SUPPORTING INFORMATION

Chemical diversity from a Chinese marine red alga, Symphyocladia latiuscula

Xiuli Xu¹, Haijin Yang^{1,2}, Zeinab G. Khalil³, Liyuan Yin¹, Xue Xiao³, Pratik Neupane³, Paul Bernhardt⁴, Angela A. Salim³, Fuhang Song^{1*} and Robert J. Capon^{3*}

¹School of Ocean Sciences, China University of Geosciences, Beijing 100083, P. R. China

²CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology,

Chinese Academy of Sciences, Beijing, 100101, P. R. China

³Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia

⁴School of Chemistry and Molecular biosciences, The University of Queensland, Brisbane, QLD,

4072, Australia

Table of Contents

Scheme S1. Isolation scheme of 1 - 15.	4
--	---

List of Tables

Table S1. 1D and 2D NMR data (500 MHz, methanol-d ₄) of Z- and E-aconitic acids	
Table S2. 1D and 2D NMR data (600 MHz, methanol- d_4) of aconitates A-B (1-2)	11
Table S3. 1D and 2D NMR data (600 MHz, methanol-d ₄) of aconitates C-D (3-4)	14
Table S4. 1D and 2D NMR data (600 MHz, methanol-d ₄) of aconitates E-F (5-6)	17
Table S5. 1D and 2D NMR data (600 MHz, acetone-d ₆) of symphyocladins C/D (7a/b)	19
Table S6. 1D and 2D NMR data (600 MHz, methanol-d ₄) of symphyocladins H/I (8a/b)	24
Table S7. 1D and 2D NMR data (600 MHz, acetonitrile-d ₃) of symphyocladin H (8a)	26
Table S8. 1D and 2D NMR data (600 MHz, DMSO-d ₆) of symphyocladins J/K (9a/b)	
Table S9. 1D and 2D NMR data (600 MHz, acetone-d ₆) of symphyocladin L (10)	30
Table S10. 1D and 2D NMR data (600 MHz, methanol-d ₄) of symphyocladin M (11)	33
Table S11. 1D and 2D NMR data (600 MHz, acetone-d ₆) of symphyocladin N (12)	35
Table S12. 1D and 2D NMR data (600 MHz, methanol-d ₄) of symphyocladin O (13)	37
Table S13. 1D and 2D NMR (600 MHz, methanol-d ₄) of symphyocladin P (14)	39
Table S14. 1D and 2D NMR data (600 MHz, acetone-d ₆) of symphyocladin Q (15)	41

