SUPPLEMENTARY MATERIAL

5-Alkylresorcinol Derivatives from the Bryozoan Schizomavella mamillata: Isolation, Synthesis, and Antioxidant activity

María J. Ortega, Juan J. Pantoja, Carolina de los Reyes and Eva Zubía*
Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real (Cádiz), Spain

Figure S1
Figure S2
Figure S3
Figure S4
Figure S5
Figure S6
Pages S7 and S8
Page S9
Page S10
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of schizol $\mathrm{A}(\mathbf{1})$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of schizol $\mathrm{B}(2)$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of schizol C (3)
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of schizol D (4)
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of schizol E (5)
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of schizol $\mathrm{F}(6)$
Synthesis of compound 7
${ }^{13} \mathrm{C}$ NMR data of compounds 8,8 , 9,10 and 11
${ }^{13} \mathrm{C}$ NMR data of compounds $\mathbf{1}^{\prime}, 13,14$ and $\mathbf{1 2}^{\prime}$

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right)$ of schizol $\mathrm{A}(\mathbf{1})$

${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}\right)$ of schizol $\mathrm{A}(\mathbf{1})$

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right)$ of schizol B (2)

${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}\right)$ of schizol $\mathrm{B}(\mathbf{2})$

${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}\right)$ of schizol C (3)

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right)$ of schizol $\mathrm{D}(4)$

${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}\right)$ of schizol $\mathrm{D}(4)$

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right)$ of schizol E (5)

[^0]
${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right)$ of schizol $\mathrm{F}(6)$

[^1]
Synthesis of compound 7

Compound 7-1:

To 10 g of butane-1,4-diol (111.1 mmol) were added, at rt and under stirring, 4.48 g of $\mathrm{KOH}(80.0 \mathrm{mmol})$ and 5.1 mL of benzyl chloride (44.4 mmol) in 4 portions along 1 h . After $4 \mathrm{~h}, 30 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}$ were added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The organic layers were combined, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 20$ mL) and brine (20 mL), dried under anhydrous MgSO_{4} and the solvent taken to dryness under reduced pressure, yielding 7.03 g of $\mathbf{7 - 1}(39.1 \mathrm{mmol}, 88 \%)$ as a colorless oil. ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.27(\mathrm{~m}$, $\left.5 \mathrm{H}, \mathrm{H}^{\prime}-\mathrm{H} 7^{\prime}\right), 4.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 1^{\prime}\right), 3.62(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1), 3.52(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4), 1.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 3), 1.67$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 2$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 128.3$ (C^{\prime} and C^{\prime}), 127.6 ($\mathrm{C}^{\prime}, \mathrm{C}^{\prime}$ and $\mathrm{C} 7^{\prime}$), 138.3 (C^{\prime}), 72.9 (C^{\prime}), 70.2 (C4), 62.5 (C1), 29.9 (C2), 26.5 (C3); IR (film, cm^{-1}) 3354, 3030, 2939, 2866, 1495, 1453, 1362, 1092, 736, 697; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}$: 203.1048 [M+Na] ${ }^{+}$, found: 203.1060.

Compound 7-2:

To a solution of 10 g of $7-1(55.6 \mathrm{mmol})$ and 17.48 g of $\mathrm{PPh}_{3}(66.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ was added 20.28 g of CBr_{4} (61.1 mmol). The resulting mixture was stirred at rt for 2 h and then was concentrated under reduced pressure to give a residue that was purified by CC (hexanes/Et2O 9:1) to yield compound 7-2 (10.93 g, 45.0 $\mathrm{mmol}, 81 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.27\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{\prime}-\mathrm{H} 7^{\prime}\right), 4.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 1^{\prime}\right), 3.52$ ($\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4$), 3.44 (t, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1$), 1.99 (m, 2H, H2), 1.78 (m, 2H, H3); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz , CDCl_{3}) $\delta 128.3$ (C^{\prime} and C^{\prime}), 127.6 ($\mathrm{C}^{\prime}, \mathrm{C}^{\prime}$ and $\mathrm{C} 7^{\prime}$), 138.4 (C^{\prime}), 72.9 ($\mathrm{C1}^{\prime}$), 69.2 (C 4), 33.7 (C 1), 29.7 (C 2), 28.3 (C3); IR (film, cm^{-1}) 3030, 2860, 1495, 1453, 1363, 1104, 736, 697; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}^{79} \mathrm{BrNa}$: 265.0204 [M+Na] ${ }^{+}$, found: 265.0205; calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}^{81} \mathrm{BrNa}$ 267.0184 [M+Na] ${ }^{+}$, found: 267.0182.

