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Abstract: A new sulfated sterol, phallusiasterol C (1), has been isolated from the Mediterranean
ascidian Phallusia fumigata and its structure has been determined on the basis of extensive
spectroscopic (mainly 2D NMR) analysis. The possible role in regulating the pregnane X receptor
(PXR) activity of phallusiasterol C has been investigated; although the new sterol resulted inactive,
this study adds more items to the knowledge of the structure-PXR regulating activity relationships in
the case of sulfated steroids.
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1. Introduction

Marine steroids display an extraordinary chemical diversity, mainly resulting from extensive
oxygenation of the basic carbon skeleton, cleavage and/or re-arrangement on the rings of tetracyclic
nucleus, and side chain alteration [1–5]. In fact, “usual” sterols usually have a 3-hydroxycholestane
or 3-hydroxy-∆5-cholestane nuclei and a C8–C10 side chain [6], whereas marine sterols have been
isolated featuring either or both of the distinctive features of (i) carbon side chains in the C0 to C12
range, involving loss of carbon atoms or their addition at positions other than C-24, and (ii) multiple
oxygenation of the side chain and/or the nucleus [7]. More than 1600 new steroidal structures have
been isolated from sea organisms, mainly from marine invertebrates, including algae, porifera, and
tunicates [6,7]. The structural diversity of these metabolites, chiefly the polar sterols, is reflected in
a diverse array of different pharmacological properties, including cytotoxic [8], spermatostatic [9],
antifeedant [10], anti-inflammatory [11], and anti-human cytomegalovirus (HCMV) [12] activities;
particularly, the role of marine sponge steroids as nuclear receptor ligands has been recently
highlighted [13]. Sulfated steroids endowed with dual farnesoid X receptor (FXR) and pregnane
X receptor agonism–antagonism have been identified, like solomonsterols A (2) and B (3), isolated
from the sponge Theonella swinhoei [14,15], and phallusiasterol A (4) that we have recently isolated
from the Mediterranean ascidian Phallusia fumigata, together with its C-6 epimer phallusiasterol B (5)
(Figure 1) [16]. In particular, Investigation of the effects of phallusiasterols on the activity of
pregnane-X-receptor (PXR) revealed that phallusiasterol A induces PXR transactivation in HepG2
cells and stimulates the expression of the PXR target genes CYP3A4 and MDR1 in the same cell line
whereas phallusiasterol B was inactive. This study confirmed the role of steroids in regulating the
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nuclear receptors (NR) activity, and evidenced a crucial reliance on some structural features, like the
configuration at C-6, of the ligand-receptor binding.

Re-investigation of a new collection of P. fumigata led to the isolation, from the more polar fraction
of the butanol extract, of a new disulfated sterol, named phallusiasterol C (1, Figure 1), of which the
structure was elucidated by spectroscopic means (see Figures S1–S6 in Supplementary Materials). The
possible role in regulating the PXR activity of phallusiasterol C has been investigated, too. Despite
the structural similarity with solomonsterol A for the short and sulfated side chain, compound 1 was
inactive as PXR agonist, revealing important structural requirements for the PXR nuclear receptor
activity of sulfated steroidal structures.
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and HMBC 2D NMR experiments allowed the steroidal backbone to be assembled and all the 
protons and carbons of the tetracyclic system to be assigned to the relevant resonances (see Table 1 
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Figure 1. Structures of phallusiasterol C (1); solomonsterols A (2) and B (3); phallusiasterols A (4) and
B (5); and chalinulasterol (6).

2. Results and Discussion

2.1. Isolation and Structure Elucidation

The negative ion HR ESI mass spectrum of 1 displayed a [M ´ Na+]´ pseudo-molecular ion peak
at m/z 567.2054 (see Figure S7 in Supplementary Materials); the formula C26H40NaO8S2

´ was thus
deduced for this ion (calcd. 567.2057), which indicated six unsaturation degrees. The ESI and MS/MS
fragmentation pattern of 1 revealed the presence of two sulfate groups from the peaks 545 (M´ in
hydrogen form), 272 (double charged species), and 447 [M ´ NaHSO4 ´ Na+]´.