List of Figures

Figure S1. ¹ H NMR (methanol- d_4) spectrum of Z-aconitic acid	5
Figure S2. ¹³ C NMR (methanol- d_4) spectrum of Z-aconitic acid	5
Figure S3. HMBC spectrum (methanol $-d_4$) of Z-aconitic acid	6
Figure S4. ROESY (methanol-d ₄) spectrum of Z-aconitic acid	6
Figure S5. ¹ H NMR (methanol- d_4) spectrum of <i>E</i> -aconitic acid	7
Figure S6. ¹³ C NMR (methanol- d_4) spectrum of <i>E</i> -aconitic acid	7
Figure S7. HMBC spectrum (methanol- <i>d</i> ₄) for <i>E</i> -aconitic acid	8
Figure S8. ¹ H NMR (methanol- d_4) spectrum of aconitate A (1)	9
Figure S9. ¹³ C NMR (methanol- d_4) spectrum of aconitate A (1)	9
Figure S10. ¹ H NMR (methanol- d_4) spectrum of aconitate B (2)	10
Figure S11. ¹³ C NMR (methanol- d_4) spectrum of aconitate B (2)	10
Figure S12. ¹ H NMR (methanol- d_4) spectrum of aconitate C (3)	12
Figure S13. ¹³ C NMR (methanol- d_4) spectrum of aconitate C (3)	12
Figure S14. ¹ H NMR (methanol- d_4) spectrum of aconitate D (4)	13
Figure S15. ¹³ C NMR (methanol- d_4) spectrum of aconitate D (4)	13
Figure S16. ¹ H NMR (methanol- d_4) spectrum of aconitate E (5)	15
Figure S17. 13 C NMR (methanol- d_4) spectrum of aconitate E (5)	15
Figure S18. ¹ H NMR (methanol- d_4) spectrum of aconitate F (6)	16
Figure S19. ¹³ C NMR (methanol- d_4) spectrum of aconitate F (6)	16
Figure S20. ¹ H NMR (acetone- d_6) spectrum of symphyocladins C/D (7a/b)	18
Figure S21. ¹³ C NMR (acetone- d_6) spectrum of symphyocladins C/D (7a/b)	18
Figure S22. ¹ H NMR (methanol- d_4) spectrum of symphyocladins H/I (8a/b) (prior to equil)	20
Figure S23. ¹ H NMR (methanol- d_4) spectrum of symphyocladins H/I (8a/b) (after overnight)	21
Figure S24. ¹³ C NMR (methanol- <i>d</i> ₄) spectrum of symphyocladins H/I (8a/b)	22
Figure S25. HSQC (methanol-d ₄) spectrum of symphyocladins H/I (8a/b)	22
Figure S26. HMBC (methanol-d ₄) spectrum of symphyocladins H/I (8a/b)	23
Figure S27. ROESY (methanol-d ₄) spectrum of symphyocladins H/I (8a/b)	23
Figure S28. ¹ H NMR (acetonitrile- <i>d</i> ₃) spectrum of symphyocladin H (8a)	25
Figure S29. ¹³ C NMR (acetonitrile- d_3) spectrum of symphyocladin H (8a)	25
Figure S30. ¹ H NMR (DMSO- <i>d</i> ₆) spectrum of symphyocladins J/K (9a/b)	27
Figure S31. ¹³ C NMR (DMSO- <i>d</i> ₆) spectrum of symphyocladins J/K (9a/b)	27

Figure S32. ¹ H NMR (acetone- d_6) spectrum of symphyocladin L (10)	
Figure S33. ¹³ C NMR (acetone- d_6) spectrum of symphyocladin L (10)	
Figure S34. X-ray of symphyocladin L (10)	
Figure S35. X-ray of symphyocladin L (10) (unit cell)	
Figure S36. ¹ H NMR (methanol- d_4) spectrum of symphyocladin M (11)	
Figure S37. ¹³ C NMR (methanol- <i>d</i> ₄) spectrum of symphyocladin M (11)	
Figure S38. ¹ H NMR (acetone- d_6) spectrum of symphyocladin N (12)	
Figure S39. ¹³ C NMR (acetone- <i>d</i> ₆) spectrum of symphyocladin N (12)	
Figure S40. ¹ H NMR (methanol- d_4) spectrum of symphyocladin O (13)	
Figure S41. ¹³ C NMR (methanol- d_4) spectrum of symphyocladin O (13)	
Figure S42. ¹ H NMR (methanol- d_4) spectrum of symphyocladin P (14)	
Figure S43. ¹³ C NMR (methanol- <i>d</i> ₄) spectrum of symphyocladin P (14)	
Figure S44. ¹ H NMR (acetone- d_6) spectrum of symphyocladin Q (15)	
Figure S45. ¹³ C NMR (acetone- d_6) spectrum of symphyocladin Q (15)	40

