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Abstract: The absolute quantification of five toxins involved in ciguatera fish poisoning (CFP) in 
the Pacific was carried out by quantitative 1H-NMR. The targeted toxins were ciguatoxin-1B 
(CTX1B), 52-epi-54-deoxyciguatoxin-1B (epideoxyCTX1B), ciguatoxin-3C (CTX3C), 
51-hydroxyciguatoxin-3C (51OHCTX3C), and ciguatoxin-4A (CTX4A). We first calibrated the 
residual protons of pyridine-d5 using certified reference material, 1,4-BTMSB-d4, prepared the toxin 
solutions with the calibrated pyridin-d5, measured the 1H-NMR spectra, and quantified the toxin 
using the calibrated residual protons as the internal standard. The absolute quantification was 
carried out by comparing the signal intensities between the selected protons of the target toxin and 
the residual protons of the calibrated pyridine-d5. The proton signals residing on the ciguatoxins 
(CTXs) to be used for quantification were carefully selected for those that were well separated from 
adjacent signals including impurities and that exhibited an effective intensity. To quantify CTX1B 
and its congeners, the olefin protons in the side chain were judged appropriate for use. The 
quantification was achievable with nano-molar solutions. The probable errors for uncertainty, 
calculated on respective toxins, ranged between 3% and 16%. The contamination of the precious 
toxins with nonvolatile internal standards was thus avoided. After the evaporation of pyridine-d5, 
the calibrated CTXs were ready for use as the reference standard in the quantitative analysis of 
ciguatoxins by LC/MS. 
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1. Introduction 

Ciguatera fish poisoning (CFP) refers to a peculiar form of neurologic poisoning resulting from 
the ingestion of fish inhabiting warm water regions. Though the mortality rate is low, the morbidity 
rate for CFP is the highest among the poisoning of natural etiology, with an estimated number of 
around 50,000 patients annually [1]. In the Pacific, the causative toxins, named ciguatoxins (CTXs), 
are produced by microalgae, Gambierdiscus spp., and accumulate in various species of fish via the 
food chain [2]. The toxicity of individual fish is unpredictable and markedly fluctuates, as the 
population of the causative alga and feeding history of fish can greatly vary [3]. To protect human 
health and avoid serious economic loss due to the implication of commercially important species, 
proper measures to detect toxins are highly desired. Mouse bioassays [4] have been the routine 
practice to detect CTXs since early days but need to be substituted by other methods of higher 
sensitivity and specificity, not to mention the call to limit animal use for routine assays. Previously, 
we proposed using an LC/MS method as an alternative and successfully revealed the details of 
regional and species variations of toxin profiles in fish and causative algae [5]. The method is highly 
sensitive and produces accurate data, but we have to clear three hurdles to promote its wide use. 
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First, we have to quantify extremely low concentrations of the toxins. The consensus on the 
regulation level is 0.01 ppb for ciguatoxin 1B or its equivalent in flesh [6]. Even higher is the second 
hurdle to prepare pure toxins to be used as standards. The major toxin, ciguatoxin-1B, needed four 
tons of toxic fish collected over ten years to obtain 0.35 mg. Much effort had to be continued, 
therefore, to prepare toxins of less abundance. The final problem to be solved was how to quantify 
such minute samples. The toxins have no chromophore. Complete drying for weighing is defied 
because recovery from the vessel surface becomes difficult. Therefore, we chose a quantitative 
1H-NMR (qNMR) method for quantitation [7]. The foreseeable problems in NMR were the small 
samples, multiple and often overlapping proton signals, the large ladder-shape structure comprising 
stereo-flexible medium size rings (seven, eight, and nine membered), and the large signals of water 
that remain in the samples. The routine practice of using Certified Reference Material (CRM) as an 
internal standard [8] was disfavored to avoid the contamination of the target toxins with the 
nonvolatile CRMs. Instead, we used CRM to quantify the residual protons in pyridine-d5 and 
subsequently used the calibrated pyridine-d5 as the secondary inner standard to quantify the CTXs. 
Ciguatoxins present in fish in the Pacific consist of two groups differing in their skeletal structures, 
ciguatotoxin-1B type, and ciguatoxin-3C type. Hence, the selection of suitable protons in each type is 
required for quantification. We carried out the NMR measurements, meticulously choosing the 
parameters. The quantity of each CTX was calculated by employing the signal area ratio accurately 
integrated between the CTXs and calibrated pyridine-d5 proton signals. Thus, we achieved, for the first 
time, the quantification of five toxins important in monitoring fish toxicity in the Pacific (Figure 1): 
CTX1B, epideoxyCTX1B, CTX3C, 51OHCTX3C, and CTX4A. The calibrated toxins will serve as an 
invaluable tool to identify and quantify the toxins in fish that have remained elusive in the past. A 
great contribution is expected to toxicology, epidemiology, environmental studies, and commercial 
fisheries. 

