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Abstract: Dicathais orbita is a mollusc of the Muricidae family and is well known for the production
of the expensive dye Tyrian purple and its brominated precursors that have anticancer properties,
in addition to choline esters with muscle-relaxing properties. However, the biosynthetic pathways that
produce these secondary metabolites in D. orbita are not known. Illumina HiSeq 2000 transcriptome
sequencing of hypobranchial glands, prostate glands, albumen glands, capsule glands, and mantle
and foot tissues of D. orbita generated over 201 million high quality reads that were de novo assembled
into 219,437 contigs. Annotation with reference to the Nr, Swiss-Prot and Kyoto Encyclopedia
of Genes and Genomes (KEGG) databases identified candidate-coding regions in 76,152 of these
contigs, with transcripts for many enzymes in various metabolic pathways associated with secondary
metabolite biosynthesis represented. This study revealed that D. orbita expresses a number of genes
associated with indole, sulfur and histidine metabolism pathways that are relevant to Tyrian purple
precursor biosynthesis, and many of which were not found in the fully annotated genomes of three
other molluscs in the KEGG database. However, there were no matches to known bromoperoxidase
enzymes within the D. orbita transcripts. These transcriptome data provide a significant molecular
resource for gastropod research in general and Tyrian purple producing Muricidae in particular.
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1. Introduction

Dicathais orbita is well known for the production of the dye Tyrian purple, which is a
historically important colourant exclusively produced by the Muricidae family of marine molluscs [1,2].
Tyrian purple is not produced within the mollusc but is formed from oxidative and photolytic reactions
from a precursor tyrindoxyl sulfate (Figure 1A), which is stored as a salt of the choline ester murexine
(Figure 1B) [3,4]. Once the salt is liberated by an aryl sulfatase enzyme, a range of intermediate
brominated indole precursors are produced, which have anticancer and antimicrobial properties [5-9].
The major dye component of Tyrian Purple, 6,6'-dibromoindigo, was the first marine natural product
to be structurally elucidated [10]; however, a century later, limited information is available on the
biosynthesis or gene regulation of this secondary metabolite.
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Figure 1. Tyrindoxyl sulfate (A), the ultimate Tyrian purple precursor in Dictahais orbita, is held as a
salt of the choline ester murexine (B).

The “post-genomics era” has seen an expansion in the application of bioinformatics to the
fields of transcriptomics, proteomics and metabolomics [11]. Transcriptomics provides information
on the genes expressed by an organism under certain circumstances or stages of development,
in a particular tissue or cell type [12,13]. Mollusc transcriptome studies have been instrumental
in establishing the gene expression events associated with shell formation [14], host parasite
interactions [15,16], nervous system function [17-19], immune defence [20,21], developmental
processes [22,23] and cellular and physiological mechanisms [24,25]. Only a few transcriptome profiling
studies have been undertaken on predatory marine neogastropods including the gonadal tissues of
Reishia (Thais) clavigera [23], the mantle, foot, gills and gonadal tissues of Concholepas concholepas [26],
the alimentary canal and salivary glands of Colubraia reticulata [27], the venom glands of
Conus consors [28] and the venom ducts of C. tribblei, C. lenavati [29] and Lophiotoma olangoensis,
a Turrid snail [30].

Transcriptomics can identify genes involved in the biosynthesis of secondary metabolites [31,32].
The Australasian mollusc D. orbita is an ideal model species for gene expression studies of biosynthetic
pathways that may be involved in the synthesis of biologically active secondary metabolites [3].
A preliminary transcriptome study of D. orbita used suppressive subtractive hybridisation to identify
genes that were upregulated in the hypobranchial gland, the biosynthetic organ where Tyrian purple
is produced [33]. This study confirmed that the hypobranchial gland is a significant site for protein
synthesis and regulation, but the only enzyme associated with Tyrian purple production identified was
arylsulphatase [33]. However, the study was limited by short read lengths and a low total number of
reads. Therefore, the aim of this study was to generate a more comprehensive transcriptome from the
hypobranchial glands, prostate glands, capsule glands, albumen glands, and mantle and foot tissues
of D. orbita (Muricidae Neogastropoda) and then search these transcriptomes for potential metabolic
pathways that could contribute to indole and choline ester biosynthesis using the Kyoto Encyclopedia
of Genes and Genomes (KEGG) PATHWAYS database.