Compound 7:

928 mg of 7-2 (3.82 mmol) and 1.0 g of $\mathrm{PPh}_{3}(3.24 \mathrm{mmol})$ were heated overnight in an oven at $100{ }^{\circ} \mathrm{C}$ yielding 1.54 g of $7(3.05 \mathrm{mmol}, 80 \%)$ as an amorphous white solid. ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72-7.64$ (m, 9H, -PPh3), 7.60-7.54 (m, 6H, -PPh3), 7.20-7.12 (m, 5H, H3'-H7'), 4.36 (s, 2H, H1'), 3.66 (m, 2H, H1), 3.50 (t, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4), 1.89(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 3), 1.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 2) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.1\left(\mathrm{C} 2^{\prime}\right), 134.7,133.3$, 130.2 (PPh 3), 128.0 (C^{\prime} and C^{\prime}), 127.4 ($\mathrm{C3}^{\prime}, \mathrm{C}^{\prime}$ and C^{\prime}), 118.0 (PPh^{\prime}), 72.5 ($\mathrm{C1}^{\prime}$), 68.5 (C 4), 29.3 (d, $\mathrm{J}=16.2$ $\mathrm{Hz}, \mathrm{C} 3), 21.6(\mathrm{~d}, J=50.3 \mathrm{~Hz}, \mathrm{C} 1), 19.3(\mathrm{~d}, J=3.9 \mathrm{~Hz}, \mathrm{C} 2)$; IR (film, cm^{-1}) 3055, 2866, 1587, 1438, 1113, 723, 691; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{OP}: 425.2034$ [M-Br] ${ }^{+}$, found: 425.2040 .

Compound 8 (isomer E): ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.9$ (C^{\prime} and C^{\prime}), 139.8 (C^{\prime}), 138.6 ($\mathrm{C}^{\prime \prime}$), 130.8 (C2), 130.2 (C 1), 128.3 ($\mathrm{C} 4^{\prime \prime}$ and $\mathrm{C}^{\prime \prime}$), 127.6 ($\mathrm{C}^{\prime \prime}$ and $\mathrm{C}^{\prime \prime}$), 127.5 ($\mathrm{C} 5^{\prime \prime}$), 104.0 (C^{\prime} and $\mathrm{C} 6^{\prime}$), 98.8 ($\mathrm{C} 4^{\prime}$), 72.9 (C1"), 69.6 (C5), 55.3 (-OMe), 29.6 (C3), 29.3 (C4).

Compound 8^{\prime} (isomer Z): ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.5$ (C^{\prime} and C^{\prime}), 139.4 ($\mathrm{C1}^{\prime}$), 138.5 ($\mathrm{C}^{\prime \prime}$), 132.6 (C2), 129.3 (C1), 128.3 ($\mathrm{C}^{\prime \prime}$ and C6'), 127.5 ($\mathrm{C}^{\prime \prime}$ and $\mathrm{C} 7^{\prime \prime}$), 127.4 ($\mathrm{C} 5^{\prime \prime}$), 106.8 (C^{\prime} and $\mathrm{C} 6^{\prime}$), 98.8 (C^{\prime}), 72.9 (C1"), 69.7 (C5), 55.2 (-OMe), 29.9 (C4), 25.4 (C3).

Compound 9: ${ }^{13} \mathrm{C}$-NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.6$ (C^{\prime} and C^{\prime}), 144.9 ($\mathrm{C1}^{\prime}$), 106.4 (C^{\prime} and Cb^{\prime}), 97.5 (C4'), 62.7 (C1), 55.1 (-OMe), 36.1 (C5), 32.5 (C2), 32.0 (C4), 25.3 (C3).

Compound 10: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.7$ (C^{\prime} and C^{\prime}), 130.0-123.8 (Ph), 154.4 ($\mathrm{C1}^{\prime \prime}$), 144.6 ($\mathrm{C1}^{\prime}$), 133.7 (Ph), 106.9 (C^{\prime} and C^{\prime}), 97.7 (C^{\prime}), 55.2 (-OMe), 35.9 (C5), 33.2 (C1), 30.5 (C4), $29.0(\mathrm{C} 2), 28.1(\mathrm{C} 3)$.

