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Abstract: Recently, there is a growing interest towards the development of strategies for invasive
seaweed control and exploitation as source of secondary metabolites. Here, we investigated the
potential of exploitation in biotechnology and recycling options in eradication programs of the lipidic
extract of the Mediterranean invasive seaweed Caulerpa cylindracea (Chlorophyta). The chemical
characterization was carried out by means of multinuclear and multidimensional NMR spectroscopy.
The fatty acid profile of C. cylindracea assessed the presence of several types of molecules known
for antioxidant activity such as carotenoids, chlorophylls, pheophytins, and sterols. The NMR
spectroscopy showed also the characteristic signals of saturated, unsaturated, and free fatty acids as
well as other metabolites including the biopolymer polyhydroxybutyrate. The lipidic extract exerted
an antioxidant activity corresponding to 552.14 ± 69.13 mmol Trolox equivalent/g (ORAC) and to
70.3 ± 2.67 mmol Trolox equivalent/g (TEAC). The extract showed an antibacterial activity against
several Vibrio species, suggesting its potential use in the control of diseases in mariculture. Our results
show that C. cylindracea, representing a critical hazard in coastal areas, could be transformed into a
gain supporting specific management actions to reduce the effects of human pressures.

Keywords: seaweed; C. cylindracea; NMR spectroscopy; lipidic extract; antioxidant activity;
antimicrobial activity; fatty acids

1. Introduction

Marine organisms are rich sources of structurally novel and biologically active metabolites,
exhibiting numerous interesting biological effects and thus constituting valuable opportunities for drug
discovery. Recently, several studies on the growing problem of non-indigenous species have proven
that the knowledge of marine bioactive compounds may indicate the capacity of non-indigenous
species to invade new systems [1–9]. In a recent review, Mollo et al. [10] showed that the commercial
use of the natural products obtainable from marine bioinvaders might also be considered as an effective
option for reducing their impact on marine ecosystems.
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In coastal habitats, macroalgae are abundant and represent a source of bioactive metabolites
exhibiting numerous promising and remarkable biological activities capable of influencing the
abundance, distribution, and survival of marine organisms [11,12]. Seaweeds are known for their
richness in polysaccharides, minerals, and certain vitamins [13]. Marine algae have been also
recognized as potential source of antioxidants [14,15] and traditionally consumed as a readily
available whole food, especially among coastal communities [16–18]. Fatty acids and enzymatic
and non-enzymatic antioxidant properties of have been investigated in Caulerpa species [19–22].
Macroalgae also contain bioactive substances like polysaccharides, proteins, lipids, and polyphenols,
with antibacterial, antiviral, and antifungal properties [23].

Seaweeds have been prescribed for several diseases in different Asian traditional medical
systems [18]. In recent years, pathogenic bacteria resistant to multiple drugs have become a worldwide
emergency. The discovery of new antibacterial compounds, as suitable substitutes to conventional
antibiotics, might be a possible solution to this problem. Seaweeds could represent a potential
source of new antimicrobial compounds [24]. Ballesteros and Uriz [25] have screened several marine
macrophytes from the Central Mediterranean to evaluate the production of antibacterial, antifungal,
compounds, founding, among the Chlorophyta, with the maximum level of activity found in the order
Bryopsidales. In particular, species belonging to the genus Caulerpa show interesting antibacterial
activity compared to other groups of algae [26]. A study conducted on the aqueous extract of
Caulerpa racemosa collected in India (Gulf of Mannar) showed a pronounced antibacterial activity
against different pathogenic organisms [27]. Moreover, the methanol extract of C. racemosa was found
to exhibit significant activity against the test pathogens Staphylococcus aureus, Escherichia coli, and
Enterobacter aerogenes [28].

In the present study, we focused on the Mediterranean non indigenous seaweed
Caulerpa cilindracea (Sonder) [29], previously known as C. racemosa var. cylindracea (Sonder) Verlaque,
Huisman and Boudouresque [30]. The vector of introduction in the Mediterranean Sea is unknown.
It was initially hypothesized to be a Lessepssian immigrant, or a hybrid between C. racemosa
var. turbinata and an unknown tropical variety [31] until molecular analyses identified a possible
source population around the Australian-Pacific area [30–32]. It can invade different habitats, grow
rapidly, and spread though fragmentation and propagation [33,34], leading to profound structural
and functional alterations of native benthic assemblages and fish metabolism [9,35,36]. In the
Mediterranean, the production of secondary metabolites by the alga changes seasonally and the highest
levels have been observed during the period of vegetative algal growth (summer and autumn) [37].
Moreover Blažina et al. [20] observed that in C. racemosa from sheltered sites generally small variations
in total lipids were found.