 
Figure 1. Structure of CTXs. CTX1B, Chemical Formula: C60H86O19, Molecular Weight: 1111.31; 
deoxyCTX1B, Chemical Formula: C60H86O18, Molecular Weight: 1095.31; CTX3C, Chemical Formula: 
C57H82O16, Molecular Weight: 1023.25; 51OHCTX3C, Chemical Formula: C57H82O17, Molecular 
Weight: 1039.25; CTX4A, Chemical Formula: C60H84O16, Molecular Weight: 1061.2994. 
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2. Results 

2.1. Determination of the Residual Proton Content of Pyridine-d5 and Purity Calculation 

The 1H-NMR spectrum of pyridine-d5 (Figure 2) exhibited three residual proton signals arising 
from H-2 and H-6 (8.76 ppm), H-4 (7.61 ppm), and H-3 and H-5 (7.24 ppm). The residual proton 
content in pyridine-d5 was calculated by 1H-NMR experiments using 1,4-BTMSB-d4 as the internal 
standard, based on the following Equation (1): 
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where ValueA is the quantity of the residual proton in the pyridine-d5; IA is the area ratio of each 
individual (define ratio) signal arising from the residual proton; IIS is the area ratio of the internal 
standard; NIS is the number of protons of the internal standard; NA is the number of protons of the 
residual proton; MA is the mole weight of the residual proton, calculated by employing C5H5N as 
the chemical formula; MIS is the mole weight of the internal standard; WIS is the weight of the 
internal standard; WA is the weight of the pyridine-d5; and PIS is the purity of the internal standard. 

 
Figure 2. Scheme for the indirect determination of CTX and for keeping the traceability to 
International System of Units (SI) using qNMR by employing volatile substances as the internal 
standard. The upper spectrum exhibits the residual proton signals of pyridine-d5, and an internal 
standard signal of 1,4-BTMSB-d4. The lower spectrum exhibits signals of CTX and an internal 
standard signal of residual proton. The signal intensity of the residual proton contained in the 
CTXs/pyridine-d5 solution was approximately 30 when the signal of 1,4-BTMSB-d4 was taken as 100. 

The quantity of each residual proton signal in pyridine-d5 calculated was determined to be 
0.149%, 0.159%, and 0.153%, respectively. Those residual proton signals showed good repeatability 
(relative standard deviations (RSD) ranged from 0.30% to 0.33%) between the content of five 
ampoules, indicating the validity of the signals as internal standards. In the same production lot of 
ampoules, the residual proton of pyridine-d5 was stably included in a fixed amount. Thus, the use of 
the same lot of pyridine-d5 ampoules as an internal standard solution was enabled. On the other 
hand, the dispersion between three signals was as large as 3.1% RSD, and it was considered that the 
deuteration ratio differs for each position of pyridine. The residual proton amount was not averaged 
among the signals and was used as an individual value. 

