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Abstract: Diatoms are marine organisms that represent one of the most important sources 

of biomass in the ocean, accounting for about 40% of marine primary production, and in the 

biosphere, contributing up to 20% of global CO2 fixation. There has been a recent surge in 

developing the use of diatoms as a source of bioactive compounds in the food and cosmetic 

industries. In addition, the potential of diatoms such as Phaeodactylum tricornutum as cell 

factories for the production of biopharmaceuticals is currently under evaluation. These 

biotechnological applications require a comprehensive understanding of the sugar 

biosynthesis pathways that operate in diatoms. Here, we review diatom glycan and 

polysaccharide structures, thus revealing their sugar biosynthesis capabilities. 
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1. Introduction 

Among ocean phytoplankton, diatoms are highly diverse with an estimated 105 to 107 species [1]. 

Marine diatoms make up an important group: they contribute to approximately 40% of primary 

productivity in marine ecosystems and 20% of global carbon fixation [2–5]. Diatoms also participate in 

the ocean silica cycle [6–9], iron cycle [8,10–12] and nitrogen cycle [13–16]. Due to their high diversity 

and very specific metabolism, diatoms have been used as bio-indicators and filters for controlling and 

purifying contaminated water [17–20]. For example, some diatoms such as Cylindrotheca fusiformis, 

Cyclotella cryptica, Phaeodactylum tricornutum, Skeletonema costatum, and Thalassiosira pseudonana 

have been used to absorb high quantities of heavy metals [21–23]. Diatoms are also used in 

nanotechnology to produce living nano-scale structures because they can build a silica shell at room 

temperature from a very small amount of silica dissolved in water [24–27]. In parallel, diatoms have 

been explored as sources of bioactive metabolites. Such compounds have many uses in the food industry. 

For example, diatoms have long been used as feedstock in aquaculture [28] and more recently in human 

health and food supplements (Figure 1). 

 

Figure 1. Applications of diatom active compounds in human health and food supplements. 

Given their ability to produce carotenoids, phytosterols, vitamins, and antioxidants, diatoms have 

become valuable sources of food supplements for humans [29]. Moreover, they can synthesize large 

amounts of polyunsaturated fatty acids, which are bioactive substances proven to promote human health 

(e.g., decrease in frequency of cardiovascular diseases and cancers) and growth in animals [19,30,31]. 

Additionally, the major carotenoid of diatoms, the brown-colored fucoxanthin, is used as an antioxidant, 

anti-inflammatory, anti-diabetes and anti-cancer drug [32,33], as well as for its protective effect on liver, 

eyes, blood vessels, skin, and lungs [32,34]. Anti-inflammatory and immunostimulating activities  

of diatoms polysaccharides such as laminarin have also been reported as effective in various fish  

species [35–37]. Additionally, other polysaccharides such as chrysolaminarin from the diatom 
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Chaetoceros muelleri have been shown to be promising candidates as immuno-stimulatory food 

additives in aquaculture [38]. Chrysolaminarin isolated from the diatom Synedra acus shows anti-tumor 

activity by inhibiting the proliferation of human colon cancer cells and colony formation [39]. Recently, 

polysaccharides from algae (including diatoms) have attracted interest in the cosmetic industry: some 

sulfated polysaccharides have already been tested to prevent the accumulation and the activity of free 

radicals and reactive chemical species, therefore acting as protective systems against oxidative stress [40]. 

The use of diatoms is thus likely to expand in the future. Additionally, the diatom P. tricornutum has 

recently been evaluated as a potential solar-fueled expression system to produce bioplastics [41] and 

biopharmaceuticals. In the biopharmaceutical field, diatoms have successfully been used to produce 

functional monoclonal human IgG antibodies directed against the hepatitis B virus surface antigen [42,43]. 

Understanding post-translational modifications (including glycosylation processing) in diatoms is 

fundamental, because they determine the critical quality attributes that can influence folding, half-life, 

activity, and immunogenicity of biopharmaceuticals [44,45]. 

Glycoconjugates, such as glycans and polysaccharides, are assembled and modified within the 

endomembrane system [46]. Their synthesis involves three steps, the first being the formation of 

activated nucleotide sugars, such as NDP-sugars or NMP-sugars within the cytosol [47]. Then, the 

nucleotide sugars are actively transported to the endoplasmic reticulum (ER) and Golgi apparatus  

where they serve as donor substrates for glycosyltransferases (GT) that transfer a specific sugar from its 

activated nucleotide form to a specific acceptor leading to the extension of the glycoconjugates. 

In this review, in regard to the capability of diatoms to synthesize glycoconjugates, we focus on the 

composition, structure and properties of diatom polysaccharides—whether they be intracellular, cell 

wall-bound or secreted in the culture medium—and on the structure and biosynthesis of N-glycans 

attached to proteins. 