Here the chemical characterization of C. cylindracea lipidic extract was carried out by means of the
advanced analytical technique of multinuclear and multidimensional NMR spectroscopy. In addition,
the presence of secondary metabolites in the seaweed extract including bioactive compounds with
antimicrobial and antioxidant activities was assessed. Since eradication has been recently suggested
as a powerful action to protect areas highly impacted by invasive species, the secondary metabolites
were investigated with the perspective of using C. cylindracea in eradication programs to support
biotechnology and recycling options.

2. Results

2.1. NMR Spectoscopy

The 1D 1H (Figure 1) spectrum in spectrum in CDCl3 of the algal lipid fractions shows the
characteristic signals of fatty acids (FAs), such as saturated (SAFAs) and unsaturated (UFAs) fatty
acids, as well as caulerpin and other metabolites. At low frequencies the singlet at 0.66 ppm, which
in the 1H–13C HSQC shows cross peak correlation with the carbon at 11.8 ppm, was attributed to a
methyl group of sterols.
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Figure 1. 1H NMR in CDCl3 of C. cylindracea lipidic extract.

The signals at 0.85 ppm were assigned to the methyl groups of all FAs exceptω3, which give a
triplet at 0.95 ppm. The large signal at 1.21 and 1.50 ppm was attributed to alkyl chain and methylene
group in β position to C=O of all fatty acids. The large signals between 1.94 and 2.12 ppm and the
signals at 5.35 ppm were attributed to methylene groups in α position with respect to vinyl groups
and vinyl groups of all UFAs, respectively. The methylene groups in α to C=O of all FAs resonate at
2.29 ppm. The bisallylic protons, characteristic of fatty acids with two or more double bonds, give
signals at 2.78 ppm.

In addition, the characteristic spin system of poly-β-hydroxybutyrate (PHB) was identified in
extract by 2D 1H COSY spectra (two signals at 2.45 and 2.58 ppm, attributed to the methylene group,
coupled with the methyl group at 1.26 ppm and the methine at 5.23 ppm). By 1D 1H and 2D 1H COSY
spectra of all fractions different pattern signals for esterified glycerols were observed. The coupling
system connecting the multiplet at 5.25 ppm and the doublet of doublet at 4.27 and 4.12 ppm was
assigned to the CH sn2 and the two CH2 sn1 and sn3 of triacylglycerol. However, by 1D 13C-NMR a
higher intensity of signals at 179 ppm, attributed to carbonyl groups (C=O) of free fatty acids (FFAs)
with respect to the signals in the range 173–174 ppm assigned to carbonyl groups of esterified fatty
acids (EFAs) was observed.

In the 1D 1H NMR spectrum at high frequencies the aromatic signals of caulerpin were observed.
The doublets at 7.41 and 7.28 ppm and the multiplets at 7.16 and 7.07 ppm were assigned to the
bis-indolic ring of caulerpin, whereas the singlets at 9.22, 8.04, and 3.88 ppm were assigned to NH
of bis-indole, =CH- of central ring and ester methyl groups, respectively. The signals in the high
frequencies region between 11.2 and 8.5 ppm were attributed to methine bridge protons of chlorophyll
and pheophytins. These signals were confirmed by the presence at negative value of chemical shift
(−1.5 to −2.00 ppm) of peaks corresponding to the N-H protons of the tetrapyrrole ring. The signals in
the range 6.00 to 6.70 ppm were assigned to conjugated double bonds of carotenoids. Isomers that are
all trans are prevalent in fresh matter and the quantities of cis isomers increase after thermal processing.

2.2. Antioxidant Activity

The antioxidant activity of the lipidic extract from C. cylindracea assayed by TEAC and ORAC
assays is reported in Table 1. Antioxidant capacity of the seaweed extract measured by the ORAC
assay was eight times higher than the activity measured by the TEAC assay.