The pre-calibrated pyridine-d5 ensures an ability to trace an absolute quantity of the CTX 
standards to the SI units. Of the three signals of the residual protons, two signals at a higher field 
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(7.61 and 7.24 ppm) were overlapped with the hydroxy protons of 11-OH and 47-OH in CTX1B or 
7-OH and 44-OH of CTX3C and thus judged unsuitable for use as the internal standard. Being free of 
contamination, the signal at 8.43 ppm (H-2, H-6) was judged appropriate for calculation (Figure 2). 

2.2. Quantification of Respective CTXs 

The 1H-NMR spectra of CTX1B, epideoxyCTX1B, and CTX4A are shown in Figure 3. The 
signals, though congested, were assignable based on the reference [9,10]. Apparently, the signals 
suitable for quantitative use are limited to a few arising from the protons of olefins and hydroxyls. 
They are moderately well separated from the congested signals of the protons on the skeletal 
structures. The separation between the olefin and hydroxyl proton signals was best achieved by 
measuring at 5 °C. The signals B and D, characteristic to the 3-butene-diol side-chain of the CTX1B 
and epideoxyCTX1B, feature narrow line widths and sufficient intensity to make them suitable for 
calculation. Calculations based on these signals placed the content at 0.14 mg (0.2% RSD) for CTX1B 
and 0.06 mg (0.5% RSD) for epideoxyCTX1B. Similarly, signals A and C, arising from 2-OH located 
in the lower-magnetic field, had narrow line widths and adequate intensity. The CTX content 
calculated therefrom was almost a complete match with those from the aforementioned signals B 
and D. The accuracy of the quantification was thus supported (Table 1). The protons that produced 
signals A, B, C, and D do not belong to the polyether rings but reside on the side chains. Unlike the 
protons on the cyclic rings, the protons on the side-chain are less susceptible to the conformational 
changes of the skeletal rings and, therefore, the broadening of the signals is reduced. The 
characteristic multiplet signals, F and G, arising from the 1,3-diene of the side chain in CTX4A also 
feature narrow line widths suitable for the CTX4A quantification. However, the multiple line shape 
resulted in low signal intensity and inevitably led to a large dispersion of the quantitative value 
(0.07 mg; 2.3% RSD), as compared with the value obtained on an equivalent concentration of 
epideoxyCTX1B (0.06 mg; 0.5% RSD). 

 
Figure 3. The 1H-NMR spectra of CTX1B, epideoxyCTX1B, and CTX4A. The parameters and 
conditions for the measurements are set as follows: CTX1B, instrument; Varian NMR System 500; 
data point, 65,536; pre scans, two times; number of scans, 512 times; relaxation delay, 60 s; 
temperature, 5 °C; acquisition time, 4 s. For epideoxyCTX1B; instrument, Varian NMR System 500; 
data point, 65,536; pre scans, two times; number of scans, 2048 times; relaxation delay, 60 s; 
temperature, 5 °C; acquisition time, 4 s. For CTX4A; instrument, Varian NMR System 500; data point, 
65,536; pre scans, two times; number of scans, 3072 times; relaxation delay, 60 s; temperature, 5 °C; 
acquisition time, 4 s. 
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Table 1. The quantities of CTX1B, deoxyCTX1B, and CTX4A. 

Compounds Signals Assign of Signals S/N Signal Intensity Quantitative Value (mg)

CTX1B 
A Hydroxyl group 2 28 - 0.1374 ± 0.0012 
B Olefin 3, 4 68 0.25 0.1381 ± 0.0003 

deoxyCTX1B 
C Hydroxyl group 2 11 - 0.0590 ± 0.0017 
D Olefin 3, 4 48 0.11 0.0586 ± 0.0003 

CTX4A 
E Hydroxyl group 47 14 - 0.0832 ± 0.0007 
F 1,3-diene 3 20 0.075 0.0794 ± 0.0018 
G 1,3-diene 2 20 - 0.0743 ± 0.0017 

The quantitative values were calculated using signals A to G in Figure 3. The signal intensity was 
expressed as a signal of 1,4-BTMSB-d4 as 100. Signals B of CTX1B, D of deoxyCTX1B, and F and G of 
CTX4A were used for the final quantification. 