2. Monosaccharide Composition and Structures of Polysaccharides in Diatoms 

Given the thousands of diatom species, with their large variety of forms, symmetry and cell wall 

shapes, the monosaccharide composition and structure of diatom glycoconjugates are likely to be highly 

specific. Diatoms are usually described as single cells with a protoplast embedded in a frustule—the 

name for the diatom cell wall—composed of two overlapping valves or thecae: the larger, upper epitheca 

and the smaller, lower hypotheca (Figure 2A). The frustule is composed of three successive layers:  

(1) the inner-most, organic layer, called the diatotepum, is in contact with the plasmalemma;  

(2) a mineral, silicified shell that contains organic matter; and finally (3) an external organic coat that is 

trapped in secreted mucilage, that we call here “cell wall-bound exopolysaccharides (EPSs)”  

(Figure 2B). Numerous studies have characterized the monosaccharide composition of cell wall 

polysaccharides, intracellular food storage polymers, and extracellular mucilage, but results must be 

carefully interpreted according to the extraction techniques used, which depend on the solubility of the 

respective components [48–53]. 
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Figure 2. Ultrastructural organization of a diatom cell: transmission electron micrographs 

of Phaeodactylum tricornutum oval morphotype. The cells were embedded in LRW resin 

with 0.5% uranyl acetate in a methanol/Reynold’s lead citrate solution. (A) general overview 

of a P. tricornutum oval cell. Scale bar = 0.4 µm; (B) zoom of the cell wall. Scale bar = 50 nm. 

N: nucleus; V: vacuole; C: chloroplast; py: pyrenoid; EPS: exopolysaccharides. 

2.1. Insoluble Polysaccharides in Diatoms 

2.1.1. Frustules, or Cell Wall Polysaccharides 

In diatoms, cell wall silica is associated with organic matter, composed mainly of proteins [54–56], 

polyamines [57], and polysaccharides [58]. Three families of proteins have been isolated from  

C. fusiformis cell walls: frustulins, pleuralins, and silaffins (see reference [59] for a review). Long 

polyamine chains, together with silaffins, are likely involved in frustule biosynthesis. However, the 

location and role of each component involved in frustule biosynthesis are not well-understood. 

Experimental studies on the chemical composition of the organic matter in diatom cell walls have 

demonstrated that polysaccharide content dominates that of proteins and lipids [60], although X-ray 

photoelectron spectroscopy measurements of cell surface components in T. pseudonana appear to show 

that polysaccharides are not predominant [61]. To characterize and localize these polysaccharides, 

accurate sequential extraction is necessary for at least three reasons. First, depending on their 

composition and structure, polysaccharides have various water-solubility properties, which in turn vary 

with temperature and chemical treatments. Second, cell wall polysaccharides may be more or less tightly 

bound either together, to silica, or to other insoluble components of the frustule. Third, a secreted or an 

extracted substance is not necessarily water-soluble once outside the cell; thus an insoluble extracted 

polysaccharide is not necessarily a cell wall component. 

Based on typical sequential extractions performed either on live or mechanically disrupted cells, we 

reviewed the monosaccharide composition reported in the three final fractions: (1) hot alkali soluble 

fraction; (2) hot alkali insoluble fraction; and (3) residual material that makes up the insoluble organic 

cell wall fraction (see Table 1). Different monosaccharide profiles have been observed in alkali soluble 

fractions: fucose dominates in Thalassiosira gravida and Corethron hystrix; rhamnose is mostly 

encountered in Chaetoceros affinis [62], galactose in Thalassiosira weissflogii [63] and mannose in  

P. tricornutum. Fractions with high levels of ribose were attributed to the cross-contamination of the 

extracts from intracellular content [50,62]. In the alkali insoluble fraction, the monosaccharide 
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composition profile is not that different from that found in insoluble organic cell walls in which mannose 

is preponderant. Insoluble organic cell walls, as summarized over 19 taxa in Table 1, and first shown by 

Coombs and Volcani [64], and reviewed by Hoagland et al. [48], contain fucose, galactose, glucose, 

mannose, xylose, glucuronic acid residues and, to a much lesser extent, rhamnose and arabinose. 

Although mannose is obviously the most abundant monosaccharide, fucose is dominant in Nitzschia 

brevirostris, whereas glucose predominates in Melosira granulata and Cyclotella stelligera [55], 

Nitzschia curvilineata and Amphora salina [53]. It is difficult to determine the abundance of other 

monosaccharide components due to their heterogeneous representation. 

The best studied frustule polysaccharides have been extracted from P. tricornutum. Based on 

successive alkali extraction, deproteination, chromatographic separation, Percival and co-workers 

extracted a cell wall polysaccharide from P. tricornutum [65] that is mainly composed of mannose, 

glucuronic acid residues and sulfate groups. Mild acid hydrolysis of the polysaccharides combined with 

chemical analysis of the oligosaccharide fragments revealed moieties that should be present in the overall 

polysaccharide structure. Blocks of 3-linked mannose have been identified and are assumed to form the 

backbone of the polysaccharides (Figure 3A). Substitution at position 2 of the mannose of the main chain 

with di- and trisaccharides composed of mannose and glucuronic acid (Figure 3B), or with sulfate groups 

have also been described in Pinnularia viridis [52] as well as in P. tricornutum [66]. However, the 

detailed configuration of the linkage between residues, as well as the size and distribution of the 

ramification are still unknown. The cell wall monosaccharide composition of several diatom species 

includes high amounts of mannose and glucuronic acid and low, but more variable amounts of fucose 

and xylose. According to these results, the glucuronomannan described in P. tricornutum may be 

synthesized more generally by other diatoms [52,66,67]. Environmental conditions have been shown to 

influence the monosaccharide composition of cell wall polysaccharides, thus affecting their respective 

structures as illustrated in P. tricornutum [66]. Variations in culture conditions, such as phosphate 

limitation in the culture medium, an increase in salinity, switching culture from liquid to solid  

medium—all considered as stress conditions—may cause the observed enrichment in rhamnose, uronic 

acid, sulfate, and O-methylated sugars in the insoluble polymeric fraction. Such variation in 

monosaccharide composition is assumed to modify polysaccharide structures, enabling cells to adapt to 

environmental changes. Therefore, the effects of culture conditions on the monosaccharide composition 

of glycoconjugates must be considered when comparing experimental results. 
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Table 1. Summary of the monosaccharide composition of diatom extracts: alkali soluble fraction, alkali insoluble fraction, and insoluble organic 

cell wall residues. Values are expressed in mol% of total monosaccharides detected in extracts. Horizontal sums of values lower than 100% 

indicate that some monosaccharides were not clearly identified in the corresponding study. 