The 1H NMR spectrum (CD3OD) of 1 suggested its steroidal structure, with two up-field methyl
singlets at δ 0.72 (H3-18) and 1.03 (H3-19) and one methyl doublet at δ 1.03 (J = 6.4 Hz, H3-21). Other
proton resonances, combined with 13C NMR and mass data, evidenced the presence of one secondary
(δH 4.14, dddd, J = 11.4, 11.4, 4.8, 4.8 Hz, δC 80.0, CH) and one primary (δH 3.88, dd, J = 9.3, 6.0 Hz;
δH 3.74, dd, J = 9.3, 7.8 Hz, δC 73.8, CH2) sulfoxy groups in the molecule. Furthermore, three olefin
signals resonating in the proton spectrum at δ 5.38 (dd, J = 6.9, 3.3 Hz, 1H, H-6), 5.35 (dd, J = 15.3,
8.5 Hz, 1H, H-22), and 5.28 (dd, J = 15.3, 7.0 Hz, 1H, H-23) were assigned to two double bonds,
one trisubstituted and one disubstituted, based on the four down-field resonances present in the
13C NMR spectrum at δC 141.5 (C), 123.4 (CH), 138.5 (CH) and 130.2 (CH). Interpretation of COSY,
HSQC and HMBC 2D NMR experiments allowed the steroidal backbone to be assembled and all the
protons and carbons of the tetracyclic system to be assigned to the relevant resonances (see Table 1 and
Figures S3–S5 in Supplementary Materials).
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Table 1. 1H (700 MHz) and 13C (125 MHz) NMR data for phallusiasterol C (1) in CD3OD.

Position δH (mult., J in Hz) δC HMBC Pos. δH (mult., J in Hz) δC HMBC

1β 1.90, dt, (13.5, 3.6)
38.4

2, 5, 10, 19 - - - -
1α 1.10, m 2, 3, 10, 19 13 - 43.4 -
2β 1.63, m a

29.9
1, 3, 10 14α 1.02 b 58.2 8, 13, 15, 16, 18

2α 2.07, m a 1, 3, 10 15β 1.07, m a
25.3

13, 14, 16, 17
3α 4.14, dddd, (11.4, 11.4, 4.8, 4.8) 80.0 1, 2, 4 15α 1.58 a,b 8, 14, 16
4β 2.34, dd, (13.2, 11.4)

40.3
2, 3, 5, 6, 10 16β 1.28, m a

29.7
13, 15, 17

4α 2.53, ddd, (13.2, 4.8, 2.2) 2, 3, 5 16α 1.71, m a 13, 17, 20
5 - 141.5 - 17 1.17, m 57.2 13, 15, 16, 20, 22
6 5.38, dd, (6.9, 3.3) 123.4 4, 7, 8, 10 18 0.72, s 12.5 12, 13, 14, 17

7β 1.98, dt, (13.4, 6.9, 3.3)
33.0

5, 6, 8, 9 19 1.03, s 19.7 1, 5, 9, 10
7α 1.55 b 5, 8, 14 20 2.06, m 41.5 17, 21, 22, 23
8β 1.48, m (qd, 10.7, 4.3) 33.2 7, 9, 14 21 1.03, d, (6.4) 19.7 17, 20, 22
9α 0.96, ddd (13.2, 10.7, 4.3) 51.7 8, 10, 11, 19 22 5.35, dd, (15.3, 8.5) 138.5 20, 21, 23, 24
10 - 37.7 - 23 5.28, dd, (15.3, 7.0) 130.2 20, 21, 22, 25, 26

11β 1.55 b
22.1

9, 10, 12 24 2.44, m 37.6 22, 23, 25, 26
11α 1.51, m 9, 10, 12 25a 3.88, dd, (9.3, 6.0)

73.8
23, 24, 26

12β 2.01, dt, (12.9, 3.5)
41.0

11, 14 25b 3.74, dd, (9.3, 7.8) 23, 24, 26
12α 1.18, m 9, 13, 14 26 1.02, d, (6.2) 21.2 23, 24, 25

a Assignments may be interchanged; b Overlapped by other signals.

The location of the secondary sulfoxy group at C-3 and the ∆5(6) position of the endocyclic double
bond were thus deduced. The HMBC correlation peaks of the methyl protons H3-19 with C-1, C-5, C-9,
and C-10 and of H3-18 with C-12, C-13, C-14, and C-17 located the A/B and C/D ring junctions and
completed the planar structure determination of the steroid ring system.

