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Abstract: There is a current tendency towards bioactive natural products with applications 

in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put 

some emphasis in research on marine organisms, including macroalgae and microalgae, 

among others. Polysaccharides with marine origin constitute one type of these biochemical 

compounds that have already proved to have several important properties, such as 

anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer 

preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and 

antioxidant, making them promising bioactive products and biomaterials with a wide range 

of applications. Their properties are mainly due to their structure and physicochemical 

characteristics, which depend on the organism they are produced by. In the biomedical 

field, the polysaccharides from algae can be used in controlled drug delivery, wound 

management, and regenerative medicine. This review will focus on the biomedical 

applications of marine polysaccharides from algae. 
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1. Introduction 

Contemporary tendency for natural products to be applied in medicine and to promote health has 

put some emphasis in research on marine organisms, including macro- and microalgae, and cyanobacteria. 

Extensive literature on the health benefits and uses as food or as drug carriers of brown, red and green 

seaweeds, and the polysaccharides (PS) they produce, was published in the last decade [1–8]. 

However, comparatively, there are only a handful of research papers on microalgae [9–14], despite the 

richness of their composition and the ability to make them grow.  

Polysaccharides already proved to have several important properties [3,8,12,15–22]. However, the 

attempts to establish a relationship between the structures of the PS and their bioactivities/actions have 

been a challenge due to the complexity of this type of polymers. In fact, aside from the homogalactan 

from Gyrodinium impudicum (a dinoflagellate) [23], the β-glucan from Chlorella vulgaris (a green 

microalga) [24] and the PS from a few species of seaweeds (Tables 1–3), most of these carbohydrates 

are highly branched heteropolymers with different substituents in the various carbons of their 

backbone and side-sugar components. Additionally, the monosaccharide composition and distribution 

within the molecule, and the glycosidic bonds between monosaccharides can be very heterogeneous, 

which is a real impairment for the study of their structures. Moreover, this heterogeneity also depends 

on the species, between strains of the same species, and on the time and place of harvest. 

The PS produced by algae are presented in Tables 1–3, according to the group of macroalga, 

Phaeophytes, Rhodophytes, Chlorophytes, and in Table 4, which is relative to microalgae. 

Nevertheless, there are always some similarities between the PS from each group of seaweeds: often, 

fucoidans are extracted from brown algal species (Table 1), agaroids and carrageenans come from red 

macroalgae (Table 2), and ulvans are obtained from green seaweeds (Table 3). Regarding microalgae 

(Table 4), and as far as we know, there are not common names for their PS, to the exception of 

spirulan from Arthrospira platensis. There are species that, besides producing large amounts of these 

useful polymers, they secrete them out into the culture medium and these polymers are easily  

extracted [14]. 

 



 

Table 1. Marine species of brown macroalgae (PHAEOPHYTES) producing polysaccharides (PS): some structural features and applications. 

Type of PS Source 

Structure 

Action/Application References Main Mono-Sugars/ 

Disaccharide Units 

Glycosidic Bonds  

of Backbone 

 
Chromophyta  

Dictyotales 
    

Heterofucans 

S-fucans 

Canistrocarpus cervicornis 

a.k.a. Dictyota cervicornis 
Fuc  Anticoagulant, antioxidant; anti-proliferative [2,25] 

S-galactofucans D. menstrualis Gal, fuc, xyl, glcAc  
Peripheral anti-nociceptive, anti-inflammatory,  

antioxidant; anticoagulant, anti-proliferative 
[1,2,26] 

 D. mertensis   antioxidant; anticoagulant, anti-proliferative [2] 

Heterofucans Dictyopteris delicatula Fuc  Anticoagulant, antioxidant, antitumor, anti-proliferative [2,27] 

 D. polypodioides Fuc  Antitumor [28] 

S-galactofucans Lobophora variegata Gal, fuc  Antioxidant, anticoagulant, anti-inflammatory [29,30] 

Heterofucans Padina gymnospora GlcAc, fuc, (1,3)- and (1,4)-β-D-glcAc Antioxidant, anticoagulant, anti-thrombotic, antiviral [2,31,32] 

S-fucan P. tetrastromatica Fuc, gal, xyl, glcAc (1,2)- and (1,3)-α-fuc  [33] 

S-galactofucans; 

sPS; 

S-fucans 

Spatoglossum schröederi 

Gal, fuc, xyl; 

 

Fuc 

(1,4)- and (1,3)-α-fuc 

Anti-thrombotic; 

Peripheral anti-nociceptive; 

Anti-proliferative, anti-adhesive, antioxidant 

[2,34–38] 

 Ectocarpales     

S-galactofucans Adenocystis utricularis Gal, fuc, rham, uronic acid (1,3)-α-fuc Antiviral [39] 

S-fucans 
Cladosiphon okamuranus 

a.k.a. Okinawa mozuku 
Fuc, glc, glcAc (1,3)-α-L-fuc 

Anti-proliferative, antiviral, anti-inflammatory, antiadhesive, 

antitumor, immunomodulator; angiogenic, gastroprotective, 

cardioprotective, restenosis preventive 

[15,22,40–47] 

S-fucoidan C. novae-caledoniae Fuc  Antitumor [48] 

Fucans Leathesia difformis Fuc  Antiviral [49] 

