Supplementary Materials: Metabolite profiling of triterpene glycosides of the Far Eastern sea cucumber Eupentacta fraudatrix and their distribution in various body components using LC-ESI QTOF-MS

Roman S. Popov, Natalia V. Ivanchina, Alexandra S. Silchenko, Sergey A. Avilov, Vladimir I. Kalinin, Igor Yu. Dolmatov, Valentin A. Stonik and Pavel S. Dmitrenok

Contents

Table S1. Fragmentation of the different types of oligosaccharide chains determined in triterpene glycosides from the ethanol extract of the sea cucumber *E. fraudatrix*.

Figure S1. LC-ESI MS base-peak chromatogram of ethanol extract of sea cucumber *Eupentacta fraudatrix* in negative ion mode.

Figure S2. Fragment of ESI MS/MS spectrum of $[M + Na]^+$ precursor ion at m/z 1121 of cucumarioside A₁.

Figure S3. Calibration curve for cucumarioside A₁ (ion $[M - H]^-$ at m/z 1097).

Figure S4. Calibration curve for typicoside A_2 (ion [M – Na]⁻ at m/z 1177).

Figure S5. Calibration curve for cucumarioside I₂ (ion $[M - 2Na]^{2-}$ at m/z 693).

Figure S6. 13C NMR spectrum of glycoside 39.

Figure S7. 1H NMR spectrum of glycoside 39.

Figure S8. 1H NMR spectrum of glycoside 34.

Figure S9. Relative quantities of triterpene glycosides detected in *E. fraudatrix* in body walls (BW), gonads (GN), guts (G), aquapharyngeal bulbs (AB), and respiratory trees (RT) (bar plots represent the concentration in $\mu g/g$ animal material of metabolites (mean ± SD) scaled by 100%).

Figure S10. Relative quantities of triterpene glycosides grouped by aglycone structures detected in *E. fraudatrix* in respiratory trees (RT), gonads (GN), aquapharyngeal bulbs (AB), guts (G) and body walls (BW) (bar plots represent the concentration in μ g/g animal material of metabolites (mean ± SD) scaled by 100%).

Figure S11. Relative quantities of triterpene glycosides grouped by sugar moiety structures detected in *E. fraudatrix* in respiratory trees (RT), gonads (GN), aquapharyngeal bulbs (AB), guts (G) and body walls (BW) (bar plots represent the concentration in μ g/g animal material of metabolites (mean ± SD) scaled by 100%).

т	No	Structure of oligosaccharide chain	<i>m/z</i> -a, b														
Type			b2	b_1	C4	B ₄	$^{1,5}A_4$	^{1,3} A ₄	C ₃	Вз	$^{1,3}A_4/Y_{2\beta}$	B ₃ /Y _{2β}	^{2,5} A ₃	^{3,5} A ₃	C2	B ₂	B 1
Ι	9, 12, 18, 37, 41, 45, 49, 53	$\begin{array}{c} \underbrace{B_{1}}_{H_{3}CO} \underbrace{B_{2}}_{OH} \underbrace{\frac{1,3}{A_{4}}}_{H_{3}CO} \underbrace{B_{2}}_{OH} \underbrace{\frac{2,3}{A_{3}}}_{H_{4}C} \underbrace{B_{3}}_{H_{3}CO} \underbrace{B_{3}}_{O} O C_{3} \underbrace{B_{3}}_{H_{3}} \underbrace{B_{3}}_{O} \underbrace$	893.36	881.36	759.25	741.24	-	669.22	627.21	609.20	537.18	477.16	417.14	389.14	349.11	331.10	169.05
II	43, 44, 47, 48, 51	$\begin{array}{c} \begin{array}{c} \begin{array}{c} 1.3 \\ A_4 \end{array} \\ B_1 \\ H_0 \\ H_0 \\ CO \\ OH \end{array} \\ \begin{array}{c} 0 \\ H_0 \\ H_$	761.32	749.32	627.21	609.20	-	537.18	495.17	477.16	-	-	417.14	389.14	349.11	331.10	169.05
III	34, 39	$\begin{array}{c} \underline{B_1} \\ \underline{B_2} \\ OH \\ H_3CO \\ OH \\ \underline{V_1} \\ HO \\ OH \\ \underline{V_2} \\ \end{array} \begin{array}{c} 1.3 \underline{A_4} \\ \underline{B_4} \\ \underline{C_4} \\ $	923.37	911.37	789.26	771.25	-	699.23	657.22	.639.21	567.19	507.17	447.15	419.15	379.12	361.11	199.06
IV	36, 40	$H_{HO}^{3.5} - H_{HO}^{3.5} - H_{HO}^{2} -$	-	735.30	-	-	-	-	613.19	595.18	523.16	-	-	243.08 (^{3,5} A ₂)	463.14	481.15; 331.10 (B2/Y2β)	-
V	3, 4, 10, 13, 21, 29, 25	$\begin{array}{c} \underline{B_1} \\ \underline{B_2} \\ \underline{A_1 B_2} \\ \underline{A_2 B_3 D_3 S_1 D_1} \\ \underline{A_2 B_3 D_3 S_1 D_1} \\ \underline{A_2 B_3 D_3 S_1 D_1} \\ \underline{A_1 B_2} \\ \underline{A_2 B_3 D_3 S_1 D_1} \\ \underline{A_2 B_3 D_3 S_1 D_1} \\ \underline{A_1 B_2} \\ \underline{A_2 B_3 D_3 S_1 D_1} \\ \underline{A_1 B_2 D_1 D_2 } \\ \underline{A_1 B_2 D_1 D_2 D_1} \\ \underline{A_1 B_2 D_1 D_2 D_1 D_2 D_1} \\ \underline{A_1 B_2 D_1 D_2 D_1 D_2 D_1 } \\ A_1 B_2 D_2 D_2 D_1 D_2 D_1 D_2 D_2 D_2 D_1 \\ \underline{A_1 B_2 D_2 D_2 D_2 D_2 D_2 D_2 D_2 D_2 D_2 D$	-	983.30	861.19; 741.24	723.23	695.24	669.22	627.21	609.20	537.18	477.16	417.14	389.14	-	331.10	169.05