2. Results and Discussion

2.1. De Novo Transcriptome Assembly

Transcripome sequencing across the six different tissue types (hypobranchial glands, prostate
glands, capsule glands, albumen glands, mantle and foot tissues) resulted in approximately 221 million
sequencing reads (Table 1). Raw sequencing reads in FASTQ format were first checked for quality
using FASTQC [34] followed by removal of adapter sequences, poly-N stretches and low quality
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(Phred score < 20) reads using the BBDuck module of the BBMap software package (version 34_90,
http:/ /sourceforge.net/projects/bbmap), which resulted in 201 million high quality reads. Table 1
shows the number of raw and quality controlled sequencing reads for all the tissues.

Table 1. Summary of the number of raw sequencing reads and the percent remaining after quality

control from 14 tissue samples of Dicathais orbita.

L. High Quality Reads
Snails (S) Description Raw Reads
Number Percent
S1+S2+S3 Female hypobranchial gland 1, August, Breeding season, 2014 15,531,322 15,100,466 97.23
5S4 + S5 + 56 Female hypobranchial gland 2, August, Breeding season, 2014 15,693,385 15,258,671 97.23
S7 +S8+S9 Female hypobranchial gland 1, January, 2015 15,835,271 15,425,533 97.41
S10 + S11 + S12 Female hypobranchial gland 2, January, 2015 16,457,635 15,990,724 97.16
S13 + S14 + S15 Male hypobranchial gland 1, January, 2015 16,142,317 15,684,926 97.17
S16 + S17 + S18 Male hypobranchial gland 2, January, 2015 17,461,007 16,997,497 97.35
S7 + S8 + S9 Female foot 1, January, 2015 16,015,535 15,595,463 97.38
510 +S11 +S12  Female foot 2, January, 2015 17,057,433 16,653,222 91.40
S13 +S14 +S15  Male foot 1, January, 2015 14,241,690 13,885,327 97.50
S16 +S17 +S18  Male foot 2, January, 2015 15,813,363 15,406,030 97.42
S7+S8+S9 Capsule gland, January, 2015 15,805,867 15,291,498 96.75
S7+S8+S9 Albumen gland, January, 2015 14,442,864 14,011,099 97.01
S13 + S14 + S15 Prostate gland, January, 2015 15,600,688 15,113,842 96.88
S10 + S11 + S12 Mantle 1, January, 2015 16,273,556 15,804,247 97.12
- Total 222,371,933 216,218,545 -

High quality reads were de novo assembled into 219,437 contigs using CLC Genomics
server (version 4.9, CLC Bio, Aarhus, Denmark) (Table 2). Transdecoder (version 2.0.3,
http:/ /transdecoder.github.io/) identified 76,152 contigs that contained candidate-coding regions that
were used for annotation and further downstream analysis.

Table 2. Summary statistics of the assembled contigs using CLC Genomics de novo assembler.

Contig Summary Statistics bp (Base Pair)
Number of contigs 219,437
Total assembly length 117,767,308
N50 608
Mean contig length 537
Largest contig length 12,897
Number of contigs larger than 500 bp 59,144
Number of contigs larger than 1000 bp 22,818

2.2. Transcriptome Annotation

Basic Local Alignment Search Tool (BLAST) analysis was performed using 76,152 contigs
with Open Reading Frames (ORF)s against non-redundant protein database National Center for
Biotechnology Information (NCBI) Nr (Mollusc specific proteins), Swiss-Prot and KEGG protein
databases. Overall 28,364 contigs (~37%) had significant BLAST hits (e value 11 x 10~°). The D. orbita
contig BLAST hit rate was in a similar range to other whole mollusc genome/transcriptome studies
with hits ranging from 25% to 40% [35].
cellular components, molecular function and biological process gene ontology (GO) categories,
as shown in Figure 2. General cell and cell parts were the most frequent subcategories of the

