SUPPLEMENTARY MATERIAL

5-Alkylresorcinol Derivatives from the Bryozoan *Schizomavella mamillata*: Isolation, Synthesis, and Antioxidant activity

María J. Ortega, Juan J. Pantoja, Carolina de los Reyes and Eva Zubía*

Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real (Cádiz), Spain

Figure S1	¹ H and ¹³ C NMR spectra of schizol A (1)
Figure S2	¹ H and ¹³ C NMR spectra of schizol B (2)
Figure S3	¹ H and ¹³ C NMR spectra of schizol C (3)
Figure S4	¹ H and ¹³ C NMR spectra of schizol D (4)
Figure S5	¹ H and ¹³ C NMR spectra of schizol E (5)
Figure S6	¹ H and ¹³ C NMR spectra of schizol F (6)
Pages S7 and S8	Synthesis of compound 7
Page S9	^{13}C NMR data of compounds 8, 8', 9, 10 and 11
Page S10	¹³ C NMR data of compounds 1', 13, 14 and 12'

Page S7

7-1

PhCH₂CI

Compound 7-2:

To a solution of 10 g of 7-1 (55.6 mmol) and 17.48 g of PPh₃ (66.7 mmol) in CH₂Cl₂ at 0 °C was added 20.28 g of CBr₄ (61.1 mmol). The resulting mixture was stirred at rt for 2h and then was concentrated under reduced pressure to give a residue that was purified by CC (hexanes/Et₂O 9:1) to yield compound 7-2 (10.93 g, 45.0 mmol, 81%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃) δ 7.38-7.27 (m, 5H, H3'-H7'), 4.51 (s, 2H, H1'), 3.52 (t, *J* = 6.2 Hz, 2H, H4), 3.44 (t, *J* = 6.7 Hz, 2H, H1), 1.99 (m, 2H, H2), 1.78 (m, 2H, H3); ¹³C-NMR (100 MHz, CDCl₃) δ 128.3 (C4' and C6'), 127.6 (C3', C5' and C7'), 138.4 (C2'), 72.9 (C1'), 69.2 (C4), 33.7 (C1), 29.7 (C2), 28.3 (C3); **IR** (film, cm⁻¹) 3030, 2860, 1495, 1453, 1363, 1104, 736, 697; **HRMS** (ESI) calcd for C₁₁H₁₅O⁷⁹BrNa: 265.0204 [M+Na]⁺, found: 265.0205; calcd for C₁₁H₁₅O⁸¹BrNa: 267.0184 [M+Na]⁺, found: 267.0182.

Compound 7:

928 mg of **7-2** (3.82 mmol) and 1.0 g of PPh₃ (3.24 mmol) were heated overnight in an oven at 100 °C yielding 1.54 g of **7** (3.05 mmol, 80%) as an amorphous white solid. ¹**H-NMR** (400 MHz, CDCl₃) δ 7.72-7.64 (m, 9H, -PPh₃), 7.60-7.54 (m, 6H, -PPh₃), 7.20-7.12 (m, 5H, H3'-H7'), 4.36 (s, 2H, H1'), 3.66 (m, 2H, H1), 3.50 (t, *J* = 5.7 Hz, 2H, H4), 1.89 (m, 2H, H3), 1.69 (m, 2H, H2); ¹³**C-NMR** (100 MHz, CDCl₃) δ 138.1 (C2'), 134.7, 133.3, 130.2 (PPh₃), 128.0 (C4' and C6'), 127.4 (C3', C5' and C7'), 118.0 (PPh₃), 72.5 (C1'), 68.5 (C4), 29.3 (d, *J* = 16.2 Hz, C3), 21.6 (d, *J* = 50.3 Hz, C1), 19.3 (d, *J* = 3.9 Hz, C2); **IR** (film, cm⁻¹) 3055, 2866, 1587, 1438, 1113, 723, 691; **HRMS** (ESI) calcd for C₂₉H₃₀OP: 425.2034 [M-Br]⁺, found: 425.2040.