Monosaccharide  Ara Fuc Gal Glc Man Rha Rib Xyl 3-O-MeFuc 2-MeGal 3/4-MeGal GalA GlcA 2-MeGlcA ManA 2-MeRha 3-MeRha 2,3-diMeRha 3-MeXyl 4-MeXyl Unknown GlcNac 

a Chaeotoceros affinis 

Alkali soluble 

fraction 

 11 18 2 6 52 — 7               

a Chaeotoceros curvisetus  32 31 1 6 16 10 4               

a Chaeotoceros decipiens  4 7 6 32 25 4 10               

a Chaeotoceros debilis  11 23 6 — 22 23 15               

a Chaeotoceros socialis  18 16 3 9 23 11 8               

a Thalassiosira gravida  43 12 4 7 — 27 7               

a Corethron hystrix  60 9 11 9 1 8 2               

b Thalassiosira weissflogii 1.94 6.98 36 19.5 17.9 4 3.91 7.31               

c Phaeodactylum 

tricornutum 
0.3 2.3 1.7 2.4 55.6 11.7 — 5.4 nd tr — 1.9 6.7  12 nd nd — nd nd   

d Phaeodactylum 

tricornutum O 
7 3 8 18 28 9 1 8   tr     tr   tr    

d Phaeodactylum 

tricornutum F 
 2 6 11 45 7  8   2  10         2 

e Stauroneis amphioxys 

Alkali insoluble 

fraction 

— 1 9 7 50 2  2 2   nd 28 nd  nd 2 nd — —   

d Phaeodactylum 

tricornutum O 
 1 5 12 72 1 tr 1               

d Phaeodactylum 

tricornutum F 
4 1 12 10 66 2 tr 4   1            

f Nitzschia frustulum 

Insoluble organic 

cell walls 

— 14 14 tr 32 5 — tr             35  

f Nitzschia angularis — 64 4 14 11 tr — tr             7  

f Asterionella socialis — tr 5 tr 22 tr — tr             78  

 f Cylindrotheca fusiformis — tr 10 tr 12 tr — tr             78  

g Navicula pelliculosa — 9.2 9.9 25.9 48.5 3.8 — 3.1               

g Melosira nummuloides 0.3 25.6 3.7 0.9 56.8 1.8 — 10.9               
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Table 1. Cont. 

g Melosira granulata 

Insoluble organic 

cell walls 

0.6 0.8 5.4 46.7 6.5 1.2 — 38.9               

g Cyclotella stelligera 2 0.6 22.4 43.3 13.6 0 — 18               

g Cyclotella cryptica — 12.2 12.2 13 37.2 7.4 — 17.8               

g Nitzschia brevirostris 

Hust. 
1.7 42.5 9.5 14.6 20.2 2.4 4.7 4.3               

h Pinnularia viridis tr 1.5 7 13 54 9.5  11    — — —  2 1 1 — —   

h Craspedostauros australis tr tr 2 5 69 2  4    2 2 12  — — — 2 —   

h Thalassiosira pseudonana 1 2 10 6 65 tr  5    — 10 —  — tr — — 1   

h Nitzschia navis-varingica 2 1 3 7 64 2  1    tr 15 —  — 5 — — —   

i Coscinodiscus radiatus   tr 4.7 80.1 1.5  1.4    tr 12.4          

i Nitzschia curvilineata   6.5 45.6 40.3 1.7  4.4    — 1.4          

i Amphora salina   2.7 47.7 41.5 1.5  1.3    tr 5.5          

i Triceratium dubium   tr 6.4 67.4 tr  6.3    5.6 1.5         12.8 

d Phaeodactylum 

tricornutum O 
 3 3 11 61 12  2   4            

d Phaeodactylum 

tricornutum F 
3 1 10 25 47 3 tr 6   2            

tr, trace (<0.8% mol); —, not detected; nd, not determined. Bright yellow: major compound, gray: second-most major compound. a [62]; b [63]; c [66]; d [67]; e [68]; f [69]; g [55]; h [52]; i [53]. Morphotypes of 

Phaeodactylum tricornutum: F, fusiform; O, oval. Ara, arabinose; Fuc, fucose; Gal, galactose; GalA, galacturonic acid; Glc, glucose; GlcA, glucuronic acid; GlcNAc, N-acetylglucosamine; Man, mannose; ManA, 

mannuronic acid; Me, methyl group; Rha, rhamnose; Rib, ribose; Xyl, xylose. 
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Figure 3. Drawings of hypothetical structures of oligosaccharides found in insoluble cell 

wall polysaccharides after mild acid hydrolysis of Phaeodactylum tricornutum cell wall 

extracts. (A) 1,3-linked mannopyranose chains; (B) oligosaccharide fragments. Although 

hypothetical alpha-linkages are shown here, there is no clear evidence for either alpha- or 

beta-linkages [65]. 