A total of 24,996 contigs were assigned to various

cellular components ontology category, while binding and cellular process was the most represented
subcategory of molecular function and biological process. Analysis of KEGG pathways showed the
largest number of contigs were involved in metabolic pathways (914 contigs), followed by biosynthesis
of secondary metabolites (304 contigs) and microbial metabolism in diverse environment (173 contigs)
(Supplementary Table S1). Previous studies have revealed a diversity of bacterial symbionts in D. orbita
tissues [36,37]. However, we checked the overrepresented k-mers generated in the quality control phase
of RNAseq reads and confirmed that these are mostly mitochondria RNA rather than bacterial (<0.1%).
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Figure 2. The proportion and number of Dicathais orbita contigs assigned to gene ontology (GO) terms from biological process, cellular component and molecular

function. Biological process was the most highly represented GO category followed by cellular component and molecular function.
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2.3. Tryptophan Metabolism and Phenylalanine, Tyrosine, Tryptophan Biosynthetic Pathways

Specific searches in the KEGG PATHWAY database [38] were undertaken to identify genes
potentially involved in the biosynthesis of Tyrian purple precursors and choline esters. Indoles like
tyrindoxyl sulfate are thought to be derived from tryptophan metabolism, and we identified 28 enzyme
contigs mapped to 35 reactions in the tryptophan metabolism pathway (Figure 3; note that there are
multiple KEGG enzyme (EC) numbers for some enzymes, and they can occur at different positions in
the pathways, generating more matches to reactions than the number of matching contigs; this applies
to all other pathways below). The list of 28 mapped contigs with the KEGG orthology assignment is
provided in Supplementary Table S2.

The annotated genomes of only three other molluscs are available for comparison in the KEGG
PATHWAYS database, the gastropod Lottia gigantea, cephalopod Octopus bimaculoides and the bivalve
Crassostrea gigas. Nearly all the genes involved in tryptophan metabolism found in D. orbita (Figure 3)
were identical to those found in the other three molluscs (Figure S1). However, an important point
of difference is that unlike these other molluscs, the D. orbita transcriptome contained tryptophanase
(4.1.99.1; Figure 3), which converts tryptophan to indole. Consistent with the other molluscs such as
L. gigantea and C. gigas, D. orbita expresses aromatic-L-amino-acid decarboxylase (4.1.1.28; Figure 3)
that converts tryptophan to tryptamine. However, we did not detect a transcript for tryptophan
5-monooxygenase (1.14.16.4), which converts tryptophan to 5-hydroxy-L-tryptophan, despite the
presence of aromatic-L-amino-acid decarboxylase (4.1.1.28) involved in the production of serotonin.
As the other three molluscs all contain matches to tryptophan 5-monoxygenase in their genomes
(Figure S1), it is possible that this gene is also present in D. orbita but was not detected in our
transcriptome due to low expression. Nevertheless, it appears likely that D. orbita diverts the conversion
of tryptophan away from 5-hydroxy-L-tryptophan in favour of indoles, to facilitate Tyrian purple
precursor production by higher expression of the tryptophanase gene.

In the D. orbita transcriptome, we found no match in the reaction pathway for the conversion of
indole to indoxyl, a precursor to indoxyl sulphate (Figure 3, 1.14.16). However, in bacteria cytochrome
P450 enzymes [39,40], and/or mono- or dioxygenases [41,42], are involved in the formation of indoxyl
sulfate and indigo. We found matches to two cytochrome P450 enzymes, as well as a monoxidase
and several dioxygenases in the D. orbita transcriptome (Supplementary Table S2). Our recent studies
have also revealed numerous Vibrio sp. that have the ability to synthesize indoles in the Tyrian purple
producing tissues of D. orbita [36,37] and these may provide a supplementary source of indoles for
Tyrian purple production.
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Figure 3. Tryptophan metabolism pathway with matches to Dicathais orbita contigs filled in green.
The match to a tryptophanase relevant to indole biosynthesis is highlighted by the red box, whereas the
tryptophan 5-monoxygenase that was not detected in our transcriptome is highlighted in a blue box.