CTX3C and 51OHCTX3C lack the side chain useful for the quantification of the 
aforementioned CTXs. All the protons were tested for suitability for quantitative determination 
(Table 2). The CTX3C content was calculated to be 0.41 mg (0.9% RSD) using the signal H (44-OH), 
as shown in Figure 4. The hydrogen-bond formation of hydroxyl protons gave rise to a wide variety 
of line shapes. Nevertheless, the signals were narrow and sufficiently strong and produced values 
more accurate than those obtained from other signals (I and J). Since the 44-OH signal of 
51OHCTX3C was observed to have significant overlaps with impurities, the calculation was 
performed using the methylene proton signals K (H-17) positioned at 2.9 ppm. The amount of 
51OHCTX3C was calculated to be 0.013 mg (1.5% RSD), but we concluded that the 500-MHz NMR 
instrument does not provide enough sensitivity to the small sample of only one-tenth the quantity 
of CTX1B. Therefore, we carried out measurements using an 800-MHz NMR instrument equipped 
with a cryogenically-cooled probe. The quantities of 51OHCTX3C could be determined down to 
0.011 mg using the amplified signals L (H-38, 42), M (H-22, 25), and N (H-17), as shown in Figure 5. 

Table 2. The quantities of CTX3C and 51OHCTX3C. 

Compounds Signals Assign of Signals S/N Signal Intensity Quantitative Value (mg) 

CTX3C 
H Hydroxyl group 44 81 0.40 0.4060 ± 0.0038 
I Olefin 2, 3, 13, 14, 18, 19, 23, 24 - - 0.4408 ± 0.0018 
J 17-H 37 - 0.4243 ± 0.0067 

51OHCTX3C 

K 17-H <10 0.013 0.0134 ± 0.0002 
L 38, 42-H 25 - 0.01089 
M 22, 25-H 10 - 0.01230 
N 17-H 10 - 0.01085 

The quantitative values were calculated using the signals H to K in Figure 4 and Lt o N in Figure 5. 
The signal intensity was expressed as a signal of 1,4-BTMSB-d4 as 100. Signals H of CTX3C and L to 
N of 51OHCTX3C were used for the final quantification. 
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Figure 4. The 1H-NMR spectra of CTX3C and 51OHCTX3C. The parameters and conditions for the 
measurements are given below. CTX3C: Instrument, Varian NMR System 500; data point, 65,536; 
pre scans, two times; number of scans, 512 times; Relaxation delay, 60 s; temperature, 25 °C; 
Acquisition time, 4 s. 51OHCTX3C: Instrument, Varian NMR System 500; data point, 65,536; pre 
scans, two times; number of scans, 1280 times; Relaxation delay, 60 s; temperature, 5 °C; Acquisition 
time, 4 s. 

 
Figure 5. The 1H-NMR spectrum of 51OHCTX3C using high magnetic field NMR. Instrument, 
JNM-ECA800 with cryogenically cooled probe (Jeol Ltd., Tokyo, Japan); irradiation frequency, 
800.14 MHz; data point, 65,536; pre scans, 32 times; number of scans, 512 times; Relaxation delay, 
56.7 s; temperature, 5 °C; Acquisition time, 3.3 s.  