2.1.2. Chitinous Spines 

Cyclotella and Thalassiosira species produce stiff and highly crystalline fibers of chitin  

(poly-N-acetyl-D-glucosamine), as demonstrated using chemical, crystallographic, and enzymatic 

methods [70–72]. Due to high crystallinity (chitin is probably the most crystalline polysaccharide 

material on earth); the crystal structure of chitin fibers has been resolved at the molecular level [73,74]. 

Diatoms secrete β-chitin (Figure 4), which has a crystalline structure similar to that described in  

worms [75–77], but different from that of arthropods, crustaceans, and fungi, which all synthesize  

α-chitin. α-Chitin shows anti-parallel chain packing, whereas β-chitin polymer chains show parallel 

packing, meaning that reducing ends all point out in the same direction. In diatoms, chitin fibers are 

excreted through specialized pores within the thecae called fultoportulae. Cross-sections examined  

under transmission electron microscopy show invaginations of the plasma membrane at the site of  

chitin polymerization [78–80]. Similar secretion systems have been reported for the giant tube worm 

Riftia pachyptila [81,82]. Crystallographic analyses of chitin fibers bound to thecae demonstrate that 

chitin polymerization occurs by elongation at the non-reducing end, consistent with the reducing chain 

end being the furthest from the biosynthesis site [83,84]. 

Genes encoding chitin synthase were discovered in the T. pseudonana genome. Homologous genes, 

but no chitin fibers, have been described in Skeletonema costatum, Chaetoceros socialis, Lithodesmium 

undulatum and P. tricornutum, suggesting a common origin of chitin synthase in diatoms, but also 

indicating potential occurrence of yet undescribed chitin [85]. Chitin occurs in the silica frustule of  

T. pseudonana [86] and is probably an underestimated component of diatom cell walls in general. 

Inhibition of chitin synthase or chitin crystallization mainly increases the sedimentation rate of diatoms. 

This effect suggests that chitin fibers are involved in the buoyancy of the dense siliceous diatom cells. 

The importance of chitin fibers in diatoms has also been highlighted: the chitin content accounts for an 

estimated 30% of the organic carbon pool in Cyclotella species [87]. 
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Figure 4. β-chitin fibers of Thalassiosira sp. (A) Transmission electron micrograph 

shadowed with tanta-lum/tungsten (Ta/W). (B): N-acetylglucosamine sequence of the 

chemical structure of chitin. The image was recorded and kindly provided by Dr. H. Chanzy, 

CERMAV-CNRS, France. 

2.2. Soluble Polysaccharides in Diatoms 

2.2.1. Food Storage Polysaccharides 

The food storage polysaccharide in diatoms is a β(1,3) glucan, also called chrysolaminarin because it 

resembles the β(1,3) glucan found in chrysophyte algae [88]. This particular polysaccharide has been 

localized in the vacuole using aniline blue dye [89] and anti-β(1,3) glucan antibodies [51]. Vacuolar 

accumulation is enhanced during photosynthesis and is mobilized in the dark. β(1,3) glucan content can 

reach up to 20%–30% of dry matter during the exponential growth phase of the diatom [90] and up to 

80% during the stationary phase. 

Treating diatom cells with hot or boiling water is often sufficient to extract chrysolaminarin as the 

main polysaccharide component. Mild acid hydrolysis and freeze-drying also help cell wall disruption. 

Chrysolaminarin is insoluble in organic solvents and can be easily recovered by precipitation in alcohol 

or acetone [91–93]. The structure of diatom β(1,3) glucans was first described from a mixed bloom of 

freshwater diatom species that included Nitzschia sigmoidea, Cymatopleura solea, Pinnularia sp. and 

Melosira varians [91]. Since then, chrysolaminarin structures from several diatom species (Skeletonema, 

Phaeodactylum, Chaetoceros, Thalassiosira) have been studied using chemical analysis and 

spectroscopic methods such as NMR (Figure 5). The NMR spectra given in Figure 5 show high degrees 

of similarities between the β(1,3) glucan extracted from Saccharina latissima (Figure 5A) and from  

P. tricornutum (Figure 5B) , with the exception of fewer β(1,6) branching signals for chrysolamaninarin 

and a slightly higher reducing-end signal. The P. tricornutum β(1,3) glucan may have lower molecular 

weight or lack a mannitol residue at the reducing end. 



Mar. Drugs 2015, 13 6002 

 

 

 

Figure 5. Structural analysis of β(1,3) glucan, a food storage polysaccharide. 1H NMR 

spectra of (A) laminarin from Saccharina latissima and (B) β(1,3) glucan (chrysolaminarin) 

extracted from Phaeodactylum tricornutum (400 MHz, 353 K). Chrysolaminarin contains 

fewer β(1,6) branching signals (4.5–4.6 ppm) than laminarin. The slightly higher reducing 

end signal at 5.26 ppm (α-anomer) in the chrysolaminarin spectrum can be attributed to a 

lower molecular weight or the absence of a mannitol residue at the reducing end. 

Based on the numerous studies, a general picture of diatom chrysolaminarin structure has emerged. 

It is usually composed of a β(1,3) glucan backbone chain ramified with β(1,6) glucose and sometimes 

with β(1,2) glucose. The length of the backbone chain and the degree of ramification vary with the 

diatom species (Table 2). During the growth phase of T. weissflogii and C. muelleri, the structure of 

chrysolaminarin does not change noticeably, suggesting that culture conditions do not influence the 

chrysolaminarin structure [94]. 

