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Abstract: Anandins A (1) and B (2), two rare steroidal alkaloids, were isolated from the fermentative
broth of a marine actinobacteria Streptomyces anandii H41-59. The gross structures of the two
alkaloids were elucidated by spectroscopic methods including HR-ESI-MS, and NMR. Their absolute
configurations were confirmed by single-crystal X-ray diffraction analysis and comparison of their
experimental and calculated electronic circular dichroism spectra, respectively. Anandin A exhibited
a moderate inhibitory effect against three human cancer cell lines MCF-7, SF-268, and NCI-H460 with
IC50 values of 7.5, 7.9, 7.8 µg/mL, respectively.
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1. Introduction

Because of the increasing difficulty to discover new bioactive compounds from terrestrial sources
and the structure diversity of marine metabolites, many researchers have great interest in investigating
secondary metabolites from marine-derived organisms [1]. Marine organisms are regarded as a prolific
resource of novel bioactive metabolites, including a vast array of macrolide, cyclic peptides, pigments,
polyketides, terpenes, steroids and alkaloids, but only a few steroidal alkaloids [2]. Steroidal alkaloids
are a class of alkaloids with the basic steroidal skeleton containing a nitrogen atom, either in a ring
or in a side chain. Structurally, these alkaloids can be classified into three major groups according to
their carbon skeleton, namely, pregnane alkaloids, cholestane alkaloids and C-nor-D-homosteroidal
alkaloids. Accumulated evidence in previous studieshas demonstrated that steroidal alkaloids
and their glycosides have a wide range of bioactivities, such as antimicrobial, cytotoxic, anti-HIV,
anti-inflammation, and antinociceptive activities [3–5].

Steroidal alkaloids are well-known metabolites of certain terrestrial plants, mainly from Solanaceae,
Liliaceae, Apocynaceae and Buxaceae families [6–8]. The first steroidal alkaloid was isolated from
the berries of Solanum nigrum almost 200 years ago [9]. However, steroidal alkaloid was not
found from marine organisms until 1984 when two antimicrobial plakinamines were isolated from
sponge Plakina sp. [10]. Later, four novel cortistatins exhibiting highly selective anti-proliferative
activity were isolated from Corticium sp. [11], and cytotoxic cephalostatins were discovered from
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Cephalodiscus gilchristi [12]. Compared to those from plants, the marine steroidal alkaloids were
relatively few, but with diverse chemistry structures.

Streptomyces are known for their ability to produce novel structural and bioactive metabolites [13–15].
While searching for bioactive compounds from marine actinomycete, we encountered a strain of
actinomycete Streptomyces anandii H41-59, the crude extract of which showed strong antifungal activity
against Candida albicans. In aprevious report, we have isolated three new ergosterols and ten known
ones from culture broth of the strain H41-59 [16]. Further investigation on the broth of the same marine
actinomycete led to the isolation of two novel ergostane-type steroidal alkaloids, named anandins A (1)
and B (2). In addition, the antibioticand cytotoxic activities of the two steroidal alkaloids were tested
in the present study. Herein, details of the isolation, structure elucidation, configuration assignment,
and bioactivities of the new metabolites are described.

2. Results and Discussion

2.1. Elucidation of New Compounds

Actinomycete Streptomyces anandii H41-59 was isolated from a sea sediment sample from the
mangrove zone in the South China Sea. An ethyl acetate partition of the ethanol extract was subjected
to silica gel and LH-20 column chromatography, followed by RP-HPLC purification to yield two rare
steroidal alkaloids (Figure 1).
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Figure 1. Chemical structure of anandins A (1) and B (2).