In the phenylalanine, tyrosine and tryptophan biosynthetic pathway (Figure 4), there was a match
in the D. orbita transcriptome to tryptophan synthase alpha chain (4.2.1.20; Figure 4), which converts
tryptophan to indoles and vice versa, the initial precursors for Tyrian purple biosynthesis [3,43,44].
This tryptophan synthase was only found in the D. orbita transcriptome and not found in the annotated
genomes of L. gigantea, O. bimaculoides and C. gigas. Most of the genes involved in phenylalanine,
tyrosine and tryptophan biosynthesis in D. orbita were found to be different to the other three molluscs
and this Neogastropoda had more matches to these aromatic amino acid biosynthesis reactions (14
genes) compared to L. gigantea (five genes), O. bimaculoides (five genes) and C. gigas (five genes)
(Figure S2).
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Figure 4. Phenylalanine, tyrosine and tryptophan biosynthetic pathways showing matches to
Dicathais orbita contigs highlighted in green, with tryptophan synthase highlighted in the red box.

2.4. Sulfur, Cysteine and Methionine Metabolisms Pathway in Dicathais orbita

Tyrindoxyl sulphate contains a methane thiol group at the 2’ position of the indole ring (Figure 1A).
Examination of the D. orbita transcripts with reference to the sulfur metabolism pathway revealed
that most of the genes involved in D. orbita sulfur metabolism were found to be similar to the other
three molluscs. Enzymes like dimethyl-sulfide monooxygenase (1.14.13.131; Figure 5) that produces
methyl mercaptan from dimethyl disulphide were not detected in any of the molluscs, including
D. orbita. Overall, the number of genes detected in the D. orbita sulfur metabolism pathway (15 genes,
Figure 5) was only slightly higher than the number identified in the genome of L. gigantea (12 genes),
O. bimaculoides (12 genes) and C. gigas (14 genes) (Figure S3).
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Figure 5. Sulfur metabolism pathway with matches to Dicathais orbita contigs highlighted in green;
there was no match to dimethyl-sulfide monooxygenase in our transcriptome (blue box).

The metabolism of sulfur containing amino acids provides another possible source of the
methanethiol group in tyrindoxyl sulfate. Enzyme matches in the cysteine and methionine metabolism
pathways (Figure 6) indicate that D. orbita has the ability to produce 3-methylthioproprionate,
3-mercaptopyruvate and thiosulfate, but no match was found to methionine-gamma-lyase (4.4.1.11;
Figure 6), which converts the amino acid L-Methionine directly into methanethiol. Nevertheless, we
did detect a transcript for tyrosine aminotransferase (2.6.1.5; Figure 6), which may play a role in placing
the methane thiol onto the aromatic indole ring. Tyrosine aminotransferase genes were also found
in the Lottia, octopus and oyster genomes. Overall, the D. orbita transcriptome had more matches
to enzymes in the cysteine and methionine metabolism pathway (41 genes) compared to L. gigantea
(32 genes), O. bimaculoides (30 genes) and C. gigas (33 genes) (Figure S4). This ability to metabolise
sulfur from various sources is consistent with the biosynthesis of indole mercaptans in Muricidae.



Mar. Drugs 2016, 14, 135

90f 16

CYSTEINE AND METHIONINE METABOLIEM |

Glycine, serine and threonine
rstabolisr

5-Sulfo] chysleme

Thiocysteins

25147

L-Serine
—— = 43.1.17
23.1.30
O-Fhospho-L-serine
Q
i O-hetykLoserine

2514725165

1 843
o C
WOyt 03] Clutathions

Sulfur metabolist

0l
Tsurine and hypotaurine
metabolism

2-hmingaerylate
=

Ta\n’me and hypotanring
El

-
|
| Pantothenats and ! {44123}
i Cok hiosynthesis |
I (2533 Sulfolactate
[(33a] [1818] sume o | | S
5 Glu(a(]uunyl | I 3-Sulfo-
| L-Cysteine p}mmte
Eﬁ 44110 O [2611] 4.4.1.24 O-— | Dymmete
L L Cystoste (2R3 Sulfketae TITTEE
——t={ Glutathione metaboliszm
e b — e Valine, leucine and
[2e11 (2613 ][ 4413|4411 |\44128\ 51.1.10] [113.1120] 31y, Ser & Thr metdbolismn \||/ oo e Jowche
W [261.42]
—2a115—0 - [6322 | (6323 |0
yste e [2310] 2-Ouobutenoate 20 h 2-timino Ly Glu(amyl Ophthalmate
Sulfimo. | LGwsteime- 4410 | o ——— e
pyr\mle 2 7 m(e Propanaats metabolista }<1