Table 1. Antioxidant activity of C. cylindracea lipidic extract assayed by TEAC and ORAC assays.

ORAC value 552.14 ± 69.13 µmol Trolox Equivalent/g extract

TEAC value 70.03 ± 2.67 µmol Trolox Equivalent/g extract

Data are the mean ± SD (n = 3).
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2.3. Antimicrobial Activity

The results of antimicrobial activity of Caulerpa cylindracea lipidic extract towards the utilized
microbial strains are shown in Table 2. Yeasts were not affected in their growth by C. cylindracea lipidic
extract. Moreover, the extract did not show antibacterial activity against Enterococcus sp., Escherichia coli,
Staphylococcus sp., and Streptococcus sp. By contrast, the degree of inhibition produced by the lipidic
extract on some Vibrio species was quantified. In particular, using discs with 100 µL of algal extract,
V. fischeri, V. inusitatus, and V. litoralis were the most inhibited (diameter of growth inhibition = 0.9 cm).
A lower percentage of inhibition was measured on V. aestuarinus (0.85 cm), V. mediterranei (0.8 cm), and
V. vulnificus (0.8 cm).

Table 2. Antimicrobial activity of C. cylindracea lipidic extract.

Microbial Strain
Diameter of Growth Inhibition (cm)

10 µL 20 µL 30 µL 40 µL 60 µL 80 µL 100 µL

Candida albicans 0 0 0 0 0 0 0
Candida glabrata 0 0 0 0 0 0 0
Enterococcus sp. 0 0 0 0 0 0 0
Escherichia coli 0 0 0 0 0 0 0

Staphilococcus sp. 0 0 0 0 0 0 0
Streptococcus sp. 0 0 0 0 0 0 0

Vibrio aestuarianus 0.7 0.7 0.7 0.7 0.7 0.8 0.85
Vibrio campbelli 0 0 0 0 0 0 0
Vibrio carchariae 0 0 0 0 0 0 0

Vibrio diazotrophicus 0 0 0 0 0 0 0
Vibrio fischeri 0.8 0.8 0.8 0.8 0.8 0.8 0.9
Vibrio fluvialis 0 0 0 0 0 0 0
Vibrio furnissi 0 0 0 0 0 0 0
Vibrio harveyi 0 0 0 0 0 0 0

Vibrio inusitatus 0.8 0.8 0.8 0.8 0.8 0.9 0.9
Vibrio litoralis 0.8 0.8 0.8 0.8 0.8 0.8 0.9

Vibrio mediterranei 0 0 0.7 0.7 0.7 0.8 0.8
Vibrio natriegens 0 0 0 0 0 0 0

Vibrio ordalii 0 0 0 0 0 0 0
Vibrio salmonicida 0 0 0 0 0 0 0
Vibrio splendidus II 0 0 0 0 0 0 0

Vibrio vulnificus 0.8 0.8 0.8 0.8 0.8 0.8 0.8

3. Discussion

In the present study, the lipidic extract of the Mediterranean invasive alga C. cylindracea was
analyzed by multinuclear and multidimensional NMR spectroscopy and its antioxidant, antibacterial,
and antifungal activities have been evaluated.

Some important issues can be inferred from the obtained results:
By the NMR analysis the 1H NMR spectrum in CDCl3 of C. cylindracea algal lipid fraction

interestingly, for the first time, showed the presence of polyhydroxybutyrate (PHB), a natural,
linear biodegradable, and biocompatible polymer belonging to the polyesters group of bioplastics.
PHB is synthesized by microorganisms as a form of energy-storage granules and utilized when
the other energy sources are not available [38]. PHB has been already evidenced in the red algae
Plocamium cartilagineum (Linnaeus) Dixon [39], Gracilariopsis longissima [17], and Cladophora rupestris [40].
Due to the rapid degradation and the non-toxicity of the final products, PHB represents an important
ingredient for the production of polymers used in various biotechnological applications such as in
the production of several medical devices and compostable plastic [41,42]. As crude oil reserves
decrease throughout the world, petroleum based plastics are becoming less economical. Moreover,
petroleum based plastics cannot be considered environmentally friendly due to their resistance to
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natural or biological decomposition. In this framework, Caulerpa cylindracea could represent one of the
alternatives for the production of bioplastics because it is an excellent renewable resource due to its
high bioinvasion potential and high growth rate. The technology development for seaweeds-based
bioplastics are still in the research phase. The challenge is to have significant advancements in the
bioplastics industries to make seaweed bioplastics a concrete alternative in the future as already
underlined in a recent review by Noreen et al. [43].

