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Abstract: The potential of marine natural products to become new drugs is vast; however, research
is still in its infancy. The chemical and biological diversity of marine toxins is immeasurable and as
such an extraordinary resource for the discovery of new drugs. With the rapid development of next-
generation sequencing (NGS) and liquid chromatography—tandem mass spectrometry (LC-MS/MS),
it has been much easier and faster to identify more toxins and predict their functions with
bioinformatics pipelines, which pave the way for novel drug developments. Here we provide an
overview of related bioinformatics pipelines that have been supported by a combination of
transcriptomics and proteomics for identification and function prediction of novel marine toxins.
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1. Introduction

A variety of biological activities have been identified in venoms, including neurobiological,
enzymatic, cytotoxic, antibacterial, agglutination, hemolytic, anti-thrombus, coagulation,
immunoregulatory, enzyme immune, and antiviral activities [1-5]. A typical example is that each
subtype of Na*, K*, Ca?* or Cl- ion channels in almost all animals has its interactional venom peptides
or proteins from different venomous species [6].

Marine venoms have been largely ignored as a source for potential pharmaceuticals, despite
research suggesting that there are more marine venomous species than all other venomous terrestrial
animals combined [7]. Little is known about the composition of marine venoms and, consequently,
these venoms present a unique source of novel drugs and pharmacological tools. Bioassay-guided
fractionation has been traditionally used for marine venom analysis [8]. However, this approach is
considered time-consuming and requires large amounts of crude venoms, which are not always
available. The extraction of venoms from the venom gland tissues is also troublesome as marine
venoms have been shown to be highly labile and sensitive to heat, changes in pH, lyophilization,
storage or repeated freeze-thaw cycles [9]. Marine venom samples are typically mucus-rich, causing
immense difficulty during proteomic methodologies. The collection of fish venoms has proven to be
the most difficult issue as the venom glands are typically deeply embedded in the skin or muscle of
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the venom apparatus, and it is impractical to remove the venom gland without interfering with
peripheral tissues (Figure 1).

Figure 1. Morphology of venom glands in a scorpionfish. For venom fish, venom glands are usually
located in their pectoral and dorsal fins. As shown in the right enlarged image, venom spines are
typically composed of spine (A), connective tissue (B) and venom gland (C).

Multi-omics studies using next-generation sequencing (NGS) and liquid chromatography-
tandem mass spectrometry (LC-MS/MS) technologies advanced considerably, leading to more
sensitive and efficient research of venoms [10,11]. These techniques have been proven to be successful
in several fields, such as neuroendocrine research and drug discovery [12]. Further, utilization of de
novo assembling algorithms for deep sequencing has been widely applied in large-scale genomic and
transcriptomic sequencing projects, with accurate assembly of fragment data into full-length
transcripts, in particular in the absence of a reference genome sequence [13].

In this review, we access the current state of knowledge regarding marine venoms, in particular
how toxin databases can be correctly utilized in order to accurately predict function of marine toxins.

2. Toxin Database

There are two kinds of toxin databases, generalist and toxin-centered. In generalist databases
such as Genbank (a collection of all publicly available sequences), it is difficult to extract the toxin
sequences or their structure data due to a lack of annotations as toxins or the redundancy of similar
sequences [11,14]. Large amounts of toxin information have been submitted along with publications;
as a consequence, these data show up in the peer-reviewed literature rather than in generalist
databases. In contrast, most sequences in toxin-centered databases have been well annotated and
peer-reviewed [8]. The Tox-prot Program [15], the Animal Toxin Database (ATDB) [16], ConoServer
[17], ArachnoServer [18,19], and ISOB (Indigenous Snake species Of Bangladesh,
http://www.snakebd.com/) provide expert annotations on sequences and 3D structures of general
venomous animals [16,19-22]. Sequences from these toxin-specific databases can be easily traced back
to the original peer-reviewed papers or found in the generalist databases. Databases such as
Conoserver and ArchnoServer are good at addressing the problem of nomenclature of newly
identified toxins [23,24].

A complete and well-annotated sequence provides the ultimate resource for venomics
approaches; however, this relies on the accuracy of toxin sequences from a given database in order
to predict if the sequence is a toxin or not. Toxin sequences share many similarities in their sequences,
further increasing the difficulty in accurately annotating the sequences.