Compound 1 was obtained as a colorless plate crystal and given a molecular formula of C23H35NO2.
Its seven degrees of unsaturation were determined on the basis of HR-ESI-MS [M + H]+ ion at m/z
358.2752 (C23H36NO2, calcd. 358.2741) (see Figure S1-8). The 1H NMR spectrum (see Figure S1) of
1 measured in acetone-d6 (Table 1) revealed the presence of five characteristic steroid methyl groups
including a methyl singlet at δH 0.71 (Me-13) and four methyl doublets at δH 1.08 (Me-15), 0.84 (Me-20),
0.87 (Me-21) and 0.95 (Me-22). The 13C NMR and DEPT spectra indicated the presence of 23 carbon
signals including a carbonyl carbon at δC 171.1 (C-2), six olefinic carbons at δC 115.3 (C-3), 152.0 (C-4),
141.5 (C-5), 107.4 (C-6), 136.4 (C-16), and 133.1 (C-17), a quaternary carbon at δC 47.0 (C-8), five methine
carbons at δC 49.4 (C-9), 55.6 (C-12), 41.1 (C-14), 43.8 (C-18) and 33.9 (C-19), one oxygenated methylene
at δC 61.6 (C-2′), four methylenes at δC 40.8 (C-7), 29.7 (C-10), 23.1 (C-11), 20.8 (C-1′), and five methyl
carbons at δC 12.4 (C-13), 21.5 (C-15), 20.1 (C-20), 20.4 (C-21) and 18.2 (C-22). Further analyses of the 1D
NMR and HSQC data suggested that compound 1 was more likely to be a highly degraded sterol.

The H-H COSY spectrum of 1 gave several spin systems which belong to substructures as shown in
Figure 2 with bold lines. The HMBC correlations from a sp2methine proton at δH 5.27 (1H, dd, H-16) to
carbons at δC 21.5 (C-15, 3J) and 43.8 (C-18, 3J), and from a sp2methine proton at δH 5.30 (1H, dd, H-17)
to carbon at δC 41.1 (C-14, 3J), confirmed the presence of a characteristic side chain of ergosterol [16].
A methyl proton at δH 0.71 (3H, s, Me-13) displayed four HMBC correlations to carbons at δC 40.8 (C-7, 3J),
47.7 (C-8, 2J), 49.4 (C-9, 3J) and 55.6 (C-12, 3J), interpreted as direct attachment to the quaternary C-8.
The HMBC correlations from the proton at δH 1.93 (1H, m, H-10) to carbons at δC 47.7 (C-8, 3J) and
55.6 (C-12, 3J), from the proton at δH 5.60 (1H, m, H-6) to carbons at δC 47.7 (C-8, 3J) and 152.0 (C-4, 3J),
from protons at δH 2.63 (2H, m, H-7)/2.34 (dd, 2.5, 17.5) to carbons at δC 141.5 (C-5, 3J), 49.4 (C-9, 3J) and
55.6 (C-12, 3J), confirmed the substructure of the B ring and C ring of ergosterol. The HMBC correlations
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from the proton at δH 5.63 (1H, br.s, H-3) to carbons at δC 171.1 (C-2, 2J), 141.5 (C-5, 3J) and 49.4 (C-9, 3J),
from protons at δH 3.64 (2H, m, H-1′) to carbons at 171.1 (C-2, 3J) and 141.5 (C-5, 3J), and from protons
at δH 3.63 (2H, m, H-2′) to carbon at δH 171.1 (C-2, 4J), confirmed the presence of an α,β-unsaturated
γ-lactam and two methylene carbons linked to γ-lactam and the hydroxyl group.

Table 1. 1H and 13C NMR data of 1 and 2 (δ in ppm, J in Hz).