The NMR analysis besides other metabolites also showed the characteristic signals of SAFAs,
UFAs, FFAs, and EFAs. NMR has indeed the desirable property of providing a global profiling tool for
monitoring rapidly the molecular components of marine organisms [44]. Fatty acids are compounds
usually bound to other molecules including glycerol, sugars, or phosphate groups thus constituting
the lipids. As already reported for other algal lipid extracts [39,45], the presence of monogalactosyl
diacylglycerol (MGDG) was recognized in C. cylindracea by NMR spectroscopy. Our results are in
accordance with other studies on C racemosa and other seaweeds confirming their nutritional value [21].
In particular, seaweeds are low in calories, have high content of dietary fiber, are a good source of
polyunsaturated fatty acids DHA and EPA, and may contain proteins with an amino acid profile of
interest [46]. Apart from the importance of fatty acids for diet, their ability to interfere with bacterial
growth and survival has been established in several organisms including seaweeds [40,47]. This is
noteworthy since in this study we observed for the first time an antibacterial activity of C. cylindracea
against Vibrio aestuarianus, V. fischeri, V. inusitatus, V. litoralis, V. mediterranei, and V. vulnificus. This is a
critical result considering that aquaculture is emerging as the fastest growing food-producing industry
in the world because of the increasing demand for food fish consumption. However, the intensive
culture of food fish has led to outbreaks of various microbial diseases, resulting in annual economic
losses to the aquaculture industry estimated at billions of dollars worldwide [48]. Bacteria, mainly
from the genus Vibrio, have been identified as the etiological agents responsible for the most common
disease outbreaks in fish and shellfish causing mortality in several countries [49]. Disease outbreaks
caused by several Vibrio species including V. aestuarianus, V. mediterranei, and V. vulnificus are called
vibriosis [50–52]. Treatments of infected fish with antibiotic- medicated food are a common practice but
have led to the development of bacterial antibiotic resistance, resulting in a higher dose requirement
for effective control and a consequent increase of chemical residues released into the environment
posing serious risks to animal and human health. Therefore, there is currently an increasing request for
more environment-friendly alternatives to conventional antibiotics with similar or enhanced properties
for aquatic animals. In the last 20 years, there has been an increasing interest in using various
seaweed extracts as prophylactic and/or therapeutic agents in aquaculture [53]. Thus, the ability of the
C. cylindracea lipidic extract to act against aquatic pathogens at a concentration of 5 mg/mL, evidenced
in the present study, highlights its potential exploitation as a source of antibacterial compounds, of
great importance in the control of disease in the mariculture industry, which is a largely unexplored
field of research.

The seaweed extract did not show activity against the yeasts C. albicans and C. glabrata, and
against the bacterial strains Enterococcus sp., E. coli, Staphilococcus sp., Streptococcus sp. It is well known
that the antibacterial activity can be affected by many factors and that the method of extraction is
one of the most important ones since different compounds, capable of acting on different bacterial
strains, can be obtained by different extraction procedures [53,54]. The substances isolated from
green, brown, and red algae showing powerful antimicrobial activity belong to different classes and
include polysaccharides, fatty acids, phlorotannins, pigments, lectins, alkaloids, terpenoids, and
halogenated compound. As an explanation, C. racemosa ethyl acetate extract exhibits antibacterial
activity against Enterococcus faecalis, Staphylococcus aureus, Bacillus cereus, and Escherichia coli [54,55]. By
contrast, methanolic extracts of C. racemosa shows antibacterial activity against Klebsiella pnemoniae,
Enterobacter aerogens, Pseudomnas aeruginosa, Micrococcus luteus, Enterobacter faecalis, Streptococcus faecalis,
Staphylococcus aureus, and Bacillus subtilis [26,38]. In the present study, we evaluated the antibacterial
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activity of the C. cylindracea lipidic extract but further studies are needed to evaluate whether the crude
extract or aqueous extract lead to evidence other relevant biological activities.