3. Discussion 

Since ciguatera fish poisoning is the largest category of food poisoning of natural etiology, it 
has stimulated scientists to test and propose various testing methods. The use of anti-toxin 
antibodies faces problems arising from the abundance of structurally variant congeners. The 
functional assay based on the specific binding of the toxins to the voltage-dependent sodium 
channel uses a radio-active ligand, which requires strict regulatory control. The function based 
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cytotoxicity assay provides the highest sensitivity. However, the practical merit of the method 
awaits future validation on various fish species. The rapid progress in LC/MS analysis promises its 
potential due to its sensitivity and accuracy. In all analytical methods, including LC/MS, the use of a 
reliable standard is imperative. Nevertheless, the preparation of CTXs standards is a great challenge 
for two reasons. First, the availability of CTXs is extremely limited because most CTXs are the 
metabolites of fish and unavailable in algal cultures. The second problem is related to the 
technology itself. Containing 82 to 86 protons, CTXs produce congested and partially overlapped 
NMR signals. Many flexible rings in the structure allow multiple conformers that lead to the 
broadening of signals. Despite these difficulties, the qNMR method successfully achieved the 
quantification of CTX1B, epideoxyCTX1B, CTX4A, CTX3C, and 51OHCTX3C by choosing the 
proper signals. The olefinic protons arising from side chains were preferred to those on the 
polyether rings to avoid broadened signals, enabling quantification down to 0.06 mg (deoxyCTX1B) 
with high accuracy. The absence of the side-chain in CTX3C and its analogues made us newly select 
other protons. After vigorous testing of every signal, we found the signals arising from 44-OH and 
H-17 to possess the necessary quality for qNMR. The quantity of 51OHCTX3C amounted to only 
1/40 of CTX3C, which was too small to produce valid signals on a 500-MHz instrument. The high 
field 800-MHz NMR instrument equipped with a cryogenically-cooled probe could quantify CTXs 
down to 0.01 mg. CTXs thus quantified are planned to be used as standards in LC/MS 
measurements.  

After the measurement of the NMR spectra, each CTX reference standard solution was 
individually prepared by diluting the CTX test solution with methanol. The CTX reference standard 
solution was dispensed in small aliquots into small glass vials, and the solvent was removed by a 
drying operation. To prevent the nonspecific adsorption of CTXs onto the glass wall surface, a very 
small amount of ethanol was added to each vial. 

4. Materials and Methods 

4.1. Materials 

CTX1B, CTX3C, CTX4A, eipdeoxyCTX1B, and C51OHCTX3C used in previous 
structure-works were used. NMR test tubes with 5 mm outer diameters were purchased from 
Kusano Science Co. (Tokyo, Japan). Pyridine-d5 (99.8% deuterium content) was obtained from 
Merck KGaA (Darmstadt, Germany), and the CRM,1,4-bis(trimethylsilyl)benzene-d4 (1,4-BTMSB-d4, 
purity 99.8%, expanded uncertainty was 0.5%, k = 2), was from Wako Pure Chemical Industries, 
Ltd. (Osaka, Japan). 

4.2. Apparatus 

The experimental set up was composed of a semi-micro balance (AG285 or MS205DU, 
Mettler-Toledo, Greifensee, Switzerland), an ultra-micro balance (MSE2.7S, Sartorius AG, 
Göttingen, Germany), and an NMR spectrometer equipped with a Varian 5-mm indirect probe 
(Varian NMR System 500, Varian Technologies, Palo Alto, CA, USA). 

4.3. Determination of the Residual Proton Content in Pyridine-d5 

Accurately weighed 1,4-BTMSB-d4 CRM (1.0197–1.5668 mg) was mixed with pyridine-d5 
(0.77421–0.80378 g) to afford test solutions of 1,4-BTMSB-d4 CRM (N = 5). The accurate quantity of 
pyridine-d5 was pre-determined by weighing the ampule before and after taking out pyridine-d5. 
The residual protons of pyridine-d5 were quantified by comparing the signal intensity with that of 
CRM. 
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4.4. Preparation of Test Solutions of CTX 

CTX1B was dissolved in an ampule of pyridine-d5 to afford test solutions of CTX1B. The 
accurate amount of pyridine-d5 (0.79830 g) used for the test solution was determined by weighing 
with a semi-micro balance. The other CTXs were dissolved in 1 mL of pyridine-d5 to afford test 
solutions of CTX. The accurate amount of pyridine-d5 (1.04616–1.05397 g) used for each test solution 
was determined by weighing with a semi-micro balance. A 600 µL portion of the test solution was 
transferred into a NMR test tube for the measurement of the 1H-NMR spectrum. 