O 41 112

| Su]fux

I

| o 25148 O Succingl

c Sulfite | 14 L-homnosenne

( Aspartatemetabolisn

(2724012111} [LLis]

o
- L-Aspartate  L-4-Aspartyl- LrAszoanate
3 Weraptolastate P Lo bepary b
| -Cystathionine
o 2514} O Dfeetyl
[42123] [4418] [Mech | [25148][25140] [25148][ 251
Glycme seins and thisosine L 3
mEI
1 -Serine

124l L-Homacysteine [3a11] 44121
H ine O -Sm‘f:‘;hs L BT 5-D-Ribossl. Ibent Lo
[amocystine Tagtabolista S-bdenosyl- & 0s7] ooy mnsering
U homncysteine § 2220 U homocysteine
L Methionine 20137 240 —
S-odde S 1231184} S-Iethyl-
e, ¥ thibadenosi
L Mathionine — Louethodiine
WFomyt o 2516 -
L-methidning 3. dennsyl
Tethio
prper O
tethyBnine
1-Aninoeyclopropans 3229 |[32:
l—caﬂ:nxyge PR O — 1> r’ﬁpwme \—l
ethanethiol &
— 5 Methy-S-thio-
_rbose
251 ;[ %—rlﬂ\’}l;lém;m 271100
o
1131153 osé I-phosphate
31377} 5312
Z"Eﬁé‘}}{mm(’ O [313327] [5325] [421100]
- ih;vdm - 23D1ke -5-methyl- SMet}\ S-thin-
Fketo- t-me(?{yl f methy]xgmpamenyl dmpemyl 1 phusghale D- xﬂ:duyse 1-phosphate
pentens
00270 4i1116
(c) Kanehisa L aboratories

Figure 6. Cysteine and methionine metabolism pathways showing matches to Dicathais orbita contigs
highlighted in green, including tyrosine aminotransferase (red box), but no match was found to

methionine-gamma-lyase (blue box).

2.5. Bromoperoxidase Enzymes

Tyridoxyl sulfate is a 6-brominated indole derivative (Figure 1A), and bromoperoxidase activity
has been detected in the hypobranchial glands of D. orbita [45] and other Muricidae species [46].
Consequently, a search was undertaken for bromoperoxidase genes by aligning D. orbita transcripts
against known bromoperoxidase genes using BLAST (e value 1 x 10~3). However, no evidence
of matches to bromoperoxidase genes was found using these sequences. This is consistent with a
previous study that examined the transcripts that were up-regulated in the D. orbita hypobranchial
glands relative to other D. orbita tissues, which also found no matches to bromoperoxidase genes [33].
There appears to be no previous reports of bromoperoxidase coding genes or transcripts in any
gastropods or other molluscs. However, recent metagenomic analyses of D. orbita hypobranchial
glands revealed the presence of bacterial symbionts known to produce bromoperoxidase enzymes [36].
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Our D. orbita transcriptome data therefore supports the suggestion that symbiotic bacteria play a role
in the biosynthesis of Tyrian purple.

2.6. Dicathais Orbita Glycerophospholipid and Histidine Metabolism Pathway

Tyrindoxyl sulfate is stored as a choline ester of murexine, which contains a choline ester group
and imidazole moiety (Figure 1B). The glycerophospholipid metabolism pathway has a role in
the biosynthesis of choline esters [47] and more matches to reactions in the glycerophospholipid
metabolism pathway (53 genes) were found in the D. orbita transcriptome compared to the annotated
genomes of other molluscs (L. gigantea = 48, O. bimaculoides = 40 and C. gigas = 44 genes) (Figure S5).
The D. orbita transcriptome included matches to choline/ethanol amine kinase (2.7.1.32; Figure 7),
which produces choline from phosphocholine, as well as choline O-acetyltransferase (2.3.1.6; Figure 7)
and acetylcholinesterase (3.1.1.7; Figure 7), which produce acetylcholine. Laffy et al. [33] found that
acetylcholinesterase (3.1.1.7) transcripts were upregulated in the hypobranchial gland of D. orbita
relative to foot tissue. The octopus O. bimaculoides and gastropod L. gigantea genomes were also
found to contain matches to these enzymes for acetylcholine biosynthesis, whereas the oyster C. gigas
lacks phosphocholine phosphatase. In comparison to the gastropods and the bivalve, the octopus
O. bimaculoides was found to lack any matches to genes in the phosphothanolamine N-methyltransferase
pathway for the production of phosphocholine from phosphoethanolamine.