The seaweed lipidic extract exerts an important antioxidant activity. Even though a comparison of
antioxidant activity across seaweeds is difficult due to seasonal, environmental, and genetic variations,
the obtained ORAC mean value of 552 µm Trolox equivalent/g extract for C. cylindracea is similar
to those of lipid-soluble extracts of Macrocystis pyrifera (462 µm Trolox equivalent/g extract) and
Ecklonia radiata (363 µm Trolox equivalent/g extract). This is noteworthy since these seaweeds, with
powerful activity, have been recently proposed as potential sources of natural antioxidants instead of
chemical antioxidant [56].

The TEAC and ORAC methods were simultaneously utilized in the present work since many
studies stress the need of adopting at least two approaches to take into account the different
mechanisms of antioxidant action [57,58], as single assay may disregard some radical sources or
all antioxidants [59]. The methods utilized here are among the most popular assays and differ for
their reaction mechanisms: TEAC is an electron transfer (ET) based method, while ORAC is based on
hydrogen atom transfer (HAT) method. Other studies have already been conducted on the antioxidant
activity of C. racemosa [21,60]. The utilized methodology is generally different across studies so that a
comparison of seaweed antioxidant activity is challenging. The results obtained in the present study
indicate that the ORAC values were higher in the measurement of antioxidant capacity of the lipidic
extract of C. cylindracea than the TEAC. These results are in accordance with literature data indicating
that carotenoids contain a chain of isoprene residues bearing numerous conjugated double bonds and
are mostly involved in the scavenging of two of the reactive oxygen species, singlet molecular oxygen
(O2), and peroxyl radicals (ROO•). The HAT-based antioxidant capacity assays, like ORAC, utilize
a radical initiator to generate peroxyl radicals and measure the antioxidant activities of antioxidant
molecules against peroxyl radicals [61]. Then the antioxidant activity of carotenoids is higher when
measured with ORAC assay on comparison to TEAC assay. By contrast, the antioxidant activity of
phenolic acids is similar using both methods [62].

Interestingly, the characterization of C. cylindracea lipidic extract by 1D and 2D NMR spectroscopy
assessed the presence of several types of molecules known for their antioxidant activity. Carotenoids,
which produce signals in the 6.00–6.70 ppm range, were identified as well as the signals of
chlorophylls and its thermal by-product, metal-free pheophytins. Both chlorophylls and pheophytins
have demonstrated protective activity against auto-oxidation of vegetable oils in the dark [63,64].
Endo et al. [63] suggested that chlorophyll derivatives may act as electron donors as evidenced by
their ability to reduce free radicals such as 1,1,diphenyl-2-picrylhydrazyl. Moreover, chlorophyll a
was shown to act synergistically with vitamin E by quenching tocopherol radicals, thereby enhancing
the observed antioxidant effects of vitamin E [65,66]. The ORAC specificity, the medium polarity
of the extraction solvent, together with the content of carotenoids, chlorophylls, pheophytins, and
sterols could explain the higher ORAC value of the Caulerpa lipidic extract compared to those obtained
by TEAC according with other studies on Caulerpa [67,68]. Previous studies highlighted greater
antioxidant activities of the green seaweed C. racemosa from Malaysian North Borneo compared to other
brown and red seaweeds, observing that the phenolic compounds were involved in the antioxidant
activity [69]. Further studies conducted on C. racemosa highlighted that the major contributors to the
antioxidant activities are medium polarity phenolic compounds [70,71]. The further identification,
characterization, and isolation of the compounds involved in C. cylindracea antioxidant activity might
contribute to the employment of algal extracts in disease treatments related to oxidative stress, taking
into account that, recently, an interest in natural antioxidants has increased because they are safer than
synthetic antioxidants.

In conclusion, our findings open a new research area on the possible employment of the examined
seaweed in the biotechnological field as source of bioactive natural products including antibiotics,
antioxidants, fatty acids, and PHB potentially carrying benefits to human and marine organisms’ health.
At present, eradication of recent alien introduction [72] has been proposed as a promising management
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action to assist the recovery of highly invaded areas under protection regime such as Marine Protected
Areas. In this framework, the overproduced biomass of the invasive seaweed C. cylindracea could
transform into a gain offering a potential tool with recycling options in eradication programs.