Position
1 a 2 b

δH δC δH δC

2 - 171.1 - 171.1
3 5.63 (br.s) 115.3 5.52 (d, 1.9) 116.5
4 - 152.0 - 164.9
5 - 141.5 - 89.3
6 5.60 (m) 107.4 1.65 (m), 1.92 (m) 36.0
7 2.63 (m), 2.34 (dd, 2.5, 17.5) 40.8 2.23 (m), 1.60 (m) 35.7
8 - 47.0 - 49.1
9 2.68 (m) 49.4 2.65 (m) 50.1
10 1.48 (m), 1.93 (m) 29.7 1.46 (m), 1.91 (m) 29.6
11 1.51 (m), 1.94 (m) 23.1 1.58 (m), 1.65 (m) 22.0
12 1.59 (m) 55.6 1.53 (m) 56.3
13 0.71 (s) 12.4 0.60 (s) 12.1
14 2.13 (m) 41.1 2.11 (br. s) 41.2
15 1.08 (d, 6.9) 21.5 1.08 (d, 6.9) 21.5
16 5.27 (dd, 7.7, 15.1) 136.4 5.28 (dd, 7.6, 14.6) 136.4
17 5.30 (dd, 7.2, 15.1) 133.1 5.30 (dd, 7.2, 14.6) 133.1
18 1.90 (m) 43.8 1.90 (m) 43.8
19 1.51 (m) 33.9 1.50 (m) 33.9
20 0.84 (d, 6.9) 20.1 0.85 (d, 6.9) 20.1
21 0.87 (d, 6.9) 20.4 0.88 (d, 6.9) 20.4
22 0.95 (d, 6.8) 18.2 0.96 (d, 6.9) 18.2
1′ 3.64 (m) 42.8 3.32 (m), 3.60 (m) 42.5
2′ 3.63 (m) 61.1 3.66 (m) 62.3

5-OH 5.12 (br.s) -
2′-OH 3.87 (br.s) - 4.36 (br.s) -

a Measured in CD3COCD3 at 300 MHz for 1H and 75 MHz for 13C NMR; b Measured in CD3COCD3 at 600 MHz for
1H and 125 MHz for 13C NMR.
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The relative configuration of 1 was determined on the basis of the analysis of 1H-1H coupling
constants and the NOESY information (Figure 3). Large coupling constants of 15.1 Hz between H-16
and H-17, and the NOESY correlations between H-17 and H-14, between H-17 and H-20/H-21, between
H-16 and H-12, and between H-16 and H-18 indicated the E configuration of the double bond in the
side chain. A correlation was also observed between H-13β and H-14, confirming the β-orientation of
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H-14. The absolute configuration of compound 1 was unequivocally defined as (16E,8R,12R,14S,18R)
by single crystal X-ray diffraction analysis (see Table S1) using Cu Ka radiation with Flack and Hooft
parameters of 0.1 (2) and 0.15 (6), respectively. Compound 1 is a new steroidal alkaloid, named as
anandin A.Mar. Drugs 2017, 15, 355 4 of 9 
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Compound 2 was isolated as white powder. Its molecular formula was determined as C23H37NO3

with six degrees of unsaturation, by the HR-ESI-MS [M + H]+ ion at m/z 376.2860 (C23H38NO3, calcd.
376.2853) (see Figure S2-8). The 13C NMR and DEPT (see Figure S2) spectroscopic data of 2 measured in
acetone-d6 (Table 1) indicated the presence of 23 carbon signals for a carbonyl carbon at δC 171.1 (C-2),
four olefinic carbons at δC 116.5 (C-3), 164.9 (C-4), 136.4 (C-16), 133.1 (C-17), one quaternary signal at
δC 49.1 (C-8), one oxygenated methylene at δC 62.3 (C-2′), five methine carbons at δC 50.1 (C-9), 56.3
(C-12), 41.2 (C-14), 43.8 (C-18) and 33.9 (C-19), five methyl groups at δC 12.1 (C-13), 21.5 (C-15), 20.1 (C-20),
20.4 (C-21) and 18.2 (C-22). The 1H and 13C NMR spectroscopic data of 2 were comparable to those of 1,
suggesting that 2 is an analogue of 1 with an additional oxygenated quaternary carbon and the absence of
a double bond. The gross structure of 2 was further elucidated by analysis of COSY and HMBC spectrum
data (Figure 4). The substructure of γ-hydroxy-α,β-unsaturated γ-lactam was deduced by the HMBC
correlations from H-3 (δH 5.52, br.s, 1H) to C-2 (δC 171.1, 2J) and C-5 (δC 89.3, 3J), from H-1′ (δH 3.60, 3.32)
to C-2 (δC 171.1, 3J) and C-5 (δC 89.3, 3J), from H-2′ (δH 3.66, m, 2H) to C-2 (δC 171.1, 4J), and from H-7 (δH