Scheme S1. Isolation scheme of 1 - 15

Figure S1. ¹H NMR (methanol- d_4) spectrum of Z-aconitic acid

Figure S2. ¹³C NMR (methanol- d_4) spectrum of Z-aconitic acid

Figure S3. HMBC spectrum (methanol $-d_4$) of Z-aconitic acid

Figure S4. ROESY (methanol-d₄) spectrum of Z-aconitic acid

Figure S5. ¹H NMR (methanol- d_4) spectrum of *E*-aconitic acid

Figure S6. ¹³C NMR (methanol- d_4) spectrum of *E*-aconitic acid

Figure S7. HMBC spectrum (methanol- d_4) for *E*-aconitic acid

Table S1. 1D and 2D NMR (methanol- d_4) data for Z- and E-aconitic acids

pos	Z-aconitic acids			<i>E</i> -aconitic acids		
	$\delta_{\rm H,}$ mult (J in Hz)	δ_{C}	ROESY	$\delta_{\mathrm{H},}$ mult (J in Hz)	δ_{C}	ROESY
1		173.4			174.0	
2	3.38, d (1.0)	40.2	4	3.88, s	33.8	
3		139.3			141.8	
4	6.26, br t (1.0)	129.5	2	6.90, s	130.6	
5		169.3			168.5	
6		169.7			169.3	

Figure S9. ¹³C NMR (methanol- d_4) spectrum of aconitate A (1)

Figure S11. ¹³C NMR (methanol- d_4) spectrum of aconitate B (2)

Pos.	aconitate A (1)			aconitate B (2)		
	$\delta_{\rm H,}$ mult (J in Hz)	δ_{C}	HMBC	$\delta_{\rm H,}$ mult (J in Hz)	δ_{C}	HHMBC
1		172.7			173.8	
2	3.89, s	33.8	1, 3, 4, 6	3.89, s	33.9	1, 3, 4, 6
3		141.3			140.8	
4	6.92, s	131.0	2, 3, 6	6.89, s	131.1	2, 3, 6
5		168.7			168.3	
6		169.3			168.4	
1-OCH ₃	3.67, s	52.6	1			
6-OCH ₃				3.81, s	53.3	6

Table S2. 1D and 2D NMR (methanol- d_4) data for 1 and 2

Figure S13. ¹³C NMR (methanol- d_4) spectrum of aconitate C (3)

Figure S15. ¹³C NMR (methanol- d_4) spectrum of aconitate D (4)

Pos.	aconitate C (3)			aconitate D (4)		
	$\delta_{\rm H,}$ mult (<i>J</i> in Hz)	δ_{C}	HMBC	$\delta_{\mathrm{H},}$ mult (J in Hz)	δ_{C}	HMBC
1		173.8			172.5	
2	3.89, s	33.9	1, 3, 4, 6	3.91, s	33.8	1, 3, 4, 6
3		142.7			140.0	
4	6.91, s	129.3	2, 3, 5, 6	6.91, s	131.7	2, 3, 6
5		167.5			168.5	
6		169.1			168.2	
1-OCH ₃				3.67, s	52.7	1
5-OCH ₃	3.77, s	52.5	5			
6-OCH ₃				3.80, s	53.4	6

 Table S3. 1D and 2D NMR (methanol- d_4) data for 3 and 4

Figure S17. ¹³C NMR (methanol- d_4) spectrum of aconitate E (5)

Figure S19. ¹³C NMR (methanol- d_4) spectrum of aconitate F (6)

Pos.	aconitate E (5)			aconitate E (6)		
	$\delta_{\mathrm{H},}$ mult (J in Hz)	δ_{C}	HMBC	$\delta_{\mathrm{H},}$ mult (J in Hz)	δ_{C}	HMBC
1		172.5			172.2	
2	3.91, s	33.9	1, 3, 4, 6	3.93, s	33.8	1, 3, 4, 6
3		142.3			141.3	
4	6.92, s	129.6	2, 3, 5, 6	6.92, s	130.0	2, 3, 6
5		167.5			167.2	
6		168.9			167.8	
1-OCH ₃	3.67, s	52.7	1	3.67, s	52.8	1
5-OCH ₃	3.76, s	52.6	5	3.76, s	52.7	5
6-OCH ₃				3.81, s	53.5	6