Table 2. Overview of the structural features of diatom chrysolaminarins. For comparison, 

Laminaria digitata laminarin has a degree of polymerization (DP) of 20–30 residues and a 

degree of branching (DB) of 0.05, [95]. Yield extraction of chrysolaminarin is expressed in 

% of diatom dry weight. 

Species Mw/DP Branching Yield% (w/w) Reference

Phaeodactylum tricornutum nd Some β(1,6) branching 14% [92] 

Skeletonema costatum 6–13 kDa Some β(1,6) and β(1,2) branching 32% [96] 

Stauroneis amphioxys 4 kDa, DP ~24 Some β(1,6) and β(1,2) branching nd [97] 

Achnanthes longipes nd Small degree of β(1,6) and β(1,2) branching nd [98] 

Pinnularia viridis >10 kDa Small degree of β(1,6) branching nd [99] 
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Table 2. Cont. 

Aulacoseira baicalensis 3–5 kDa nd 0.9% 

[93] 
Stephanodiscus meyerii 40 kDa β(1,6)/β(1,3) DB 0.053 a 0.5% 

Stephanodiscus meyerii 2–6 kDa β(1,6)/β(1,3) DB 0.25 a 0.4% 

Aulacoseira baicalensis nd β(1,6)/β(1,3) DB 0.11 a Mannitol detected 0.6% 

Chaetoceros muelleri DP 22–24 β(1,6)/β(1,3) DB 0.006–0.009 nd 
[94] 

Thalassiosira weissflogii DP 5–13 No branching nd 

Chaetoceros debilis 4.9 kDa, DP 30 β(1,6) 37% of total residue 10% [100] 

nd: not determined; a calculated based on published data. 

Based on the biological activity of β(1,3) glucans (see Section 1), laminarin is currently marketed for 

its ability to stimulate macrophages leading to immuno-stimulatory, anti-tumor and wound-healing 

activities [101]. 

2.2.2. Exopolysaccharides 

Diatoms synthesize extracellular mucilage, which mainly consists of complex heteroglycans. 

Although EPS usually refers to exopolysaccharides, in its broad sense it includes all extracellular 

polymeric substances, which have high carbohydrate contents [99,102,103], and can even be used to 

mean any macromolecule secreted from the plasmalemma (see review by Hoagland et al., reference [48]). 

EPSs have been described in many forms, such as stalks, tubes, apical pads, adhering films, fibrils, and 

cell coatings, which imply that EPS components have a wide variety of morphologies, ranging from 

highly crystalline rigid fibrils to highly hydrated mucilaginous capsules, and including polymers that are 

tightly bound to or integrated in the cell wall. In this section, we focus only on soluble EPSs. 

Excretion of EPSs by diatoms provides a food source for heterotrophic organisms and affects the 

erodibility of biofilms [102–104]. EPS production rates and their monosaccharide compositions differ 

according to the growth phase and the physiological status of the cells [68,103–105]. EPS secretion 

depends on environmental conditions such as nutrient availability, daily fluctuations, irradiance, and 

even metal toxicity [106–110]. Studies have shown that nitrogen (N) and phosphate (P) limitations affect 

the production rate of EPSs as well as their monosaccharide compositions. For example, N or P limitation 

have been shown to stimulate EPS production in various diatoms [66,108,110]. Under P-limited conditions 

in C. fusiformis, monosaccharide composition shows an increase in galactose and a decrease in glucose, 

whereas the composition of the remaining monosaccharides is almost unaffected [108]. EPS production 

also increases under P-depleted conditions in other diatom species [109] with reduced glucose content 

in Cylindrotheca closterium. Likewise, fucose and rhamnose appear to be involved in adhesion, either 

by enrichment in some biofilm EPS structures with those residues, or by modification of the linkage 

types of those residues [67,111]. Mass spectrometry on T. pseudonana EPSs has shown that the degree 

of polymerization and the distribution of EPSs vary in response to nutrient depletion and different 

nutrient sources [110]. 

As in cell wall polysaccharides, the monosaccharide composition of EPSs can vary drastically 

depending on the extraction method [112]. However, diatom EPSs have two general compositional 

features: (1) they consist of heteropolysaccharides that can be sulfated and (2) they contain rhamnose, 

fucose, galactose, glucose, mannose, xylose and/or uronic acids as well as some arabinose in lower 



Mar. Drugs 2015, 13 6004 

 

 

proportions (Table 3). Furthermore, diatom EPSs have high proportions of methylpentoses compared 

with intracellular soluble and cell wall polysaccharides. To date, no complete fine structure has been 

resolved for diatom EPSs and only a few studies report data on linkages. However, the available data 

show a large diversity of linkages found in diatom EPSs, with many glycosyl residues being typical of 

branched structures (Table 3). 

Table 3. Structural characteristics of some exopolysaccharides (EPSs) in diatoms: 

monosaccharide composition, sulfate substitution, linkages. The data are non-exhaustive and 

only include soluble EPSs recovered from culture media. 

