NMR spectrum of compound 9 (pyridine-*d*₅, 400 MHz)

S53

Figure S44. The ¹³C NMR spectrum of compound 9 (pyridine-*d*₅, 100 MH)

Figure S45. The ESIMS spectrum of compound 9.

Figure S46. The ¹H NMR spectrum of compound 10 (pyridine-*d*₅, 400 MHz).

Figure S47. The COSY spectrum of compound 10 (pyridine-*d*₅, 400 MHz).

	.230) 311	(Mn, 2x1.	00); Cm (3:7	7)		1071 45						Scan ES
	1			1	1			1 1		1	1 1	2.316
				+					1			
							1					
				+								
				+		+						+
		1										
						1		1				
										1		
											1	
									1	1 1	1	
EDE 40							1207.51					
535.16		1				1093.63						
Luk .		1								15	53.59	
or an all the second states	Alexand Allena Harris	with adjust shad	equilies while the allerings	helizabilingeneratio	بالم بديام بعر الجارية	the later have been been been been been been been be	asharter of Ublinson	hulling handler	Muda Jusiph Land	and the interest	all and and hearing	Mudlichias m

Figure S48. The ESIMS spectrum of compound 10.

Figure S49. The Marfey's analysis of compound **5**. (I) The FDAA derivatives of hydrolysates of compound **5**. (II) The FDAA derivative of D-serine. (III) The FDAA derivative of L-serine. (IV) The FDAA derivative of D-threonine. (V) The FDAA derivative of L-threonine. (VI) The FDAA derivative of D-aspartic acid. (VII) The FDAA derivative of L-aspartic acid. (VIII) The FDAA derivative of L-glutamate. (X) The FDAA derivative of D-proline. (XI) The FDAA derivative of L-proline. (XII) The FDAA derivative of L-tyrosine. (XIII) The FDAA derivative of L-tyrosine.