4. Materials and Methods

4.1. Study Site and Species Collection

Caulerpa cylindracea was collected in the Marine Protected Area of Torre Guaceto located in the
Mediterranean Sea (Southern Adriatic Sea, Brindisi, Italy) at the depth of 8–10 m on the rocky bottom,
during the season of maximum growth of the species when the alga dominates the benthic assemblages
forming continuous dense meadows across the areas. Caulerpa cylindracea shows a seasonal cycle
with a period of vegetative growth approximately between June and November alternated with a
period of vegetative rest (a quasi-complete withdrawal) approximately from December to May [73,74].
Seasonal variations in the growth rate were highly significant: during the maximum development
the biomass is 82 ± 3 g·DW·m−2 and length of stolons 1162 ± 86 m·m−2. By contrast, during the
minimum development the biomass is reduced to 0.3 ± 0.1 g·DW·m−2 and length of stolons to
3 ± 1 m·m−2 [74]. Three replicates of about 500 g of fresh material were collected by SCUBA diving.
All the harvested material was transferred into aseptic containers to the laboratory under controlled
temperature (4 ◦C). The species was identified on the basis of morphological features. In detail,
the following morphological features of the thalli were analyzed: height, width and attachment
to stolons of the fronds; height, diameter, shape, and arrangement of the ramuli; diameter of the
stolons; length, width, spacing, and morphology of the rhizoids. Algal morphological features fit the
description given by several authors for the invasive species C. cylindracea [29,36,75–77].

4.2. Preparation of Lipidic Extracts from the Macroalga

Algae samples were cleaned of epiphytes and other marine organisms with a mixture of ethanol
and (40%) and sodium hypochlorite (1%) for 10 s [78] and necrotic parts were removed. The samples
were further rinsed with sterile water to remove any associated debris. The freshly cleaned material
was air-dried and powdered, then 3 g of each sample was extracted in 150 mL of chloroform/methanol
(2:1 at 55–60 ◦C for 24 h) using a soxhlet apparatus. Extraction solvents were evaporated under
vacuum at controlled temperature. 5 mg of extract was then dissolved in 1 mL of absolute ethanol
(95%; by J.T. Baker), and assayed for antimicrobial and antioxidant activity.

4.3. NMR Spectroscopy

The lipid fraction of C. cylindracea was characterized by 1H and 13C 1D and 2D NMR spectroscopy
with the same methodology already reported in Stabili et al. [47]. 1D 1H and 13C, 2D 1H Jres, 1H COSY,
1H–13C HSQC, and 1H–13C HMBC spectra were recorded at 298.15 K on a Bruker Avance III 400 MHz
spectrometer using CDCl3 as solvent and chemical shift was referenced to TMS by the residual protic
solvent peaks as internal references ((1H = 7.24 ppm; 13C = 77.0 ppm). High resolution 13C-NMR
spectra were acquired semi-quantitatively [79], with short relaxation times, and high number scans,
to achieve sufficient S/N ratio to calculate the integrals. The following parameters were used: 64 K
data points, spectral width of 20,161.291 Hz, 16 K scans with a 0.5 s repetition delay, and 60◦ at
13C excitation pulse. The acquisition and processing of spectra were performed using the software
Topspin 2.1 (Bruker Biospin). Resonances of fatty acids and metabolites were assigned on the basis of
literature data [40,47,80,81].
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4.4. Antioxidant Activity