Page S9

Compound **8 (isomer** *E***):** ¹³**C-NMR** (100 MHz, CDCl₃) δ 160.9 (C3' and C5'), 139.8 (C1'), 138.6 (C2''), 130.8 (C2), 130.2 (C1), 128.3 (C4'' and C6''), 127.6 (C3'' and C7''), 127.5 (C5''), 104.0 (C2' and C6'), 98.8 (C4'), 72.9 (C1''), 69.6 (C5), 55.3 (-OMe), 29.6 (C3), 29.3 (C4).

Compound **8' (isomer Z):** ¹³C-NMR (100 MHz, CDCl₃) δ 160.5 (C3' and C5'), 139.4 (C1'), 138.5 (C2''), 132.6 (C2), 129.3 (C1), 128.3 (C4'' and C6''), 127.5 (C3'' and C7''), 127.4 (C5''), 106.8 (C2' and C6'), 98.8 (C4'), 72.9 (C1''), 69.7 (C5), 55.2 (-OMe), 29.9 (C4), 25.4 (C3).

Compound **9:** ¹³**C-NMR:** (100 MHz, CDCl₃) δ 160.6 (C3' and C5'), 144.9 (C1'), 106.4 (C2' and C6'), 97.5 (C4'), 62.7 (C1), 55.1 (-OMe), 36.1 (C5), 32.5 (C2), 32.0 (C4), 25.3 (C3).

Compound **10**: ¹³C-NMR (100 MHz, CDCl₃) δ 160.7 (C3' and C5'), 130.0-123.8 (Ph), 154.4 (C1''), 144.6 (C1'), 133.7 (Ph), 106.9 (C2' and C6'), 97.7 (C4'), 55.2 (-OMe), 35.9 (C5), 33.2 (C1), 30.5 (C4), 29.0 (C2), 28.1 (C3).

Compound **11**: ¹³C-NMR (100 MHz, CDCl₃) δ 160.7 (C3' and C5'), 131.4-125.0 (Ph), 153.4 (C1''), 144.1 (C1'), 133.0 (Ph), 106.4 (C2' and C6'), 97.8 (C4'), 55.9 (C1), 55.2 (OMe), 35.6 (C5), 30.4 (C4), 27.6 (C3), 21.9 (C2).

Page S10

Compound **1'**: ¹³C-NMR (150 MHz, CDCl₃) δ 159.3 (C1 and C3), 146.2 (C5), 142.6 (C1''), 142.5 (C6'), 129.5 (C2'' and C6''), 129.1 (C3'' and C5''), 128.3 (C5'), 127.5 (C4''), 107.9 (C4 and C6), 100.9 (C2), 42.5 (C7'), 36.7 (C1'), 31.8 (C2'), 30.7 (C3'), 29.6 (C4'), 22.2 (C8'), 13.9 (C9').

Compound **13**: ¹³**C-NMR** (100 MHz, CDCl₃) δ 160.7 (C3' and C5'), 144.6 (C1'), 106.4 (C2' and C6'), 97.6 (C4'), 55.2 (-OMe), 35.9 (C5), 33.7 (C1), 32.6 (C2), 30.3 (C4), 27.7 (C3).

Compound **14**: ¹³**C-NMR** (100 MHz, CDCl₃) δ 160.6 (C3' and C5'), 144.5 (C1'), 134.9 (d, *J* = 3.2 Hz, C4''), 133.5 (d, *J* = 12.3 Hz, C2'' and C6''), 130.4 (d, *J* = 12.3 Hz, C3'' and C5''), 118.2 (d, *J* = 85.42 Hz, C1''), 106.3 (C2' and C6'), 97.7 (C4'), 35.7 (C5), 30.6 (C4), 29.8 (d, *J* = 15.5 Hz, C3), 22.7 (d, *J* = 49.8 Hz, C1), 22.4 (d, *J* = 4.5 Hz, C2).

Compound **12'**: ¹³**C-NMR** (100 MHz, CDCl₃) δ 160.6 (C1 and C3), 145.2 (C5), 141.5 (C1''), 140.9 (C6'), 128.4 (C2'' and C6''), 127.9 (C3'' and C5''), 127.1 (C5'), 126.2 (C4''), 106.4 (C4 and C6), 97.6 (C2), 41.4 (C7'), 36.0 (C1'), 30.6 (C2'), 29.7 (C3'), 28.6 (C4'), 21.2 (C8'), 13.6 (C9').