2.23/1.60, m, 2H) to C-5 (δC 89.3, 3J). The HMBC correlation from H-9 (δH 2.65, m, 1H) to C-5 (δC 89.3, 3J),
C-3 (δC 116.5, 3J) and C-12 (δC 56.3, 3J), from H-11 (δH 1.65/1.58, m, 2H) to C-9 (δC 50.1, 3J), from H-9 (δH

2.65, m, 1H) to C-5 (δC 89.3, 3J) and C-3 (δC 116.5, 3J), confirmed the substructure of the B ring and the
saturated C ring of ergosterol. Other HMBC correlations permitted further confirmation of the carbon
skeleton of 2.

In the NOESY spectrum, NOE correlations (Figure 5) of H-13 with H-14, and H-9 with H-12,
confirmed the β-orientation of the side chain and the α-orientation of H-12, respectively. A large
coupling constant (14.7 Hz) between H-16 and H-17 indicated the E configuration of the double
bond between C-16 and C-17. The relative configuration at C-14 and C-18 was tentatively assigned
to be identical to those in 1 based on similar NMR spectrum data and biogenetic consideration.
The orientation of 5-OH (δH 5.12) was tentatively defined to be α, because the comparison of the
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experimental and calculated CD spectra (Figure 6) facilitated assignment of the absolute configuration
of 2 as 16E,5R,8R,12R,14S,18R. Compound 2 is named as anandin B.Mar. Drugs 2017, 15, 355 5 of 9 
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Gram-positive G+C-rich actinobacteria, is able to oxidize and degrade steroids [17]. In a previous
study, we discovered a series of ergosterols including three new ones [16]. Thus, we considered that
anandins A (1) and B (2) were probably derived from a highly degraded ergosterol [18,19].

2.2. Bioactivities of 1 and 2

Anandins A (1) and B (2) were evaluated in a wide panel of biological assays, including
antimicrobial activity against Candida albicans, Escherichia coli, Staphylococcus aureus, Bacillus sp. and
Dickey azeae, and anti-proliferative activity against human breast adenocarcinoma cell line MCF-7,
human glioblastoma cell line SF-268 and human lung cancer cell line NCI-H460 by the methods
described below. As shown in Table 2, both compounds 1 and 2 were shown to be active against three
cancer cell lines. As a result, compound 1 exhibited moderate cytotoxicity against MCF-7, SF-268 and
NCI-H460 with IC50 values of 7.5, 7.9, 7.8 µg/mL, respectively. However, both the compounds were
inactive against the tested strains at the concentration of 20 µg/mL, even if the crude extract displayed
moderate antimicrobial activity (inhibiting the zone of 16 mm against C. albicans with 6 mm paper
discs at the concentration of 20 µg/mL).

Table 2. Cytotoxicities of 1 and 2 (IC50: µg/mL).

Cell Line 1 2 cis-Dichlorodiamine Platinum

MCF-7 7.5 >50 4.0
SF-268 7.9 >50 41.0

NCI-H460 7.8 >50 25.1

Concentration range: 1.56–100 µg/mL; IC50: half maximal inhibitory concentration.