The nature of the side chain was easily deduced by analysis of COSY map. A single 1H-1H spin
system was delineated, starting at the methyl doublet at δ 1.03 (H3-21) which was correlated to the
proton at δ 2.06 (H-20). The latter was coupled with both the H-17 methine proton (δ 1.17) and the
olefinic proton at δ 5.35 (H-22), in turn coupled with the other olefin proton at δ 5.28 (H-23). This
indicated the ∆22 position of the remaining double bond, of which the E-configuration was suggested
by the J value (15.3 Hz) of H-22 and H-23. The coupling of H-23 to the multiplet at δ 2.44 (H-24), which
in turn was coupled both to the methyl protons at δ 1.02 (H3-26) and the sulfoxy methylene protons at
δ 3.88 (H-25a) and 3.74 (H-25b), completed the assignment, indicating a 24-methyl-25-sulfoxy C26 side
chain for 1 (Figure 2).
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Figure 2. COSY segments (represented as colored bonds) and key ROESY correlations (arrows) for the
phallusiasterol C (1).

The relative stereochemistry of phallusiasterol C (1) with the B/C and C/D trans ring junctions,
was established through analysis of ROESY data and coupling constant analysis. The axial orientation
of H-8, H-9 and H-14 was apparent from their respective coupling constants that of both the
angular methyl groups from their ROESY correlations with H-8 and the axial H-11β (see Figure S6
in Supplementary Materials). On this skeleton, the 3β-sulfoxy configuration was assigned on
the basis of the coupling pattern of H-3 (dddd) indicating its axial orientation. The orientation
of substituents at C-17 and C-20 in phallusiasterol C (1) was presumed to be the same as in
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related polyhydroxysterols due to very similar values of carbon chemical shifts around these carbon
atoms [17–19]. According to this information, the structure of phallusiasterol C (1) was established as
(22E)-26,27-dinor-24ξ-methyl-cholesta-5,22-dyen-3β,25-diyl-3,25-sodium disulfate.

2.2. Biological Evaluation

The possible role in regulating the PXR activity of phallusiasterol C has been investigated.
A transactivation assay on HepG2 cells, a human hepatocarcinoma cell line, has been performed,
as described in the Experimental Section. Despite the structural similarity with solomonsterol A for
the short and sulfated side chain, compound 1 was inactive as PXR agonist. In addition, it also failed
to reverse the induction of luciferase activity caused by rifaximin, indicating that it was not a PXR
antagonist (Figure 3). Similar results have been obtained by analyzing the effect exerted by 1 in terms
of regulation of PXR mediated induction of two PXR target genes, CYP3A4 and MDR1, in the same cell
line; in this assay, compound 1 failed to induce the expression of both target genes (data not shown).
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Figure 3. (a, b) Luciferase reporter assay. HepG2 cells were transiently transfected with pSG5-PXR,
pSG5-RXR, pCMV-βgalactosidase and p(CYP3A4)-TK-Luc vectors and then stimulated with (a) 10 µM
rifaximin or phallusiasterol C (1) for 18 h, or (b) 10 µM rifaximin alone or in combination with 50 µM
of compound 1. Relative Luciferase Units were normalized with β-galactosidase Units (RLU/βgal).
All experiments were performed in triplicate. NT, not treated cells. R, Rifaximin. * p < 0.05 versus NT
cells. Data are mean ˘ SE.

These results, although negative, add more items to the knowledge of the structure-PXR regulating
activity relationship in the case of sulfated steroids. In the binding model proposed for solomonsterol
A to the PXR receptor, a clear stabilizing interaction of the side chain sulfate group with the positively
charged Lys210 has been observed [13]. This model was supported by studies on chalinulasterol, which
has a close structural relationship with solomonsterol A and differs from the latter compound in having
a chlorine atom instead of a sulfate function at position C-24 of the side chain [20]. Chalinulasterol
lacked any PXR modulating activity and, thus, an essential role of the sulfate group present in the side
chain has been proposed. However, the activity of phallusiasterol A (4) as PXR agonist, comparable to
that of rifaximin, a well characterized ligand for the human PXR, contradict this assumption since it
features a “regular” sterol side chain (Figure 1). Instead, the feature and/or the shape of the region
around the A/B ring junction seems to be critical; in fact, both phallusiasterol B (5), which differs from
phallusiasterol A only for the configuration at C-6, and phallusiasterol C, featuring the ∆5(6) double
bond, lacked any PXR modulating activity (Figure 1).
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3. Materials and Methods

