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Abstract: In this study, silver chloride nanoparticles (AgCl NPs) were prepared using chitosan
oligomer (CHI) and chitosan oligomer derivatives (CHI-FITC). The CHI and CHI-FITC were used
as markers to confirm the formation of AgCl NPs using their fluorescence properties as well as
stabilizers. The fluorescence properties of CHI and CHI-FITC were monitored by a luminescence
spectrophotometer, and the morphology of the AgCl NPs was further confirmed by transmission
electron microscopy (TEM) and X-ray diffraction (XRD). The fluorescence of CHI and CHI-FITC was
quenched by the formation of AgCl NPs, and the Stern–Volmer equation was used to compare the
two types of stabilizer. The CHI and CHI-FITC stabilizer were linear and nonlinear, respectively,
with respect to the Stern–Volmer equation, and considered to be usable as fluorescence indicators to
confirm the formation behavior of AgCl NPs through fluorescence quenching.
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1. Introduction

Chitosan is a β-1,4-linked polysaccharide of glucosamine (2-amino-2-deoxy-b-D-glucose) with
small amounts of N-acetylglucosamine, and a natural non-toxic biopolymer derived by the
deacetylation of chitin [1–3]. Chitosan and chitosan derivatives are attracting attention in the field of
biomaterials because of their non-toxicity and biocompatibility [4]. They have abundant amino and
hydroxyl groups, and have been studied for drug and gene delivery, hydration gel, tissue engineering,
and imaging agents [5–7]. Chitosan is not soluble in water or alcohol because it does not break most of
the hydrogen bonds between molecular chains, although some amino groups have positive charges
in aqueous solution and swell due to the formation of membrane potential. However, chitosan is
soluble in an aqueous acidic solution of organic acids such as formic acid, lactic acid, ascorbic acid,
acetic acid, or of inorganic acids such as hydrochloric acid. On the other hand, chitosan oligomer
(CHI, chito-oligosaccharide) is water-soluble and can be easily prepared by acidic or enzymatic
partial hydrolysis of chitosan. Recently, CHI has been studied as a promising material for biomedical
applications due to its excellent biocompatibility, biodegradability, antibacterial activity and wound
healing effects [6–10].

Nanotechnology is now commonly used in many areas such as cosmetics, electronics, biosensors,
pharmaceuticals, and computer science. Nanoparticles (NPs) have been extensively studied for their
unique electrical, biological and optical properties, which differ from those of bulk materials [11].
Recently, with the development of nanotechnology, various inorganic NPs such as metals, metal oxides,
metal sulfides, and metal chlorides have been successfully synthesized in various ways [10]. Of these,
silver chloride (AgCl) is perhaps the most widely recognized and widely used in photographic
materials [12], catalyst materials [13], ionic semiconductors [14] and antimicrobial agents [10].
Many methods have been investigated for the synthesis of AgCl NPs using chemical [15,16],
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radiation [17], and complex methods [18]. However, most of these approaches are environmentally
toxic or biologically dangerous, so they are mostly limited in the medical and pharmaceutical fields.
Therefore, an environmentally friendly approach to the synthesis of AgCl NPs is essential for its
application in a variety of applications.

Therefore, in this study, AgCl NPs were prepared using CHI and CHI derivatives as eco-friendly
stabilizers. The formation behavior of NPs was observed using the fluorescence properties of CHI and
CHI derivatives reported in previous studies [19].