| GLYCEROPHORPHOLIFID METABOLIZN |
Glyv:em].lp metabolisra S L3 (0 g
snlryeera 2,3-Bis-O- )
I o254 —»0—{2514 O—m—’ 2783 sng]y'im(ﬁeﬁ"nfﬁnmﬁys)&m
3400 CDP-23bis-O
| o yeeIF 13711 G
| 23143 OlAcylsngﬁrjcem
| 2B O gyl 3 phisphn
aheglyeern ) Phnsphand]:velchnhne
————— %, LPCAT 31 15 "
Clyoerene-P 31132 EXNEL N P Jr—
2117|210 16] 23161 Phisphnsholins
1.
2314 Dot 2783 Ertine Sy Phogpha.
imethyl:
. phospratiayt| (3143 CDPcholine cholg, [[37133] 2316 |
Ao o277 15— Ca—==—t*C O.heetylboline
Lhoyl & Sn'%‘Wm' -31375 C.huhm 3117 ]|
ghyoerone- 3P 2117[21L16]
Ptdssl - - 211103
| 1 | =T
3 Acyllos PEMT o—=——w»0 [ Phnsphmhmethyl
Monametliykl,
Ether lipid metdboilsm Flosplalidry 211103
el & ot I,————c> Fymmate metabolism
»-O 12Dyl 15, ho: ———-a>
1,2 Diacyl- el oo phospho 1~ Glycnlysls
ShAleal 3P EXPIE] PEER g
Acetaldehyde
2734
27132
GFLanchor biosymthesis T FERIE] 3 1375 " e
: cthanolarmie
1-bioylsn-glyoero-3-
[LPIaT ] é 27E1 p}msphﬂ b
S [ (zi14] cglyeem-
1-fieylan-glyvera Fhosphatidyl:
s ity I1 D-po-mositol i 31 I E”“““ [zl4z] o
T 3
{z732] Phﬂsphal B, lesplmhdyl - 3115 31446 st-Glyoerol. 37
Inositel phosphate metdbolia
75 S Y
2-heylanglycer. | Lboyian gy
Ehosphatityl 3] h;:sphn?eyncm | Phosphoel
O glyvernphodphate
m ad
31327 m.gﬁﬂﬁmuhsm
Carioly Fhosphatidyl
o gyeeral 2143 1,2-Diacyl
o ca—{27841 o O gh pestol
Monalysa- CLAE L Ayl
cardiclipin O phosplar
LPGAT
Q
Lysaphosphatidylelycerl
00584 10016
{c) Kanehisa Laboratoriss

Figure 7. Glycerophospholipid metabolism pathway with matches to D. orbita contigs highlighted in
green including choline kinase, choline O-acetyltransferase and acetylcholinesterase (red boxes) used
to generate the acetyl choline moiety found in murexine.

Choline or acetyl choline combines with imidazole to produce the muscle relaxant murexine [48]
(Figure 1B). Imidazole is a derivative of the amino acid histidine [49], and there were several matches
to the histidine metabolism pathway in the D. orbita transcriptome (Figure 8). These include, diamine
oxidase (1.4.3.22; Figure 8), aldehyde dehydrogenase (NAD+) (1.2.1.3; Figure 8) and monoamine



Mar. Drugs 2016, 14, 135 11 of 16

oxidase (1.4.3.4; Figure 8), which convert histamine into imidazole. There was also a match to histidine
ammonia-lyase (4.3.1.3; Figure 8), which converts L-histidine to urocanate, which could feasibly
combine with choline ester to form murexine. All these biosynthetic enzymes are also found in the
L. gigantea, O. bimaculoides and C. gigas genomes.
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Figure 8. Histidine metabolism pathway showing matches to Dicathais orbita contigs highlighted
in green, including several enzymes that convert histidine into imidazole (red boxes) and
imidazoleglycerol-phosphate dehydratase (red box top pathway).