3.1. General Experimental Procedures

High-resolution ESI-MS analyses were performed on a Thermo LTQ Orbitrap XL mass
spectrometer (Thermo-Fisher, San Josè, CA, USA). The spectra were recorded by infusion into the
ESI (Thermo-Fisher) source using MeOH as solvent. Optical rotations were measured at 589 nm on a
Jasco P-2000 polarimeter (Jasco, Inc., Easton, MD, USA) sing a 10-cm microcell. 1H (700 MHz) and 13C
(175 MHz) NMR spectra were recorded on a Agilent INOVA spectrometer (Agilent Technology,
Cernusco sul Naviglio, Italy) equipped with a 13C enhanced HCN Cold Probe; chemical shifts
were referenced to the residual solvent signal (CHD2OD: δH = 3.31, δC = 49.0). For an accurate
measurement of the coupling constants, the one-dimensional 1H NMR spectra were transformed
at 64 K points (digital resolution: 0.09 Hz). Homonuclear 1H connectivities were determined by COSY
experiment. Through-space 1H connectivities were evidenced using a ROESY experiment with a
mixing time of 500 ms. Two and three bond 1H-13C connectivities were determined by gradient 2D
HMBC experiments optimized for a 2,3J of 8 Hz. 3JH-H values were extracted from 1D 1H NMR.
Medium-pressure liquid chromatographies (MPLC) were performed on a Büchi 861 apparatus (Buchi
Italia s.r.l., Cornaredo, Italy) with octadecyl-functionalized silica gel (200–400 mesh) packed column.
High performance liquid chromatography (HPLC) separations were achieved on a Shimadzu LC-10AT
(Shimadzu, Milan, Italy) apparatus equipped with a Knauer K-2301 (LabService Analytica s.r.l., Anzola
dell’Emilia, Italy) refractive index detector.

3.2. Collection, Extraction, and Isolation

Specimens of Phallusia fumigata were collected in May 2010 in the bay of Pozzuoli (Napoli,
Italy). The samples were frozen immediately after collection and stored at ´20 ˝C until extraction.
A reference specimen is deposited at the Department of Pharmacy, University of Naples. The fresh
thawed animals (402 g of dry weight after extraction) were homogenized and extracted twice with
methanol and then twice with chloroform (4 ˆ 200 mL). The combined extracts were concentrated in
vacuo, and the resulting aqueous residue was extracted with EtOAc and subsequently with n-BuOH.
Separation of the n-BuOH soluble material (3.06 g) was achieved by gradient RP-18 silica gel MPLC
(Sigma-Aldrich, Inc., St. Louis, MO, USA) (H2O Ñ MeOH Ñ CHCl3) to yield nine fractions A–I.
The fraction eluted with H2O/MeOH 3:7 v/v, (fraction D, 98.2 mg) was chromatographed by HPLC
on a RP-18 column (polar-RP 5 m, 250 ˆ 4.60 mm) eluting with H2O/MeOH 35:65 (v/v), yielding a
fraction mainly composed of 1 (5.6 mg) which has been further purified by HPLC on a RP-18 column
(Synergy 4 m, 250 ˆ 4.60 mm), eluting with H2O/MeOH 3:7, thus affording phallusiasterol C (1.1 mg)
as pure compound.

3.3. Phallusiasterol C (1)

Colorless amorphous solid, rαs25
D ´4.0 (c 0.1, CH3OH); HRESIMS (negative ion mode, CH3OH)

m/z 567.2054 ([M´Na]´, calcd. for C26H40NaO8S2
´ 567.2057); 1H and 13C NMR (CD3OD): see Table 1.

3.4. Transactivation Experiments

To investigate the PXR mediated transactivation, HepG2 cells were plated in a 24-wells plate,
at 5 ˆ 104 cells/well, and transiently transfected with 75 ng of pSG5-PXR, 75 ng of pSG5-RXR, 125 ng
of pCMV-β-galactosidase, and with 250 ng of the reporter vector pCYP3A4promoter-TKLuc, using
Fugene HD transfection reagent (Roche). At 24 h post-transfection, cells were primed 18 h with
Rifaximin and 1 (10 µM) or with the combination of Rifaximin (10 µM) plus compound 1 (50 µM).
After treatments, cells were lysed in 100 µL Lysis Buffer (25 mM TRIS-phosphate pH 7.8; 2 mM
DTT; 10% glycerol; 1% Triton X-100) and 20 µL cellular lysate was assayed for Luciferase activity
using the Luciferase Assay System (Promega Corporation, Madison, WI, USA). Luminescence was
measured using Glomax 20/20 automated luminometer (Promega Corporation). Luciferase activities
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were normalized for transfection efficiencies by dividing the Luciferase relative light units (RLU) by
β-galactosidase activity (βgal) expressed from cells co-transfected with pCMVβgal. All experiments
were performed in triplicate.