2. Results and Discussion

The supplied chitosan was decomposed at low molecular weight using enzymes and acids
(HCl). The amount of chloride ion (Cl−) in chitosan was confirmed by ion chromatography (IC) and,
as a result, was 3.2%. The chlorine ions located in the CHI were readily reacted with the Ag ions to
form AgCl NPs [20]. Thus, the CHI was used as a source of Cl ions for reducing and stabilization
in the NPs formation, and the reduction mechanism of CHI/Ag NPs is illustrated in Figure 1. Thus,
chitosan oligomers were used as a source and stabilizer of Cl ions in the nanoparticle formation
reaction. The formation of AgCl NPs was confirmed easily by both the color change from bright
yellow to yellowish brown and the strong surface plasmon resonance (SPR) peak around 350 nm
by UV-Vis spectroscopy. In general, AgCl precipitation occurs, but the prepared NPs solution was
almost clear without precipitation because the small and uniform NPs synthesis by the stabilizing
agent [10]. A peak corresponding to the surface plasmon resonance (SPR) of AgCl NPs was observed at
350 nm, and the intensity and full width at half maximum (FWHM) increased with increasing reaction
temperature (Figure 2a). This increase in FWHM implies an increase in particle size and quantity [10,21].
Figure 2b shows the formation of AgCl NPs according to the reaction temperature through the
photoluminescence (PL) of CHI. The PL intensity decreased as the reaction temperature increased.
Substituting these results into the Stern–Volmer equation showed a linear behavior corresponding to
the static behavior (Figure 2c). As particles are formed, a fluorophore (CHI) reacted with the quencher
(Ag) to form an NP complex, which causes a reduction of fluorescence [22–24].
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The morphology of the AgCl NPs according to the reaction temperature was analyzed from
transmission electron microscope (TEM) images shown in Figure 3. A previous study reported that
Ag ions were preferentially reduced by residual Cl ions in CHI to form AgCl nuclei, together with
stabilization by amino and hydroxyl groups of CHI [10]. The average diameter (AD) of the NPs
increased from 19 to 40 nm with increasing reaction temperature. As the reaction temperature increased,
the collision frequency between Ag ions and Cl ions increased. Therefore, the rate of movement and
growth of Ag ions to the surface of NPs increased, thereby increasing the particle size of the NPs [10].
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The formation behavior of AgCl NPs according to the AgNO3 concentration was analyzed using
the fluorescence properties of CHI-Fluorescein isothiocyanate (FITC) (Figure 4). It was found that
the PL intensity of the CHI/AgCl NPs decreased with an increase in the amount of AgNO3 solution.
This quenching phenomenon showed a nonlinear behavior when assigned to the Stern–Volmer
equation, which is a combination of static quenching and collisional quenching. When compared
with the Stern–Volmer plot of the preceding CHI, the slope was higher, indicating a more sensitive
fluorescence change [22].
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Figure 5 shows a TEM image of CHI-FITC/AgCl NPs according to AgNO3 concentration. Most of
the NPs stabilized with CHI-FITC were spherical, and the particle size increased with increasing
AgNO3 concentration. However, when the amount added was more than 3.0 mL, coagulation occurred
due to the reduction of surface energy caused by the aggregation of particles.
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The X-ray diffractometer (XRD) patterns of the CHI/AgCl and CHI-FITC/AgCl NPs are shown
in Figure 6. For both samples, a broad peak appeared in the 10–30◦ range for the amorphous chitosan
oligomer. All of the peaks were assigned by the diffraction of crystalline AgCl at 2θ = 27.64, 32.07,
46.06, 54.58 and 57.42◦, which correspond to the (1 1 1), (2 0 0), (2 2 0), (3 1 1) and (2 2 2).
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Figure 7 shows a schematic diagram of the changes in fluorescence properties of CHI-FITC
due to the formation of AgCl NPs. As the AgCl NPs formed, the fluorophore (CHI or CHI-FITC)
reacted with the quencher (AgNO3) to form an NP complex, resulting in the competitive absorption of
FITC with the CHI/AgCl NPs and thus decrease in fluorescence [22,24]. The quenching due to the
competitive absorption was confirmed by the absorbance and emission spectra of FITC and CHI/AgCl
NPs (data not shown). The degree of PL reduction with the formation of AgCl NPs was higher with
CHI-FITC than with CHI. These results demonstrate that the interpretation of the AgCl NPs formation
behavior using the fluorescence properties of CHI-FITC is more efficient than using those of CHI.
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3. Materials and Methods

3.1. Materials

CHI was provided by Kittolife Co., (Pyeongteak, Korea). Its degree of deacetylation
(DD), amount of Cl ion, and molecular weights were 97%, 3.2%, and ~1000 Da, respectively.
Fluorescein isothiocyanate (FITC) was purchased from Sigma-Aldrich Co., (St. Louis, MO, USA).
Ethanol (EtOH) and silver nitrate (AgNO3) were obtained from Samchun Chemical Co. (purity 99.5%,
Pyeongteak, Korea) and Kojima Chemical Co. (purity 99.9%, Sayama, Japan), respectively.