After a brief survey of related publications and these above-mentioned public databases, we
found that unlike the databases for venom terrestrial animals (i.e., scorpions, spiders and snakes),
there is no such unique toxin database or dataset for marine venomous species except cone snails
(ConoServer Database), which is a major drawback in the research of marine venoms [25]. Despite
general databases, such as NCBI-RefSeq, NCBI-nucleotide, UniProtKB/Swiss-Prot and TrEMBL,
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being available, toxin and non-toxin sequences are combined, making it difficult to extract the
required sequences. These difficulties make alignment work redundant and time-consuming.
However, a comprehensive in-house database has been constructed [7] to cover currently annotated
toxin sequences of reported venomous species (Table 1).

Table 1. Summary of sequence number in our achieved toxin database (updated in January 2017).

Group of Species Taxonomy Name Numbers of Sequences
Snakes Serpents 1684
Scorpions Scorpions 1510
Spiders Araneae 1391
Cone snails Conus 3860
Sea anemones Actiniaria 308
Insects Hexapoda 162
Fish Teleostei 44
Mammals Mammalias 106
Lizards Heloderma 241
Jellyfish Cubomedusae/Scyphozoa 175
Sea stars Asteroidea 8
Hydra Hydroida 14
Worms Cerebratulus 5
Forg, Toad Amphibia 85
Sea-urchin Echinoidea 2
Sea hare Aplysiomorpha 44
Scolopendra Myriapoda 49
All Metazoa 9688

Our in-house toxin database is a comprehensive dataset of all public toxin sequences, which
enables the discovery and annotation of toxin genes. There were 4455 toxin sequences identified from
venomous marine animals, 87% of which were from cone snails (Table 1). Considering the remarkable
research done on cone snails, it is not surprising that the majority of sequences came from these
species. However, it highlights the insignificant number of sequences from other venomous marine
species that have been discovered. There are still many obstacles to overcome this scarcity of
sequences on venomous marine species. For example, traditional annotation strategies using
Blast2Go and other programs in order to annotate assembled sequences are unsuccessful in many
cases due to rare homologs of toxins present in public databases. This issue hence complicates
creation of bioinformatics pipelines.

3. Venom-Gland Transcriptomics

Due to the dramatic decline of the cost for NGS sequencing, there are a large number of
transcriptomes available for snakes, spiders, scorpions and many other terrestrial venomous animals.
Except for the identification of novel biological active toxins, evolution/diversities of toxin families
and discovery for drug precursors are also included in the hottest research fields [26-28].

Related transcriptomics analysis can identify all the toxin genes transcribed under certain
biological circumstances or certain ecological environments. Transcriptomes can also provide
insights into the mechanisms and the diversity of toxins, venom synthesis and secretion, and the
biological functions of venoms. Meanwhile, comparative transcriptome analysis allows parallel
examination of the dynamic expression of all genes in a holistic manner. This contributes to
understanding the unique biological functions of the venom glands. A recent study undertaken on
the venom glands of fish shows that the glands most likely originate from the skin and the secretions
from the skin are speculated to play an important part in the skin recovery and immunity [29].

The method for the transcriptome analysis of venom glands is summarized in Figure 2, which is
modified from a standard procedure at BGI [30]. In brief, raw reads are firstly trimmed and
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subsequently eliminated to remove redundant and low-quality reads, before assembling into contigs.
The functions of contig genes are further predicted by homologies extracted from public databases
such as NCBI/Nr [31] and/or UniProtKB [32]; toxin precursors are then identified among the contigs
for further analysis and classification. Usually, these reads and contigs are required to be stored in
one of several public generalist repositories, such as NCBI SRA [31].
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Figure 2. A standard procedure for transcriptome analysis at BGI.

[llumina sequencing platforms are the most widely used due to their high outputs and long
reads [7]. Transcriptomic sequencing is valuable for the venomous species whose de novo assembled
whole genome sequences are absent (i.e., without a reference genome). However, assembling of these
transcriptome reads is still considered challenging and should be treated with caution, since only a
few venomous genomes and/or transcriptomes are available. Currently, most related sequences are
from three snake species (Bermese python, king cobra and five-pacer viper) [33-35], two cone snails
(Conus bullatus and C. consors) [36,37], one scorpion [38], one spider [39], a honeybee [40] and parasitic
wasps [41].