Previous studies of choline esters in molluscs have focused on the predatory neogastropods,
and there is no record of murexine or similar derivatives being isolated from limpets or oysters.
Roseghini et al. [48] found no evidence for imidazole or acryl choline esters in 27 species from eight
families of herbivorous and scavenging gastropods, including three Patellidae limpets, while at least
one of these compounds was found in 53 of 55 species of the predatory Muricoidae superfamily.
This implies the Neogastropoda have evolved a specific murexine biosynthesis pathway and,
consistent with this, the D. orbita transcriptome had more matches to enzymes in the histidine
metabolism pathway (19 genes) when compared to L. gigantea (10 genes), O. bimaculoides (11 genes)
and C. gigas (13 genes) (Figure S6). Specifically, the enzyme involved in imidazole biosynthesis
imidazoleglycerol-phosphate dehydratase (4.2.1.19; Figure 8) was only found in the D. orbita
transcriptome. Overall, it appears the neogastropod D. orbita has evolved a complex suite of metabolic
capabilities that are not represented in the more primitive orthogastropod or bivalve, for which
complete genome sequences are available.



Mar. Drugs 2016, 14, 135 12 of 16

3. Materials and Methods

3.1. Specimen Collection

Eighteen adult specimens of D. orbita (Table 1) were collected during low tide from the sub-tidal
and intertidal rocky reefs of Flat rock, Ballina (28°84’ S and 153°60" E), NSW, Australia. Six spawning
females were collected during the breeding season August 2014 and a further six females and six males
were collected after breeding season in January 2015, under the permit number F89/1171-6.0 issued by
the Department of Primary Industries, NSW Government, Australia. Total RNA was extracted from
the hypobranchial glands of the females collected in August 2014 and from five different tissues from
female and three tissues from male D. orbita (Figure 9) collected in January 2015 (Table 1).

Foot

Mantle Capsule gland

Albumen gland

Hypobranchial gland

Prostate gland

A) Male B) Female

Figure 9. Dicathais orbita male (A) and female (B) tissues used for RNA extraction to generate
the transcriptome.

3.2. Transcriptome Sequencing

Three independent replicate snails were used for each tissue sample summarised in Table 1.
The tissues were stabilized prior to RNA extraction in RNase free 2 ml Eppendorf tube using 600 pL of
RNAlater RNA stabilization reagent (Qiagen, Chadstone, Victoria, Australia). The stabilized tissue was
incubated at 4 °C overnight and stored at —80 °C, prior to extracting the total RNA. The total RNA
was extracted from the RNAlater stabilized tissue using the E.Z.N.A. Mollusc RNA Kit (Omega Bio-tek,
Norcross, GA, USA.) following the manufacturer’s instructions. The concentration and quality (purity
and integrity) of total RNA was assessed by NanoDrop and the Agilent Bioanalyzer 2100 System
(Agilent Technologies, Santa Clara, CA, USA). The total RNA extracted from three biological replicates
of each tissue type (hypobranchial gland, prostate gland, albumen gland, capsule gland, mantle and
foot) was pooled within the same tube for each tissue in equal masses. The pooled extracted RNA
was stored at —80 °C until further used. The RNA samples were shipped to Macrogen Inc. (Seoul,
Korea) for high throughput sequencing. Prior to shipping, each RNA sample was precipitated in a
mixture of 2x ethanol (96%) and 0.1 x sodium acetate (3 M). mRNA isolation and library construction
were performed by Macrogen. The libraries were sequenced using the Illumina HiSeq 2000 platform
(HCS2.2.38 version, Illumina, Seoul, Korea).