Species Monosaccharides Sulfate a (wt%) Linkages Reference 

Amphora sp. F1 GlcA(1.6)/Gal(1.1)/Fuc(1) b 9.7 nd c 

[113] 
Amphora sp. F2 GlcA(2.8)/Fuc(1)/Gal(0.8) 18.2 nd 

Amphora holsatica UA/Rha/Fuc/Glc/Xyl/Ara d nd nd [114] 

Amphora rostrata 
Fuc(41)/Gal(32)/UA(23)/ 

Man(9)/Rha(8) 
10 nd [115] 

Asterionella socialis e Rha(70)/Man(7)/2 Unk(23) nd nd [69] 

Chaetoceros affinis e Fuc(39)/Rha(35)/Gal(26) 8.7 

t-Fuc f, 2,3-Fuc, 3,4-Fuc,  

3-Fuc/2-Rha, t-Rha, 3-Rha,  

3,4-Rha/3-Gal, t-Gal, 4-Gal f 
[116,117] 

Chaetoceros curvisetus e Fuc(35)/Gal(10)/Rha(3) 7 

2-Fuc f, t-Fuc f, 2,3-Fuc, 3-Fuc, 

2,3-Fuc f, 3,4-Fuc, 3,5-Fuc f/ 

3-Gal, 2,3-Gal, t-Gal/2-Rha,  

t-Rha 

[118] 

Chaetoceros debilis b 
Fuc(30)/Gal(29)/Rha(17)/ 

Man(10)/Xyl(9)/Glc(5) 
nd nd 

[62] 

Chaetoceros decipiens e 
Rha(34)/Fuc(32)/Gal(17)/ 

Man(7)/Xyl(5)/Glc(5) 
nd nd 

Coscinodiscus nobilis b 
Fuc(34)/Man(19)/Glc(16)/ 

Rha(15)/GlcA(9)/Xyl(6) 
16.7 

3-Fuc/6-Man/3-Glc/2-Rha/ 

t-Xyl with Fuc and Rha 

branched or sulfated 

[119] 

Cylindrotheca closterium 
Xyl(46)/Glc(23)/Rha(15)/ 

Gal(12)/Man(4)/UA(5) 
0 nd [107] 

Cylindrotheca fusiformis 
Gal(38)/Glc(26)/Xyl(13)/Rha(13

)/UA(7)/Man(5) 
31 nd [108] 

Cyclotella nana e 

Rha(33)/Gal(14)/Glc(11)/ 

Man(10)/Rib(8)/Xyl(7)/ 

2 Unk(17)/GlcA(?) 

nd nd [69] 

Melosira nummuloides UA/Rha/Fuc/Glc/Xyl/Ara/Gal d nd nd 
[114] 

Navicula directa UA/Rha/Fuc/Glc/Ara/Gal/Xyl d nd nd 

Navicula incerta e 
Rha(33)/Fuc(20)/Man(10)/Xyl 

(9)/Gal(8)/GlcA(?)/3 Unk(20) 
nd nd [69] 

Navicula salinarum 
Glc(41)/Xyl(20)/Gal(19)/ 

Man(14)/Rha(5)/UA(21) 
6.3 nd [107] 
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Table 3. Cont. 

Navicula subinflata Glc(94)/UA(9) 9.6 nd [120] 

Nitzschia angularis e 

Rha(20)/Gal(17)/Fuc(16)/ 

Ara(8)/Man(7)/Xyl(7)/GlcA(?)/

2 Unk(25)/ 

nd nd 

[69] 

Nitzschia frustulum e 
Man(34)/Rha(24)/Gal(8)/ 

GlcA(?)/2 Unk(34) 
9 nd 

Pinnularia viridis 
Rha(29)/Gal(23.5)/Xyl(17)/ 

Glc(7.5)/Man(6.5)/Fuc(6) 
nd 

3-Rha, 3,4-Rha, 2,3-Rha,  

2-Rha, t-Rha/ 3-Gal, 3,6-Gal/ 

t-Xyl, 2,4-Xyl, 4-Xyl/4-Glc/ 

4-Man, t-Man/t-Fuc, 2-Fuc 

[99] 

Thalassiosira sp. F1 Man(51)/Rha(19)/Fuc(8)/Xyl(6) nd 
t-Man, 4,6-Man, 4-Man/3-Rha, 

2-Rha/3-Fuc, t-Fuc/t-Xyl, 2-Xyl 
[121] 

Thalassiosira sp. F2 
Man(57)/Xyl(19)/GlcA(6)/ 

GalA(5) 
nd 

4-Man, t-Man, 2-Man/4-Xyl,  

t-Xyl/t-GlcA/t-GalA 

a Sulfate percentages represent % weight of isolated polymers; b Only the sugars with contents of >5% are 

reported. Ara, arabinose; Fuc, fucose; Gal, galactose; Glc, glucose; GlcA, glucuronic acid; Man, mannose;  

Rha, rhamnose; Rib, ribose; UA, uronic acid; Unk, unknown; Xyl, xylose. Numbers in brackets following 

abbreviations give relative proportions of monosaccharide residues expressed as mol%, wt%, molar ratio, etc., 

as reported. The sugars are ordered from high to low percentages for each species; c nd, not determined;  
d The ratio varies with hydrolysis conditions; e Data also available in the review [48];  
f Glycosyl linkages expressed as the position(s) of substitution in addition to C-1 (t-Fuc, terminal fucosyl;  

3-Rha, 3-rhamnosyl); Subscript “f” following sugar abbreviation indicates furanose form. 