4.5. 1H-NMR Measurements 

The relaxation delay was set at six times the longest relaxation time (T1) of the pyridine signals 
to recover over 99% of z-magnetization [7]; T1 was pre-determined by an inversion-recovery test. 
The following settings were used for the qNMR experiments: irradiation frequency, 499.87 MHz; 
acquisition time, 4 s; relaxation delay, 60 s; probe temperature, 5 or 25 °C; spectral width, 40 ppm; 
FID data points, 161,290; number of scans, eight to 2560; spinning, off; dummy scans, two times; 13C 
decoupling, MPF8; pulse angle, 90°; pulse width, 10.4 µs. 

4.6. Data Processing 

The data was processed with VnmrJ software ver. 2.3, supplied by the manufacturer (Varian 
Technologies, Palo Alto, CA, USA). Fourier transformation was performed on 262,144 data points 
without using window functions. All proton chemical shifts were referenced to a residual proton 
signal at positions 2 and 6 in pyridine-d5 at 8.765 ppm. The phase of all spectra was collected 
manually while observing a spectral line shape. The baseline of spectra was adjusted horizontality, 
and each signal area ratio was calculated by software functions. An integration range was 
individually optimized based on the line width of the signals and the space between the signals. 
The spectra were integrated using the spectral bucketing technique with 0.002-ppm-sized buckets 
[11]. The area ratio of each signal was calculated by adding all buckets larger than the buckets 
arising from the baseline (noise level; Figure 6). 

 
Figure 6. Signal integration using the spectral bucketing technique. All spectra were integrated as 
0.002-ppm-sized buckets. The area ratio of each signal was calculated by adding all buckets larger 
than the buckets arising from the baseline. Baseline correction of all spectra was performed by using 
a software function before performing the integration processing. The area ratio of the baseline 
bucket is desirably close to zero after software baseline correction. If the baseline bucket had a 
relatively large area ratio, a correction was made by subtracting the area from all buckets to serve as a 
more precise baseline correction. 
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4.7. Calculation of CTXs Content 

The quantity of CTXs was calculated by 1H-NMR experiments using the residual proton signal 
of pyridine-d5 as the internal standard, based on the following Equation (2): 
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where ValueA is the quantity of CTX (weight); IA is the area ratio of each individual signal arising 
from CTX; IIS is the area ratio of the residual proton of pyridine-d5; NIS is the number of protons of 
the residual proton of pyridine-d5; NA is the number of protons of CTX; MA is the mole weight of 
CTX; MIS is the mole weight of the residual proton of pyridine-d5; WIS is the weight of pyridine-d5; 
and QIS is the quantity of the residual proton of pyridine-d5. 

5. Conclusions 

Five ciguatoxins represented in fish from the Pacific were quantified by 1H-NMR to be used in 
a quantitative analysis of ciguateric fish by LC/MS. Pyridine-d5 with predetermined residual 
protons was used to prepare test solutions and to exploit the residual protons as the inner standard. 
The following protons were selected for quantitation: CTX1B and epideoxyCTX1B, the olefinic protons 
on the side-chain; CTX3C, the 44-OH proton and all olefinic protons; 51OHCTX3C, 17-CH, 22-CH, 
25-CH, 38-CH, and 42-CH; CTX4A, the olefinic protons of the side-chain and 47-OH. Quantification was 
possible with samples ranging from 0.01 to 0.4 mg. The conventional use of non-volatile reference 
material was avoided by the use of residual protons in the solvent of the test solution. 

The CTXs’ reference standard was dispensed in small aliquots into small glass vials, and the 
solvent was removed by a drying operation. To prevent the nonspecific adsorption of CTXs onto the 
glass wall surface, a very small amount of ethanol was added to each vial. 
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