3.3. De Novo Transcriptome Assembly and Annotation

FASTQ format raw sequencing reads were checked for quality using FASTQC (version 0.10.4,
http:/ /www.bioinformatics.babraham.ac.uk/projects/fastqc) [34]. The adapter sequences, poly-N
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stretches and low quality reads (Phred score < 20) were removed using the BBDuck module of the
BBMap software package (version 34_90, http:/ /sourceforge.net/projects/bbmap) using command
“bbduk.sh inl = inl.fastq in2 = in2.fastq outl = outl.fastq out2 = out2.fastq ref = adapters.fa qtrim =
rl trimq = 20 ktrim = rl k = 28 hdist = 1 minlength = 20”. BLAST search of over-represented k-mers
against NCBI confirmed these were mostly mitochondrial and ribosomal Dicathais obita genes, and
no evidence of bacterial contamination was found. CLC Genomics Workbench, version 4.9 (CLC Bio,
Aarhus, Denmark; www.clcbio.com) with the option to map reads back to contigs, automatic word size
and automatic bubble size was used to de novo assemble the high quality reads. All the contigs were
clustered using CD-hit-est (version v4.6.1, http:/ /weizhongli-lab.org/cd-hit) [50], and Transdecoder
(version 2.0.3, http:/ /transdecoder.github.io/) was used to identify candidate coding regions within
transcript sequences.

BLAST analysis was done against non-redundant protein database Nr (Mollusc specific
proteins), Swiss-Prot and KEGG protein databases. Gene ontology analysis was performed with
Interproscan (version 5.10.50, https://code.google.com/archive/p/interproscan) [51] using command
“interproscan.sh -appl ProDom,PfamA,PANTHER -i longest_orfs.pep.fa -o out.txt -f TSV -goterms
-iprlookup -pa” and plotted using WEGO (http:/ /wego.genomics.org.cn/cgi-bin/wego/index.p) [52].
D. orbita transcripts were searched for bromoperoxidase gene by aligning against known
bromoperoxidase genes available in the NCBI GenBank using BLAST (e value 1 x 1079)
(Supplementary Table S3).

3.4. Nucleotide Sequence Accession Number

All raw sequence data were deposited in the European nucleotide archive (ENA) with the
accession numbers PRJEB12262. Assembled contigs are available from the authors upon request.

4. Conclusions

This transcriptome study of D. orbita generated over 216 million high quality reads that were de
novo assembled into 219,437 contigs, of which 76,152 contigs contained candidate-coding regions that
were annotated with Nr, Swiss-Prot and KEGG databases. This provides a significant new molecular
resource for neogastropod molluscs, and adds to pool of genomic data for molluscs in general. Several
genes that are potentially associated with Tyrian purple precursor biosynthesis in D. orbita were
identified. It appears the neogastropod D. orbita has evolved a complex suite of metabolic capabilities
that are not represented in the more primitive orthogastropods or bivalves, for which complete genome
sequences are available.

Supplementary Materials: The following are available online at www.mdpi.com/1660-3397/14/7/135/s1,
Figure S1: Tryptophan metabolism pathways for (A) Crassostrea gigas; (B) Lottia gigantean; and
(C) Octopus bimaculoides showing enzyme matches in green including tryptophan 5-monoxygenase (red box), which
was missing form Dicathais orbita, but no match to tryptophanase (blue box), Figure S2: Phenylalanine, tyrosine
and tryptophan biosynthetic pathways for (A) Crassostrea gigas; (B) Lottia gigantean; and (C) Octopus bimaculoides
with enzyme matches in green, but with no match to with tryptophan synthase highlighted in the blue box,
Figure S3: Sulfur metabolism pathways for (A) Crassostrea gigas; (B) Lottia gigantea; and (C) Octopus bimaculoides,
Figure S4: Cysteine and methionine metabolism pathway of (A) Crassostrea gigas; (B) Lottia gigantea; and
(C) Octopus bimaculoides, Figure S5: Glycerophospholipid metabolism pathway of (A) Crassostrea gigas;
(B) Lottia gigantea; and (C) Octopus bimaculoides showing enzyme matches in green with those relevant to choline
ester synthesis highlighted in red (present) and blue (absent), Figure S6: Histidine metabolism pathway of
(A) Crassostrea gigas; (B) Lottia gigantea; and (C) Octopus bimaculoides showing matching enzymes in green,
including several enzymes that convert histidine into imidazole (red boxes) but not imidazoleglycerol-phosphate
dehydratase (blue box), Table S1: Analysis of KEGG pathway showing the top 20 metabolic pathway involving
the largest number of contigs in D. orbita trancriptome, Table S2: List of the 28 mapped contigs and with the
KEGG orthology assignment in D. orbita trancriptome for tryptophan metabolism, Table S3: List of known
bromoperoxidsae genes available in NCBI GenBank used for BLAST against D. orbita.
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