Table S4. 1D and 2D NMR (methanol- d_4) data for **5** and **6**

Figure S20. ¹H NMR (acetone-*d*₆) spectrum of symphyocladins C/D (7a/b)

Figure S21. ¹³C NMR (acetone- d_6) spectrum of symphyocladins C/D (7a/b)

pos	$\delta_{\rm H,}$ mult (J in Hz)	δ _C	COSY	HMBC	ROESY
1		167.18			
2		135.46/135.34			
3	3.74, m	41.39/41.37	4a, 4b	1, 2, 4, 5, 6, 7'	7'
4a	3.17, m	35.40/35.35	3, 4b	2, 3, 5, 6,	7'
4b	2.490/2.489, dd (16.8, 7.8)		3, 4a	2, 3, 5, 6,	7'
5 ^a		172.80/172.76			
6 ^a		172.54/172.49			
5-OCH ₃	3.55, s	51.87/51.83		5	
1'		129.79/129.76			
2'		115.38/115.23			
3'		113.98/113.63			
4′ ^b		144.17/144.10			
5′ ^b		145.36/145.32			
6'		110.71/110.67			
7'	7.544/7.538, s	141.52/141.48		1, 2, 3, 1', 2', 6'	3, 4a, 4b

Table S5. 1D and 2D NMR data (600 MHz, acetone-*d*₆) of symphyocladins C/D (7a/b)

^{a-b} assignments are interchangeable within the same letter.

Figure S22. ¹H NMR (methanol-*d*₄) spectrum of symphyocladins H/I (8a/b) (prior to equilibration)

Figure S23. ¹H NMR (methanol- d_4) spectrum of symphyocladins H/I (8a/b) (after overnight storage, with $\Delta^{2,3}$ equilibration of a mixture of *E* and *Z* isomers)

Figure S24. ¹³C NMR (methanol- d_4) spectrum of symphyocladins H/I (8a/b)

Figure S25. HSQC (methanol-*d*₄) spectrum of symphyocladins H/I (8a/b)

pos	major (E)				mir	nor (Z)	
	$\delta_{\rm H,}$ mult (J in Hz)	δ_{C}	HMBC	$\delta_{\rm H,}$ mult (J in Hz)		HMBC	ROESY
1		170.3			166.5		
2		145.0			144.4		
3		127.4			137.8		
4	3.65, s	35.0	2, 3, 5, 6	3.19, s	29.5	2, 3, 5, 6	7'
5		168.7			166.8		
6		172.4			169.0		
5-OCH ₃	3.71, s	52.8	5	3.51, s	53.1	5	
1'		128.8			127.9		
2'		118.9			118.4		
3'		114.8			114.2		
4′ ^a		146.2			145.5		
5′ ^a		145.6			144.8		
6'		114.7			114.3		
7'	4.22, s	41.1	1, 2, 3, 1', 2', 6'	4.34, s	35.9	1, 2, 3, 1', 2', 6'	4

Table S6. 1D and 2D NMR data (600 MHz, methanol- d_4) of symphyocladins H/I (8a/b)

pos	$\delta_{\mathrm{H},}$ mult (J in Hz)	δ_{C}	HMBC	ROESY
1		166.8		
2		144.8		
3		138.6		
4	3.19, s	30.5	2, 3, 5, 6	7'
5		168.9		
6		167.2		
5-OCH ₃	3.49, s	53.8	5	
1'		129.1		
2'		119.4		
3'		114.8		
4′ ^a		145.3		
5' ^a		144.7		
6'		114.4		
7'	4.30, s	36.3	1, 2, 3, 1', 2', 6'	4

Table S7. 1D and 2D NMR data (600 MHz, acetonitrile- d_3) of symphycoladin H (8a)