Table S1. Fragmentation of the different types of oligosaccharide chains determined in triterpene glycosides from the ethanol extract of the sea cucumber *E. fraudatrix*

VI	6, 14, 16, 26, 30, 32, 42, 50	$\begin{array}{c} \begin{array}{c} 1.5_{A_4} \\ 1.5_{A_4} \\ B_1 \\ H_0 \\ H_1 \\ CO \\ OH \\ OH \\ OH \\ OH \\ OH \\ OH \\ OH$	-	731.31	729.15; 609.20	591.19	563.19	537.18	495.17	477.16	-	-	417.14	389.14	349.11	331.10	169.05
VII	22, 27	$\begin{array}{c} \underbrace{\begin{array}{c} 1.3_{A_4} \\ B_1 \\ OH \\ H_3CO \\ OH \\ H_3CO \\ OH \\ H_0 \\ \end{array}} \underbrace{\begin{array}{c} 1.3_{A_4} \\ B_2 \\ OH \\ O$	-	893.36	891.20; 771.25	753.24	725.25	699.23	657.22	639.21	-	507.17	447.15	419.15	-	361.11	-
VIII	17, 31, 38, 52	$\begin{array}{c} 1,3_{A_{4}} \\ 1,3_{A_{4}} \\ 1,3_{A_{5}} \\ H_{3}O_{3}SO_{3}O_{3}O_{3}O_{3}O_{3}O_{3}O_{3}O_{3}$	-	-	-	667.17	-	593.14	-	533.12	-	-	-	445.10	-	387.06	-
IX	11, 15, 23, 28	$\begin{array}{c} \begin{array}{c} 1.3 \underline{A}_{4} & \underline{B}_{4} \\ \hline & & & \\ B_{2} & 3.5 \underline{A}_{3} & \underline{B}_{3} \\ \hline & & & \\ & & & \\ H_{0} \\ C \\ OH \end{array} \xrightarrow{(Na O_{3} SO}_{OH} & OH \\ H_{0} \\ \hline & & & \\ H_{0} \\ \hline \\ \hline & \\ H_{0} \\ \hline \\ \hline & \\ H_{0} \\ \hline \\ \hline \\ H_{0} \\ \hline \\ \hline \\ H_{0} \\ \hline \\ \hline \\ \hline \\ H_{0} \\ \hline \\ \hline \\ \hline \\ H_{0} \\ \hline \\ $	-	-	-	799.22	-	725.18	-	665.16	-	533.12	-	445.10	-	387.06	-
X	33	B_{a} $HO + O + O + O + O + O + O + O + O + O +$	-	-	-	-	-	-	-	519.10	_	-	-	-	-	-	-
XI	35	$H_{HO} = O_{OH}^{O}$	-	-	-	-	-	-	-	489.09	-	-	-	-	-	-	-

^a Types I-VII: fragment ions from product ion spectrum of [M + Na]⁺ precursor; types VIII and IX: fragment ions from product ion spectrum of [M – 2Na]^{2–} precursor; types X and XI: fragment ions from product ion spectrum of [M – Na]⁻ precursor;

^b Fragment ions C₄, B₄ and A₄ found in desulfated form are in italics.

Figure 1S. LC-ESI MS base-peak chromatogram of the ethanol extract of sea cucumber *Eupentacta fraudatrix* in negative ion mode.

Figure 2S. Fragment of ESI MS/MS spectrum of $[M + Na]^+$ precursor ion at m/z 1121 of cucumarioside A₁.

Figure 3S. Calibration curve for cucumarioside A₁ (ion $[M - H]^-$ at m/z 1097).

Figure 4S. Calibration curve for typicoside A₂ (ion $[M - Na]^-$ at m/z 1177).

Figure 5S. Calibration curve for cucumarioside I₂ (ion $[M - 2Na]^{2-}$ at m/z 693).

Figure 6S. ¹³C NMR spectrum of glycoside 39.

Figure 7S. ¹H NMR spectrum of glycoside 39.

Figure 8S. ¹H NMR spectrum of glycoside 34.

Figure 9S. Relative quantities of triterpene glycosides detected in *E. fraudatrix* in body walls (BW), gonads (GN), guts (G), aquapharyngeal bulbs (AB), and respiratory trees (RT) (bar plots represent the concentration in µg/g animal material of metabolites (mean ± SD) scaled by 100%).

Figure 10S. Relative quantities of triterpene glycosides grouped by aglycone structures detected in *E. fraudatrix* in respiratory trees (RT), gonads (GN), aquapharyngeal bulbs (AB), guts (G) and body walls (BW) (bar plots represent the concentration in µg/g animal material of metabolites scaled by 100%).

Figure 11S. Relative quantities of triterpene glycosides grouped by sugar moiety structures detected in *E. fraudatrix* in respiratory trees (RT), gonads (GN), aquapharyngeal bulbs (AB), guts (G) and body walls (BW) (bar plots represent the concentration in µg/g animal material of metabolites scaled by 100%).