For the majority of venomous marine species, the parameters for assembly software should be
carefully scrutinized. Generally speaking, the assembling strategy will vary for different species,
since the guanine-cytosine (GC) content, N50, and the mean length for evaluating the quality of
assembly will always be various in different species. Different assembly softwares and parameters
are often comparable and their performances are often assessed on the basis of annotation results.
While looking into the results of annotations, we always find that toxin precursors can be aligned to
several highly divergent superfamilies, which might be confusing for our subsequent analysis. We
previously observed that fish toxins belonging to any novel gene superfamily are difficult to identify
using sequence similarities due to the remote phylogenetic relationships between our examined fish
and those species in the public databases.

Reported studies have shown that hundreds of thousands of toxins may originate from only a
few primitive genes [42,43]. Scholars have reached a consensus that in the long evolutionary history
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of venomous species, only a few primitive genes have been recruited. These genes originally
functioned as non-venoms (such as hormone, proteinase inhibitor, nerve growth factor, lectin and so
on) before gradually encoding as toxin peptides or proteins under evolutionary pressure [27,44,45].
Based on these theories and as a solution for gene annotation, profile-based alignments are more
credible since their arithmetic has been based on the position-scoring matrices of conservative sites
and further applied on a few studies for analyzing venom gland transcriptomes [7,46—48]. Profile-
hidden Markov models (pHMMS) have been recently used to identify toxin transcripts in several
cone snails and fish transcriptomes [7,46,47,49-51].

4. Venom-Gland Proteomics

Similar to those approaches for terrestrial species [25,52], proteomics approaches applied in
marine venomous animals include chromatography, electrophoresis, enzymatic digestions, Edman
degradation, and mass spectrometry (MS) [53,54].

Traditional proteomics relies largely on the use of automated Edman degradation and amino
acid composition analysis, followed by the confirmation of molecular weights. This approach enables
confident assignment of peptide sequences; however, it suffers from both low throughput and a large
amount of sample demand. However, there are typically hundreds of different peptides in the venom
of a specific venomous species [55], and therefore sequencing by Edman degradation will be
prohibitively expensive for the large number of peptides. Fortunately, in recent years, the
development of highly sensitive and high-resolution MS instruments to provide novel fragmentation
techniques has established a new solution to these issues. Most toxins are very short in sequences
and hence can be sequenced at a lower cost using tandem MS (MS/MS) [3,52,56], but Edman
degradation still can be useful as a complement to MS. For example, the latter can help to identify the
isobaric amino acids isoleucine/leucine and for N-terminal sequencing [57].

Until recently, the studies of toxic peptides from marine venomous animals have been mostly
limited by the isolation and biochemical characterization of toxins of medical importance. Little or no
attention was paid to the related genes, cellular machinery, and other important processes involved
in assembly of the final products expressed in the venoms. Marine animal venoms were generally
screened in medium- to high-throughput assays against targets of therapeutic interest, and then “hit
venoms” were chromatographically fractionated and the individual fractions were re-screened in
order to isolate peptides responsible for bioactivity. In some cases, incomplete sequence information
acquired via MS/MS and/or Edman degradation has been used for designing primers to amplify
transcripts encoding the toxin of interest from a venom gland cDNA library. This method has the
advantage of providing useful information about the signal and pro-peptide regions of the toxin
precursors as well as the sequences of transcripts encoding paralogs (and even orthologs in related
species) [58].

Most of the known toxin sequences were predicted from RNA sequences with six frame-
translating or open reading frame (ORF)-finding tools. Consequently, the majority of toxins cataloged
in public databases do not have any experimental support (at protein or activity levels) for their
production in venoms. For instance, there are 1873 mature toxins recorded in Conoserver, while only
379 toxins have experimental evidence. However, supports for mature toxin sequences are increasing
rapidly with evidence from modern proteomic experiments.

Throughout the course of evolution, venom peptides and proteins from both vertebrates and
invertebrates have been optimized to target specific receptors with high affinity and often exquisite
selectivity, making them excellent pharmacological tools and drug leads [59-61]. The number of
venom-derived peptides in preclinical or clinical trials has been increasing significantly in the past
two decades [59].