Figure S31. ¹³C NMR (DMSO-*d*₆) spectrum of symphyocladins J/K (9a/b)

pos	$\delta_{\rm H}$, mult (J in Hz)	δ _C	COSY	HMBC	ROESY
1		166.8			
2		133.5			
3	3.50, m, overlap	40.2	4a, 4b	1, 2, 4, 5, 6, 7'	
4a	2.98/2.97, dd (16.8, 10.8)	33.9	3, 4b	2, 3, 5, 6	7'
4b	2.41/2.40, dd (16.8, 3.0)		3, 4a	2, 3, 5, 6	7'
5 ^a		171.5			
6 ^a		171.5			
5-OCH ₃ ^b	3.52, s	52.0		5	
6-OCH ₃ ^b	3.541/3.53, s	51.6		6	
1′		128.07			
2′ ^c		113.9			
3′°		113.7/113.6			
4′ ^d		143.9/143.8			
5' ^d		145.2/145.0			
6'		110.7/110.6			
7'	7.39/7.38, s	140.7		1, 2, 3, 1', 2', 6'	4a, 4b

Table S8. 1D and 2D NMR data (600 MHz, DMSO-*d*₆) of symphyocladins J/K (9a/b)

^{a-d} assignments are interchangeable within the same letter.

Figure S32. ¹H NMR (acetone- d_6) spectrum of symphyocladin L (10)

Figure S33. ¹³C NMR (acetone- d_6) spectrum of symphyocladin L (10)

pos	$\delta_{\rm H,}$ mult (J in Hz)	$\delta_{\rm C}$	COSY	HMBC
1		171.9		
2	4.98, dd (11.4, 3.0)	43.0	7′a, 7′b	1, 3, 4, 6, 7'
3		142.4		
4	6.76, s	130.5		2, 3, 6
5		165.8		
6		167.0		
1-OCH ₃	3.66, s	52.3		1
5-OCH ₃	3.44, s	52.1		5
1′		130.7		
2'		118.5		
3'		113.7		
4′ ^a		144.1		
5' ^a		143.8		
6'		114.3		
7′a	3.87, dd (14.4, 3.0)	39.0	2, 7′b	1, 2, 3, 1', 2', 6'
7′b	3.61, dd (14.4, 11.4)		2, 7'a	1, 2, 3, 1', 2', 6'

Table S9. 1D and 2D NMR data (600 MHz, acetone- d_6) of symphyocladin L (10)

Figure S34. ORTEP view of symphyocladin L dihydrate (10) (30% probability ellipsoids shown).

Figure S35. PLATON view of the unit cell of symphyocladin L dihydrate (10) showing H-bonding.

Figure S35. ¹³C NMR (methanol- d_4) spectrum of symphyocladin M (11)

pos	$\delta_{\rm H,}$ mult (<i>J</i> in Hz)	δ_{C}	COSY	HMBC
1		173.5		
2	4.98, dd (11.4, 3.0)	43.7	7′a, 7′b	1, 3, 4, 6, 7'
3		142.4		
4	6.73, s	131.3		2, 5, 6
5		166.7		
6		167.0		
1-OCH ₃	3.70, s	52.9		1
6-OCH ₂ CH ₃	4.26, br q (7.2)	63.2	8	6, 8
6-OCH ₂ C <u>H</u> ₃	1.31, t (7.2)	14.5	7	7
5-OCH ₃	3.45, s	52.5		5
1′		130.6		
2'		118.8		
3'		114.4		
4′ ^a		145.1 ^a		
5' ^a		144.8 ^a		
6'		114.8		
7'a	3.81, dd (14.4, 3.0)	39.4	2, 7′b	1, 2, 3, 1', 2', 6'
7′b	3.56, dd (14.4, 11.4)		2, 7'a	

Table S10. 1D and 2D NMR data (600 MHz, methanol- d_4) of symphyocladin M (11)