3. Experimental Section

3.1. General

Melting points were measured on an X-5 micro-MP apparatus (Huayan Corporation, Shanghai,
China), uncorrected. Optical rotations were measured with a JASCO digital polarimeter (JASCO
Corporation, Tokyo, Japan). UV spectra were measured on a JASCO V-550 UV/VIS spectrometer
(JASCO Corporation, Tokyo, Japan). IR data were recorded with a Nicolet Impact 410-FTIR instrument
(Thermo, San Jose, CA, USA) in KBr pellets. HR-ESI-MS were acquired on an Agilent 6210 LC/MSD
TOF mass spectrometer (Agilent Technologies, Santa Clara, CA, USA). NMR spectra were measured
on a Bruker AV-300 and AV-600 spectrometer (Bruker Instrument, Inc., Zurich, Switzerland). Chemical
shifts were expressed in δ (ppm) and referenced to the NMR solvent used. X-ray crystallographic
analysis was performed on an X calibur, sapphires, Gemini ultra diffractometer (Oxford Diffraction Ltd.,
Tokyo, Japan). The crystal was kept at 173.00(10) K during data collection. Using Olex2, the structure
was solved with the ShelXS structure solution program using Direct Methods and refined with the
ShelXL refinement package using Least Squares minimisation. HPLC was performed on an Agilent
1200 HPLC system (Agilent Technologies, Palo Alto, CA, USA) equipped with a diode array detector,
using a column A (Ultimate XB-C18, 5 µm, 4.6 × 250 mm, Welch, Potamac, MA, USA) for analysis
and a semi-preparative HPLC column B (Ultimate XB-C18, 5 µm, 10 × 250 mm, Welch, Potamac, MA,
USA) for purification. Open column chromatography was performed on silica gel (300–400 mesh,
Qingdao Haiyang Chemical Group Corporation, Qingdao, China). Sephadex LH-20 (25–100 mm) was
purchased from Pharmacia (Uppsala, Sweden). HSGF254 silica gel TLC plates (0.2 mm thickness,
200 × 200 mm, Qingdao Marine Chemicals Co., Qingdao, China) were used for routine analysis of
fractions. Strains Candida albicans, Escherichia coli, Staphylococcus aureus, Bacillus sp., and Dickey azeae
were from the Institute of New Drug Research (Guangzhou, China) in our college.
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3.2. Strain Isolation and Identification

The isolation and activation of actinomycete strain H41-59; the identification of morphological
characteristics, physiological and chemical properties; the molecular genetic analysis and information
on storing the strain are mentioned in our previous report [16].

3.3. Fermentation and Isolation

Fermentation of strain H41-59 including condition and media compositions were reported in
our earlier paper [16]. The extract and partition procedure from fermentation material for the EtOAc
extract were introduced in the same paper. The ethyl acetate-soluble extract (50 g) was dissolved in
chloroform and loaded on the silica gel column (1.5 kg, 300–400 mesh, Qingdao, China) after filtration.
A stepwise gradient elution of petroleum ether-EtOAc (10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 2:8 and 0:10 (v/v))
was used, and 20 fractions (Fr-1 to Fr-20) were obtained through TLC analysis and combination of
fractions with same TLC pattern. Fr-6 was separated on Sephadex LH-20 (2 × 200 cm, CH2Cl2-MeOH,
1:1) and purified via semi-preparative HPLC (MeOH-H2O, 90:10) to yield two new natural products,
namely, 1 (10 mg) and 2 (3 mg).

Compound 1 (anandin A): colorless plate crystal; M.P. = 133–135 ◦C; [α]23
D −13.5◦ (c 0.25, CHCl3); UV

(MeOH) λmax (logε): 204.6 (3.88), 263.8 (3.73) nm; IR (KBr) νmax: 3382, 2958, 2930, 2871, 1666, 1650, 1372,
1300, 1191, 1111, 1015, 981, 620 cm−1; 1H NMR (CD3COCD3, 300 MHz) and 13C NMR (CD3COCD3,
75 MHz), see Table 1; HR-TOF-ESI-MS (positive) m/z 358.2752 [M + H]+ (calcd. for C23H36NO2, 358.2741).

Compound 2 (anandin B): white powder; M.P. = 129–131 ◦C; [α]23
D −15.1◦ (c 0.25, CHCl3); UV (MeOH)

λmax (logε): 208.2 (3.78) nm; IR (KBr) νmax: 3423, 2929, 2853, 1650, 1542, 1461, 1381, 1190, 1110, 620
cm−1; 1H NMR (CD3COCD3, 600 MHz) and 13C NMR (CD3COCD3, 150 MHz), see Table 1; HR-ESI-MS:
m/z 376.2860 [M + H]+ (calcd. for C23H38NO3, 376.2846).