3. Structures and Biosynthesis of Protein N-Glycans in Diatoms 

N-glycosylation is a major co- and post-translational modification of proteins in eukaryotes occurring 

in both the ER and the Golgi apparatus (Figure 6, [122]). In this process, a lipid-linked oligosaccharide 

composed of three glucose (Glc), nine mannose (Man) and two GlcNAc residues (Glc3Man9GlcNAc2) 

is first assembled by the stepwise addition of monosaccharides on a dolicholpyrophosphate on the 

cytosolic side of and then in the lumen of the ER [123]. This oligosaccharide precursor is then transferred 

by the oligosaccharyl transferase (OST) complex onto the asparagine residues of consensus Asn-X-

Ser/Thr sequences of a protein [123]. In 3.5% of studied cases, other sequences such as Asn-X-Cys, 

Asn-X-Val are glycosylated in endogenous or recombinant proteins produced in mammals or plant  

cells [124–126]. The glycoprotein is deglucosylated by α-glucosidases I and II and then reglucosylated 

by an uridine diphosphate (UDP)-glucose glycoprotein glucosyl transferase (UGGT) to ensure proper 

folding of the nascent protein through its interaction with ER-resident chaperones, such as calnexin  

and calreticulin [127]. These ER events are conserved in eukaryotes because they are crucial for  

efficient protein folding [127]. Bioinformatic analyses demonstrate that most of the genes encoding 

enzymes involved in the biosynthesis of the dolicholpyrophosphate-linked oligosaccharide, named 

asparagine-linked glycosylation (ALG) [128], are predicted in the genomes of diatoms (P. tricornutum [129], 

T. pseudonana [130], Fragilariopsis cylindrus [131] and Aureococcus anophagereffens [132])  

(Figure 6), [133–135]. The only exception is ALG 10, an α(1,2)-glucosyl transferase responsible for the 

transfer of the terminal Glc residue of the triglucosyl extension of the N-glycan precursor, for which no 



Mar. Drugs 2015, 13 6006 

 

 

homology has been found (Figure 6) [133,135]. In addition to ALG genes, genes encoding subunits of 

the oligosaccharyl transferase have also been identified in diatom genomes, especially in P. tricornutum 

(Figure 6), in which α-glucosidase II (but not α-glucosidase I) as well as ER-resident UGGT and 

chaperones such as calreticulin are also predicted (Figure 6) [133,135]. These proteins are key elements 

of the quality control of proteins occurring in the ER. Large oligomannosides, with sizes of up to 

Man9GlcNAc2, have been found in P. tricornutum glycoproteins [133], suggesting that the synthesis of 

the oligosaccharide precursor and the quality control of secreted proteins may occur in a similar manner 

as that observed in other eukaryotes. However, in the ER, α-glucosidase I appears to remove the terminal 

α(1,2)-glucosyl transferase that is transferred by ALG10. Absence of ALG 10 and α-glucosidase I genes 

in P. tricornutum suggests that the N-glycan precursor is not fully glucosylated in diatoms into 

Glc3Man9GlcNAc2 (Figure 6) [133,135]. 

 

Figure 6. Proposed N-glycosylation pathway in Phaeodactylum tricornutum. Sequences 

predicted in the P. tricornutum genome are shown in bold. ALG10 and glucosidase I genes 

have not been identified so far. The N-glycan structures presented in this figure are as  

given in Varki et al. [121]. ER: endoplasmic reticulum; DPM1: dolichol-phosphate 

mannosyl transferase; ALG: asparagine-linked glycosylation; PP-Dol: pyrophosphate 

dolichol; P-Dol: dolichol phosphate; OST: oligosaccharyl transferase; Asn: asparagine; 

UGGT: UDP-glucose glycoprotein glucosyl transferase; GnT: N-acetylglucosaminyl 

transferase; α-Man: α-Mannosidase; FuT: fucosyl transferase; Man-5 to Man-9: 

oligomannoside bearing 5 to 9 mannose residues. 
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In contrast to ER events, evolutionary adaptation of N-glycan processing in the Golgi apparatus has 

given rise to a variety of organism-specific complex structures [136]. First, α-mannosidases (α-Man I) 

degrade the oligosaccharide precursor into oligomannosides ranging from Man9GlcNAc2 to 

Man5GlcNAc2 (Man-9 to Man-5) (Figure 6). N-acetylglucosaminyl transferase I (GnT I) then transfers 

a first N-acetylglucosaminyl (GlcNAc) residue onto Man-5 and initiates the synthesis of a large variety 

of structurally different complex-type N-glycans. This processing continues with the removal of two 

mannosyl residues and then decoration of the N-glycans by the action of a specific repertoire of glycosyl 

transferases such as α-fucosyl transferases (FuT). Therefore, mature proteins leaving the secretory 

pathway carry organism-specific complex N-glycans allowing the protein to acquire a set of  

glycan-mediated biological functions [137,138]. Searches in diatom genomes for candidate genes 

encoding Golgi glycosidases and glycosyl transferases involved in N-glycan processing have led to the 

identification of α-Man I, GnT I and a FuT (putative α(1,3)-FuT) candidates [133,134], (Figure 6).  

The GnT I gene predicted in the P. tricornutum genome has been demonstrated to encode an active 

functional enzyme able to restore the maturation of N-linked glycans into complex-type N-glycans in the 

CHO Lec1 mutant which is affected in its endogenous GnT I [133]. Moreover, structural analysis of 

glycans N-linked to proteins secreted by the diatom P. tricornutum indicate that these oligosaccharides 

are processed through a GnT I-dependent pathway into partially fucosylated Man3GlcNAc2 (Figure 6) [133]. 