3.5. Cells Culture, RNA Extraction and Real-Time PCR

HepG2 cells were cultured at 37 ˝C in E-MEM supplemented with 10% FBS, 1% l-glutamine
and 1% penicillin/streptomycin. To evaluate PXR target genes expression, serum starved HepG2
cells were stimulated for 18 h with Rifaximin and compound 1 (10 µM). Total RNA was extracted
using the TRIzol reagent (Invitrogen, Life Technology, Carlsband, CA, USA), purified of the genomic
DNA by DNAase I treatment (Invitrogen, Life Technology) and random reverse-transcribed with
Superscript II (Invitrogen, Life Technology). A 10 ng template was amplified using the following
reagents: 0.2 µM of each primer and 10 µL of KAPA SYBR FAST Universal qPCR Kit (KAPA
BIOSYSTEMS, Woburn, MA, USA). All reactions were performed in triplicate and the thermal cycling
conditions were: 3 min at 95 ˝C, followed by 40 cycles of 95 ˝C for 15 s, 58 ˝C for 20 s and 72 ˝C
for 30 s. The relative mRNA expression was calculated and expressed as 2´(∆∆Ct). Primers used for
qRT-PCR were: hGAPDH: GAAGGTGAAGGTCGGAGT and CATGGGTGGAATCATATTGGAA;
hCYP3A4: CAAGACCCCTTTGTGGAAAA and CGAGGCGACTTTCTTTCATC; hMDR1:
GTGGGGCAAGTCAGTTCATT and CTTCACCTCCAGGCTCAGT.

3.6. Statistical Analysis

All values are expressed as means˘ standard error (SE) of n observations/group. Comparisons of
two groups were made with a one-way ANOVA with post hoc Tukey’s test. Differences were considered
statistically significant at values of p < 0.05.

4. Conclusions

The structure of phallusiasterol C (1), a new disulfated steroid isolated from the
Mediterranean tunicate Phallusia fumigata was elucidated using mass spectrometry and NMR
experiments. Phallusiasterol C (1) is the first example of a sterol with a sulfated
(22E)-26,27-dinor-24-methyl-25-hydroxy side chain from tunicates; up to now, only one sterol with
the same side chain has been isolated from the starfish Ctenodiscus crispatus [21] and only few similar
polyhydroxylated steroids containing an analogous, but sulfate-free, side chain from the starfishes
and from sea gorgonian have been characterized [22–26]. However, the occurrence of sterols with side
chains of the 24-methyl-27-nor- and 24-methyl-26,27-dinorcholestane types in nearly every marine
invertebrate phylum is reported and this suggests that these sterols could be of a dietary origin.
Moreover, it has been reported that marine C26 sterols (i.e., 26,27-dinor-24-methylcholestane) originate
from phytoplankton [6,7,25,27,28]. Therefore, the occurrence of (1) in P. fumigata may be of ecological
interest, since it could be an indicator of the tunicate’s ability to oxidize dietary sterols.

Investigation of the possible role of phallusiasterol C as modulator of the PXR nuclear
receptor revealed important structural requirements for the PXR nuclear receptor activity of sulfated
steroidal structures.

Supplementary Materials: The following are available online at www.mdpi.com/1660-3397/14/6/117/s1,
Figure S1: 1H-NMR spectrum of phallusiasterol C (1) in CD3OD, Figure S2: 13C-NMR spectrum of phallusiasterol
C (1) in CD3OD, Figure S3: COSY spectrum of phallusiasterol C (1) in CD3OD, Figure S4: HSQC spectrum of
phallusiasterol C (1) in CD3OD, Figure S5: HMBC spectrum of phallusiasterol C (1) in CD3OD, Figure S6: ROESY
spectrum of phallusiasterol C (1) in CD3OD, Figure S7: Negative-ion HRESI mass spectrum of phallusiasterol
C (1).
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The following abbreviations are used in this manuscript:

PXR pregnane-X-receptor
HCMV human cytomegalovirus
FXR farnesoid X receptor
HepG2 hepatoma G2
HR ESI High-resolution electrospray ionisation
COSY Two dimensional 1H correlation
HSQC 1H-detected heteronuclear single-quantum coherence
HMBC 1H-detected heteronuclear multiple-bond correlation
ROESY Rotating-frame Overhauser Spectroscopy
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