4.4.1. Oxygen Radical Absorbance Capacity Assay (ORAC)

For ORAC the method of Davalos et al. [82] was used. Extracts were diluted with 75 mM
phosphate buffer (pH 7.4). The assay was carried out in black-walled 96-well plates (Greiner-Bio
One) and each well contained a final volume of 200 µL. To each well 20 µL of extract and 120 µL of
fluorescein (FL; 70 nM final concentration) were added and the plate was incubated at 37 ◦C for 15 min.
The AAPH (60 µL; 12 mM final concentration) was added to each well and fluorescence intensity was
estimated using an Infinite200 Pro plate reader (Tecan, Männedorf, Switzerland), every minute for a
total of 80 min using an excitation wavelength of 485/9 nm and an emission wavelength of 535/20 nm.
A standard curve was constructed using 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
(Trolox, Sigma-Aldrich, Oakville, ON, Canada, 1.5–10.5 µM). A blank (fluorescein + AAPH) using
phosphate buffer instead of the antioxidant solution was carried out in each assay. Results were
determined by using Magellan v 7.2 software (Tecan, Männedorf, Switzerland), on the basis of the
difference in area under the curve between the control and the sample and expressed as µmoles of
Trolox equivalents (TE) per g of lipidic extract. All the reaction mixtures were prepared in triplicate
and at least three independent assays were performed for each sample.

4.4.2. Trolox Equivalent Antioxidant Capacity Assay (TEAC)

The TEAC assay was performed as previously described by Re et al. [83] with minor modifications
to adapt the assay to a microplate reader. Briefly 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)
diammonium salt (ABTS, Sigma-Aldrich) radical cations were prepared by mixing an aqueous solution
of potassium persulfate 2.45 mM (final concentration) and an aqueous solution of ABTS 7 mM (final
concentration) and allowing it to stand in the dark at room temperature for 12–16 h, before use.
The ABTS radical cation solution was diluted in PBS (pH 7.4) to an absorbance of 0.40 at 734 nm ± 0.02;
this value was adopted to obtain about 80% of maximum inhibition of the blank absorbance using the
highest concentration of the Trolox standard curve. Trolox was used as antioxidant standard and a
standard calibration curve was constructed for Trolox (0–16 µM). After addition of 200 µL of diluted
ABTS to 10 µL of Trolox standard or extracts diluted in PBS, in each well of a 96 well-plate (Costar),
the absorbance reading at 734 nm was taken 6 min after initial mixing using an Infinite200 Pro plate
reader (Tecan, Männedorf, Swizerland). Appropriate solvent blanks were run in each plate. The lipidic
extract was assayed in at least three separate dilutions and in triplicate. The percentage inhibition of
absorbance at 734 nm is calculated and plotted as a function of concentration of Trolox and the TEAC
value expressed as Trolox equivalent (in µmolar) per g of lipidic extract, using Magellan v 7.2 software.

4.5. Test Microorganisms

The antibacterial activity was tested on six human pathogenic microbial strains: Candida albicans,
Candida glabrata, Enterococcus sp., Escherichia coli, Staphilococcus sp., Streptococcus sp., and several
Vibrio strains isolated from marine environment: Vibrio aestuarinus, Vibrio campbellii, Vibrio carchariae,
Vibrio diazotrophicus, Vibrio fischeri, Vibrio fluvialis, Vibrio furnissii, Vibrio harveyi, Vibrio inusitatus,
Vibrio litoralis, Vibrio mediterranei, Vibrio natriegens, Vibrio ordalii, Vibrio salmonicida, Vibrio splendidus II,
Vibrio vulnificus. The tested strains were isolated and identified from seawater samples of the Mar
Piccolo of Taranto as previously reported by Cavallo et al. [84] and Stabili et al. [85].

4.6. Antimicrobial Activity

Antimicrobial activity was evaluated using the Kirby Bauer method [86]. Sterile paper discs, 6 mm
in diameter (AA; Whatman International Ltd., Maidstone, Kent, UK), were impregnated with 10, 20,
30, 40, 60, 80, 100 µL of each extract and left to air-dry at room temperature for 4 h, as already described
by Cavallo et al. [87]. By contrast, discs impregnated with an equivalent volume of carrier solvent
were used as controls. Moreover, an ‘extraction blank’ as a negative control (MeOH/CHCl3 extraction
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with no algae, dry, then suspended in ethanol) was also used. For each assay, sterile medium-agar
plates opportune for each selected bacterial and fungal strain tested were seeded with 100 µL of
microbial suspension (about 108 CFU mL−1) [88,89], using a sterile swab to give a uniform covering.
Impregnated discs and controls were laid onto the agar surface, the Vibrio plates were then incubated
for 24 h at 30 ◦C, the other tests were conducted at 37 ◦C. The clear zone around the discs was evidence
of antibacterial activity. The diameter of the microbial growth inhibition was taken as the diameter of
the clear zone (measured in centimeters).
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