This truncated and fucosylated N-linked glycan likely results from the trimming of two mannose residues 

from Man-5 by an α-Man II and then transfer of an α(1,3)-fucose residue [133]. Later, the terminal GlcNAc 

introduced by the Golgi P. tricornutum GnT I are probably eliminated by β-hexosaminidases, as previously 

described in land plants and insects [139,140]. Two putative β-hexosaminidases have already been 

identified in P. tricornutum [133]. 

In addition, diatoms may have glycoproteins bearing O-glycans. For example, Swift and Wheeler 

showed that some proteins associated with the silica shell, called frustule-associated components 

(FACs), can be easily extracted from cell walls with an EDTA-based treatment [56]. These fractions can 

contain glycoproteins. In C. fusiformis, EDTA-soluble proteins [141], called frustulins, bear a glycan 

moiety composed of rhamnose (25%), galactose (20%), xylose (20%), glucose (2%), and mannose (1%). 

Although first described as proteoglycans [142], glycoproteins have also been isolated [99] in 

Craspedosauros australis extracted with urea and exhibit a xylose-rich composition (41%), with lower 

amounts of galactose, rhamnose, and mannose (14%, 12%, 10%, respectively). More work needs  

to be done to fully characterize the glycan structures of such glycoproteins and determine their  

biosynthetic pathway. 

4. Nucleotide Sugar Biosynthesis in Diatoms 

Monosaccharides represent the building blocks of glycans and polysaccharides (see Section 1). They 

are usually synthesized and converted into nucleotide sugars through a cytosolic interconversion 

metabolism (KEGG map 00520; [143]. In turn, nucleotide sugars—which are universal sugar donors—are 

involved in the formation of polysaccharides, glycoproteins, proteoglycans, and glycolipids. This 

metabolism is highly conserved in prokaryotes and eukaryotes and involves a set of phosphorylases, 

epimerases and reductases, as well as fructose-6-phosphate amino transferases enabling the synthesis of 

aminosugars. Nucleotide sugars may also result from the salvage pathway that involves the hydrolysis 
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of glycans to free sugars, their phosphorylation and finally their nucleotidylation. Searches in diatom 

genomes (P. tricornutum [129], T. pseudonana [130], Fragilariopsis cylindrus [131], and Aureococcus 

anophagefferens [132] for genes encoding cytosolic enzymes of both the interconversion and salvage 

pathways have led to the identification of putative candidates for the synthesis of UDP-sugars such as 

UDP-galactose (UDP-Gal), UDP-galacturonic acid (UDP-GalA), UDP-glucuronic acid (UDP-GlcA), 

UDP-xylose (UDP-Xyl) and UDP-rhamnose (UDP-Rha) that are directly derived from UDP-Glc  

(Figure 7). Moreover, gene predictions also include enzymes required for the synthesis of the guanine 

diphosphate (GDP)-sugars originating from Man-6P (Figure 7). Aminosugar such as GlcNAc 

biosynthesis likely occurs by amination of the C2 on fructose-6P (Fru-6P) as reported in other  

organisms. Other gene predictions based on diatom genomes include genes encoding several sugar 

phosphorylases of the salvage pathway (Figure 7). However, neither UDP-galacturonate decarboxylases, 

nor UDP-arabinose 4-epimerases required for L-arabinose biosynthesis are predicted in these genomes. 

Other than arabinose, predicted nucleotide sugar metabolism is generally in agreement with the sugar 

compositions of polysaccharides and glycans isolated from diatoms. 

 

Figure 7. Predicted nucleotide sugar metabolism in diatoms based on bioinformatics analyses 

of the genomes from Phaeodactylum tricornutum [129], Thalassiosira pseudonana [130], 

Fragilariopsis cylindrus [131] and Aureococcus anophagefferens [132]. 
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5. Conclusions and Perspectives 

The abundant literature cited in this review demonstrates that monosaccharide composition is highly 

variable in diatom EPSs. The variation in physiological conditions greatly influences their composition, 

suggesting that diatoms modulate their polysaccharide biosynthesis machinery to adapt to environmental 

conditions. EPSs have been shown to be heteropolysaccharides. Branched and sulfated glucuronomannans 

are thought to be ubiquitous and thus representative of diatom cell walls. β-chitin fibers have also been 

found in some diatom species. Chrysolaminarin is a common β(1,6) ramified β(1,3) polyglucan for food 

storage in diatoms. Although numerous efforts have been made to determine the structures of diatom 

polysaccharides, there is currently a lack of information regarding their biosynthesis pathways, as well 

as their cell localization and organization. 

With regard to protein N-glycosylation, gene prediction analysis suggests that diatoms are equipped 

with most of the eukaryotic genes encoding ER-resident essential players, such as sugar transferases  

and chaperones. Some candidate genes involved in subsequent Golgi events of N-glycosylation have 

also been found in P. tricornutum, justifying further investigations and characterization of diatom  

N-glycosylation pathways. When looking at potential nucleotide sugar synthesis in diatom genomes, key 

enzyme genes were predicted for almost all monosaccharides, with the exception of those for arabinose 

synthesis, although this sugar was detected in some cell wall polysaccharides. In the coming years, the 

increasing demand for marine polysaccharides and for recombinant therapeutic glycoproteins produced 

in microalgae will lead the scientific community to carry out more research to better understand  

diatom polysaccharide and glycan structures, as well as their respective biosynthesis pathways and  

cell localizations. 
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