5. Combination of Transcriptomics and Proteomics

Over the past few years, there has been a rapid development in transcriptomics and proteomics
research for toxins on the basis of a combination of NGS and MS. The multi-omics analysis on a
venom gland (i) can reveal the toxin genes under certain biological conditions or ecological



Mar. Drugs 2017, 15, 103 6 0of 10

environments; (ii) can provide useful information for the scale and mechanism of the variety of toxins;
(iii) and can provide solutions to those biological questions concerning toxin functions, the process
of toxin synthesis and the secretion of toxin peptides. Meanwhile, there is a special significance for
the research targets that have never been studied before with transcriptomics analysis, which can
provide evidence for the identification of peptides and the protein mass spectrum from MS
sequencing. Additionally, the comparative analyses can verify the special biological functions
between the venom glands and other tissues (such as muscles and alimentary canals), and thus we
can learn more about the process of venom synthesis.

The integration of transcriptomic and proteomic/peptidomic approaches (Figure 3) using
bioinformatics can reveal “deep venomics” [9], which can be used to widely explore the toxins
present in venoms. Analyzing the toxin sequences with NGS cannot rely only on the basic sequence
similarities, since toxins can display high diversities. Meanwhile, skin or other tissues are always
included when extracting the venom glands due to their special connection (e.g., fish venom glands
are always embedded in the skins), and therefore toxin-like proteins (TLP) in other tissues will
influence our annotation results. Hence, proteomics will provide necessary evidence to verify these
transcripts. Now this combination method gives access to nearly complete toxin repertoires of all
single venoms, because transcript-based databases are illustrative for the certification of peptides and
protein expression profiles. Another advance of the combination of transcriptomics and proteomics
is to provide insights into the mechanisms of the diversities of toxin peptides at both the cDNA level
and post-translational modification (PTM) level.
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Figure 3. A general strategy for the combination of transcriptomics and proteomics to identify toxin
genes on a large scale.

Our recent combination of transcriptomics and proteomics analyses for the Chinese Yellow
catfish [7] and the Chinese tubular cone snail [51] indicated that (i) different mature toxin sequences
can originate from one single toxin precursor by alternative splicing, insertion, premature
transcription termination, or PTMs [7,51]; (ii) large discrepancies between proteome and
transcriptome data were shown in the venom gland of Chinese yellow catfish [7]. This phenomenon
was also reported in the central American snake [2]. Interestingly, we found that sometimes toxins that
are predicted from transcriptome data cannot be supported by the proteome data. Conversely, some
toxins in the proteome have no corresponding transcripts. The source of these discrepancies may be
due to the selective expression of venom peptides or proteins from the genes [25]. Sometimes, venom
samples for NGS are extracted from one group of samples while proteomic material is only collected
from the other group, because the quantity of venom in one venom gland is always not sufficient.
There are still some unknown types of PTMs, which may also provide reasonable explanations [25].
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An alternative theory was proposed in a recent study on the origin of the ontogenic shift in the venom
content of the Central American rattlesnake [2]: that miRNA levels are the main factor that modulates
venom composition as the relative toxin transcriptional activity was similar at all the development stages.

6. Summary

Venomous marine animals have been revealed to be an important resource for pharmacological
tools with promising biological activities. These compounds not only have novel chemical structures
but also new functions and/or functional mechanisms. In order to conduct preclinical and clinical
trials and further develop a promising lead into a marketed drug, a sustainable supply of these toxins
is necessary and challenging. For venomous fish, we are glad to launch the Fish T1K program [62]
with a project on the Comparative Genomics of Fish Venoms, which will greatly enrich our marine toxin
databases so as to overcome the obstacles from lacking reference sequences. Improvements in
technologies, such as sampling strategies, nanoscale nuclear magnetic resonance (NMR) for structure
determination, full-length chemical synthesis, data opening and exchange, and collaborations
between research groups, are all crucial for the successful development of marine toxins as drug
leads. However, a high degree of innovation in the field of marine toxins will generate a new wave
of new drug research and development in the coming future. Interdisciplinary research using new
technologies will be essential for the future success of marine toxins as new therapeutic chemical
entities that can make significant contributions to the cure of human diseases. Through the
combination of transcriptomics and proteomics, the contribution of marine toxins to the future
pharmaceuticals seems to be more promising.
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