Compound 11: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.7$ (C^{\prime} and C^{\prime}), 131.4-125.0 (Ph), 153.4 ($\left.\mathrm{C1}^{\prime \prime}\right)$, 144.1 ($\mathrm{C1}^{\prime}$), $133.0(\mathrm{Ph}), 106.4\left(\mathrm{C}^{\prime}\right.$ and $\left.\mathrm{C}^{\prime}\right)$, 97.8 (C^{\prime}), $55.9(\mathrm{C} 1)$, $55.2(\mathrm{OMe}), 35.6(\mathrm{C} 5), 30.4(\mathrm{C} 4), 27.6(\mathrm{C} 3), 21.9(\mathrm{C} 2)$.

Compound 1': ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3$ (C 1 and C 3), 146.2 (C5), 142.6 ($\mathrm{C} 1^{\prime \prime}$), 142.5 (C^{\prime}), 129.5 (C2' and C6'), 129.1 ($\mathrm{C}^{\prime \prime}$ and C5' $)$, 128.3 (C^{\prime}), 127.5 ($\mathrm{C}^{\prime \prime}$), 107.9 (C4 and C6), 100.9 (C2), 42.5 (C7'), 36.7 ($\mathrm{C} 1^{\prime}$), 31.8 (C^{\prime}), $30.7\left(\mathrm{C}^{\prime}\right)$, $29.6\left(\mathrm{C} 4^{\prime}\right), 22.2\left(\mathrm{C} 8^{\prime}\right), 13.9\left(\mathrm{C} 9^{\prime}\right)$.

Compound 13: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.7$ (C^{\prime} and C^{\prime}), 144.6 ($\mathrm{C1}^{\prime}$), 106.4 (C^{\prime} and C^{\prime}), 97.6 (C^{\prime}), 55.2 (-OMe), 35.9 (C5), 33.7 (C1), 32.6 (C2), 30.3 (C4), 27.7 (C3).

Compound 14: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.6$ (C^{\prime} and C^{\prime}), 144.5 ($\mathrm{C1}^{\prime}$), 134.9 ($\mathrm{d}, \mathrm{J}=3.2 \mathrm{~Hz}, \mathrm{C} 4^{\prime \prime}$), 133.5 ($\mathrm{d}, J=12.3 \mathrm{~Hz}, \mathrm{C} 2^{\prime \prime}$ and $\mathrm{C}^{\prime \prime}$), $130.4\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, \mathrm{C} 3^{\prime \prime}\right.$ and $\mathrm{C}^{\prime \prime}$), $118.2\left(\mathrm{~d}, J=85.42 \mathrm{~Hz}, \mathrm{C} 1^{\prime \prime}\right), 106.3\left(\mathrm{C} 2^{\prime}\right.$ and C6'), 97.7 (C4'), 35.7 (C5), 30.6 (C4), $29.8(d, J=15.5 \mathrm{~Hz}, \mathrm{C} 3), 22.7(\mathrm{~d}, J=49.8 \mathrm{~Hz}, \mathrm{C} 1), 22.4(\mathrm{~d}, J=4.5 \mathrm{~Hz}, \mathrm{C} 2)$.

Compound 12': ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.6$ (C 1 and C 3), 145.2 (C5), 141.5 ($\mathrm{C1}^{\prime \prime}$), 140.9 (C^{\prime}), 128.4 ($\mathrm{C}^{\prime \prime}$ and $\mathrm{C}^{\prime \prime}$), 127.9 ($\mathrm{C}^{\prime \prime}$ and $\mathrm{C}^{\prime \prime}$), 127.1 (C^{\prime}), 126.2 ($\mathrm{C} 4^{\prime \prime}$), 106.4 (C 4 and C 6), 97.6 (C2), 41.4 (C^{\prime}), 36.0 (C1'), 30.6 (C^{\prime}), $29.7\left(\mathrm{C}^{\prime}\right)$, $28.6\left(\mathrm{C} 4^{\prime}\right), 21.2\left(\mathrm{C} 8^{\prime}\right), 13.6\left(\mathrm{C} 9^{\prime}\right)$.

[^0]: ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}\right)$ of schizol $\mathrm{E}(5)$

[^1]: ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}\right)$ of schizol $\mathrm{F}(6)$