3.4. Single-Crystal X-ray Data for Anandin A (1)

Crystal data (CCDC No. 1544792) for 1: C23H35NO2, M = 357.52, T = 100(2) K, monoclinic, space
group C2, a = 21.7844 (3) Å, b = 7.2393 (11) Å, c = 13.1475 (20) Å, α = 90.00◦, β = 93.2128 (13)◦, γ = 90.00◦,
V = 2070.15 (5) Å3, Z = 4, µ (Cu Kα) = 0.555 mm−1, 16,181 reflections measured, 3274 independent
reflections (Rint = 0.0282). The final R1 values were 0.0286 (I > 2σ (I)). The final wR (F2) values were
0.0747 (I > 2σ (I)). The final R1 values were 0.0290 (all data). The final wR (F2) values were 0.0750
(all data). The goodness of fit on F2 was 1.058. Flack parameter = 0.1 (2). Hooft parameter = 0.15 (6).

3.5. ECD Calculation

ECD calculations of Anandium B (2): The systematic random conformational analysis of two
possible stereoisomers (5R and 5S) of 2 was performed in the SYBYL 8.1 program by using a MMFF94s
molecular force field, which afforded 40 and 42 conformers for 5R and 5S respectively, with an energy
cutoff of 10 kcal mol−1 to the global minima. All the obtained conformers were further optimized
using DFT at the B3LYP/6-31+G (d) level in gas phase by using Gaussian09 software (Gaussian, Inc.,
Wallingford, CT, USA), and eight conformers of each stereoisomer were selected. All of the optimized
stable conformers were used for TDDFT (cam-B3LYP/6-31+G (d)) computation of the excited states at
the same levels, with consideration of the first 50 excitations. The overall ECD curves were weighted
by the Boltzmann distribution of each conformer (with a half-band width of 0.25 eV), with a UV
correction of 10 nm. The calculated ECD spectra of 5R and 5S of 2 were subsequently compared
with the experimental spectra, respectively. The ECD spectra were produced by SpecDis 1.6 software
(T. Bruhn, Y. Hemberger, A. Schaumlöffel, G. Bringmann, SpecDis version 1.6, University of Wuerzburg,
Wuerzburg, Germany).
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3.6. Biological Activities

3.6.1. Antimicrobial Activity

Antimicrobial evaluation of compounds 1 and 2 was performed following the same method and
procedure as in a previous paper [16].

3.6.2. Cytotoxicity Assay

Three cancer cell lines MCF-7, SF-268, and NCI-H460 were used for measuring the cytotoxicities
of compounds 1 and 2. For details on the procedure, we refer readers to our previous paper [16].
The 50% inhibition concentrations (IC50) of compounds 1 and 2 against the test cells were calculated
using Origin 8 software (OriginLab, Northampton, MA, USA).

4. Conclusions

Anandins A (1) and B (2) were obtained from the fermented mycelia of Sterptomyces anandii H41-59.
They have the same basic skeleton, and belong to a rare type of steroidal alkaloids. The structures
of 1 and 2 were elucidated on the basis of extensive spectroscopic data including HR-ESI-MS, NMR,
and X-ray crystallography for 1, and calculation chemistry for 2. To the best of our knowledge, 1 and
2 are the second reported compounds and second and third compounds with this type of structure.
Anandin A (1) exhibited moderate in vitro inhibitory activity against MCF-7, SF-268, and NCI-H460
cell lines by the MTT method. Neither 1 nor 2 showed any antibiotic activities against the test
pathogenic microorganisms.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/15/11/
355/s1, Figure S1: Spectra of compound 1; Figure S2: Spectra of compound 2; Table S1: X-ray diffraction data
compound 1.
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HR-ESI-MS High resolution electrospray ionization mass spectrometry
HSQC 1H-detected heteronuclear single-quantum coherence
MTT 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide
NMR Nuclear magnetic resonance
NOESY Nuclear overhauser effect spectroscopy
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