3.2. Preparation of CHI/AgCl NPs and CHI-FITC/AgCl NPs Complexes

AgCl NPs stabilized with CHI (CHI/AgCl NPs) were prepared by mixing a CHI solution (2 w/v %,
30 mL) and an aqueous AgNO3 solution (1.7 w/v %, 0.1 mL). The mixed solution was purged with
nitrogen for 5 min to remove oxygen in the solution before starting the reaction. The reaction was
then carried out at various reaction temperatures (30, 40, 50, 60, and 70 ◦C) while stirring. CHI-FITC
was used for the preparation of CHI-FITC/AgCl NPs in the previous study [19]. For the synthesis
of CHI-FITC, an aqueous solution of CHI was added to an ethanol solution of FITC and the mixture
was stirred at room temperature for 24 h in a dark room. After washing with ethanol, centrifugation
and vacuum drying were performed to obtain CHI-FITC powder. CHI-FITC/AgCl NPs was prepared
by mixing AgNO3 solution (1.7 w/v %) with CHI-FITC solution (0.03 w/v %, 30 mL) for 8 h after N2

purging. At this time, various amounts (0.02, 0.04, 0.08, 0.1, 0.2 and 0.3 mL) of AgNO3 were added to
examine the effect of AgNO3 concentration on the formation of NPs.

3.3. Characterizations

The amount of chlorine ion generated by the decomposition of chitosan was analyzed using
ion chromatography (IC). Absorption spectra of CHI/AgCl NPs were obtained on a UV-Vis
spectrophotometer (UV-2450, Shimadzu, Kyoto, Japan). The formation of the CHI/AgCl NPs and
CHI-FITC/AgCl NPs prepared under various conditions were confirmed using a transmission electron
microscope (TEM) at 300 kV. X-ray diffractometer patterns (XRD, D8 DISCOVER Bruker AXS, Billerica,
MA, USA) were obtained at room temperature with 2θ = 10–80◦ and a scan rate of 0.5 time/step.
The photoluminescence spectra of the CHI/AgCl NPs and CHI-FITC/AgCl NPs were captured
using a luminescence spectrophotometer (Varian Cary Eclipse, Varian, CA, USA) equipped with
a xenon flash lamp excitation source. Absorption spectra were obtained from the emission spectra
of CHI and CHI-FITC at 475 nm and 520 nm, respectively, using an excitation wavelength at 395 nm.
In addition, the changes in fluorescent spectra of the CHI/AgCl NPs and CHI-FITC/AgCl NPs
complexes according to the reaction temperature and AgNO3 concentration were measured using
the same luminescence spectrophotometer. In addition, the type of fluorescence quenching was
determined using the Stern–Volmer equation [22,25]:

I0

I
= 1 + K[Q] = 1 + kqτ0[Q].

In this equation, I0 and I are the fluorescence intensities in the absence and presence of a quencher,
respectively; K is the Stern–Volmer quenching constant; kq is the bimolecular quenching constant; τ0 is
the unquenched lifetime; and [Q] is the quencher concentration.

4. Conclusions

In this paper, the formation behavior of AgCl NPs was investigated using the fluorescence
properties of CHI and CHI-FITC. The CHI and CHI-FITC served as stabilizers and as indicators of
the formation of NPs. For the CHI/AgCl NPs, a linear static quenching behavior was observed when
the decrease in fluorescence intensity according to the formation of AgCl NPs was substituted into
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the Stern–Volmer equation. On the contrary, nonlinear quenching was observed for CHI-FITC/AgCl
NPs. In addition, the quenching occurred more rapidly in the CHI-FITC stabilizer than in the CHI
stabilizer because the formation of AgCl NPs was structurally affected by the fluorescence properties
of FITC. The AgCl NPs obtained by environmentally friendly CHI and CHI-FITC as stabilizers have
a considerable potential for use in fluorescence sensors and bio-imaging probes.
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