Figure S37. ¹³C NMR (acetone-*d*₆) spectrum of symphyocladin N (12)

pos	$\delta_{\rm H,}$ mult (<i>J</i> in Hz)	$\delta_{\rm C}$	COSY	НМВС	ROESY
1					
2	6.79, brt (6.6)	141.3	7′	3, 4, 6, 1', 7'	
3		128.1			
4	3.60, brs	33.2		2, 3, 5, 6,	7'
5		171.3			
6		167.9			
5-OCH ₃	3.66, s	52.0		5	
1′		131.0			
2'		117.3			
3'		114.0			
4′ ^a		144.4			
5' ^a		144.3			
6'		113.0			
7'	4.05, s	39.0	2	2, 3, 1', 2', 6'	4

Table S11. 1D and 2D NMR data (600 MHz, acetone- d_6) of symphyocladin N (12)

Figure S39. ¹³C NMR (methanol- d_4) spectrum of symphyocladin O (13)

pos	$\delta_{\rm H,}$ mult (<i>J</i> in Hz)	δ_{C}	COSY	HMBC
2a	3.35, m, overlap	44.9	2b, 3	3, 4, 6, 7'
2b	3.27, dd (20.4, 7.8)		2a, 3	3, 4, 6, 7'
3	3.34, m, overlap	37.4	2a, 2b, 4a, 4b	2, 4, 5, 6, 7'
4a	2.86, dd (17.4, 7.2)	35.6	3, 4b	2, 3, 5, 6
4b	2.73, dd (17.4, 6.0)		3, 4a	2, 3, 5, 6
5		173.9		
6		175.5		
5-OCH ₃	3.68, s	52.5		5
6-OCH ₃	3.71, s	52.8		6
1'		136.1		
2'		114.5		
3'		110.5		
4′ ^a		147.3		
5' ^a		145.3		
6'		106.3		
7'		202.2		

Table S12. 1D and 2D NMR data (600 MHz, methanol- d_4) of symphyocladin O (13)

Figure S41. ¹³C NMR (methanol- d_4) spectrum of symphyocladin P (14)

pos	$\delta_{\rm H,}$ mult (<i>J</i> in Hz)	δ_{C}		HMBC	ROESY
1		174.5			
2	3.75, dd (9.0, 6.0)	48.8	7′a, 7′b	1, 3, 4, 6, 1', 7'	4b
3		139.3			
4a	6.22, d (1.2)	129.1	4b	2, 3, 6	
4b	5.44, br s		4a	2, 3, 6	2
6		169.2			
1-OCH ₃	3.64, s	52.8		1	
1'		131.4			
2'		118.3			
3'		114.5			
4′ ^a		145.0			
5' ^a		144.8			
6'		114.3			
7'a	3.65, dd (13.8, 6.0)	39.4	2, 7′b	1, 2, 3, 1', 2', 6'	
7′b	3.54, dd (13.8, 9.0)		2, 7'a	1, 2, 3, 1', 2', 6'	

Table S13. 1D and 2D NMR (600 MHz, methanol- d_4) of symphyceladin P (14)

Figure S43. ¹³C NMR (acetone- d_6) spectrum of symphyocladin Q (15)

pos	$\delta_{\rm H,}$ mult (J in Hz)	δ_{C}	COSY	НМВС	ROESY
1		172.4			
2	3.79, dd (5.4, 9.6)	48.2	7'a, 7'b	1, 3, 4, 6, 1', 7'	4b
3		138.3			
4a	6.17, d (1.2)	128.7	4b	2, 3, 6	
4b	5.52, s		4a	2, 3, 6	2
6		166.6			
1-OCH ₃	3.62, s	52.3		1	
6-OCH ₃	3.71, s	52.3		6	
1′		131.3			
2'		118.0			
3'		113.9			
4′ ^a		144.0			
5' ^a		143.9			
6'		113.8			
7'a	3.69, dd (14.4, 5.4)	39.1	2, 7′b	1, 2, 3, 1', 2', 6'	
7′b	3.56, dd, (14.4, 9.6)		2, 7'a	1, 2, 3, 1', 2', 6'	

Table S14. 1D and 2D NMR data (600 MHz, acetone- d_6) of symphyocladin Q (15)