LMW-S-fucans Nemacystus decipiens Fuc  Anticoagulant [50] 
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 Fucales     

S-fucans; 

LMW-sPS; 

S-Laminaran; 

or otherwise 

modified 

Ascophyllum nodosum 
Fuc, xyl, gal, glcAc;

Glc 

 (1,3)- and (1,4)-α-L-fuc 

(alternating); 

(1,3)- and (1,6)-β-glc 

Immunomodulatory, anti-inflammatory, anticoagulant, anti-thrombotic, 

anti-metastatic, antitumor, antiadhesive, restenosis preventive; 

Anti-thrombotic, anticoagulant, angiogenic 

Antitumor, anticoagulant; serum hypocholesterolaemic, hypotensive, 

antibacterial, immunomodulator 

[15,20,51–61] 

S-fucans 
Fucus spp. 

F. vesiculosus 
Fuc, xyl, gal, glcAc

(1,3)- and (1,4)-α-L-fuc 

(alternating) 

Immunostimulant, antiviral, antitumor, antiproliferative, antiadhesive, 

anticoagulant, antioxidant, anti-metastatic, anti-inflammatory;  

anti-angiogenic, antithrombotic (except F. vesiculosus) 

[2,15,62–70] 

Laminaran; 

S-laminaran or 

otherwise modified 

Fucus sp. Glc (1,3)- and (1,6)-β-glc 

Antitumor, decreases liver triglyceride,  

cholesterol and phospholipid levels; serum hypocholesterolaemic, 

hypotensive, antibacterial, immunomodulator 

anticoagulant 

[56,59,61] 

S-fucans 
Hizikia fusiforme 

a.k.a. Sargassum fusiforme 
Fuc, gal, man, glcAc

(1,2)-α-D-man alternating with 

(1,4)-β-D-glcAc;  

some (1,4)-β-D-gal 

Anticoagulant, anti-thrombotic [71,72] 

Fucans Pelvetia fastigiata Fuc  Antiviral [73] 

LMW-S-fucans P. canaliculata Fuc  Antiviral [74] 

S-fucans Sargassum spp. 
Fuc, gal, xyl, uronic 

acid 
 Prevent hyperlipidaemia, normalize dislipidaemia [75–77] 

S-galactofucans Sargassum sp. 
Gal, fuc, rham, 

glcAc 

(1,6)-β-D-gal  

and/or (1,2)-β-D-man 
Antitumor [28,62,78–80] 

S-heterofucans S.filipendula Fuc  Antioxidant, anti-proliferative [2,81] 

S-fucoidan S. henslowianum Fuc  Anti-proliferative, antitumor [75] 

S-fucoidan S. horneri Fuc 
(1,3)-α-L-fuc,  

(1,3)- and (1,4)-α-L-fuc 
Antitumor, antiviral [62,80] 

LMW-fucoidan S. patens Fuc  Antiviral [32] 

sPS Turbinaria conoides   Antioxidant [82] 
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 Laminariales     

S-galactofucan Costaria costata Gal, fuc  Antitumor [16] 

S-fucans 
Ecklonia cava 

E. kurome 

Fuc, rham, gal, 

glcAc 
(1,3)- or (1,6)-, and (1,4)-α-L-fuc

Anti-proliferative, antitumor, anticoagulant,  

antioxidant, antithrombotic, anti-inflammatory 
[16,83–88] 

Fucoidans; 

laminarans 
Eisenia bicyclis 

Fuc; 

Glc 
(1,3)- and (1,6)-β-D-glc 

Anti-proliferative, antitumor, anticoagulant; 

Antitumor 
[83,89–91] 

Laminaran; 

S-laminaran or 

otherwise modified 

Laminaria sp (or Saccharina) Glc (1,3)- and (1,6)-β-glc 

Antitumor, anticoagulant, decreases liver triglyceride, cholesterol and 

phospholipid levels; serum hypocholesterolaemic, hypotensive, 

antibacterial, immunomodulator 

[56,59,61] 

S-fucoidans Laminaria spp. Fuc, xyl, man, glcAc (1,3)-α-L-fuc 
Antioxidant, anticoagulant, antithrombotic, anti-adhesive,  

anti-proliferative, anti-inflammatory, anti-angiogenic, anti-metastatic 
[15,52,83,92–96] 

S-galactofucan 
L. japonica 

a.k.a. Saccharina japonica 
Gal, fuc 

(1,3)- and (1,4)-α-L-fuc 

(alternating) 

Anti-lipidaemic, increases HDL, antiviral,  

antitumor, immunomodulator, antioxidant 

neuroprotective 

[3,15,97–102] 

Fucoidans Lessonia vadosa Fuc  Anticoagulant [103] 

S-fucoidan 
Saccharina cichorioides 

a.k.a. Laminaria cichorioides
Fuc  Antitumor, anticoagulant, anti-thrombotic [104,105] 

S-galactofucans 

fucoidan 
Undaria pinnatifida 

Gal, fuc, xyl, uronic 

acid 

(1,3)- and (1,4)-α-L-fuc 

(alternating) 

Antiviral, anticoagulant, antitumor, anti-proliferative, immunomodulatory,

anti-inflammatory 

induced osteoblastic differentiation 

[3,52,69, 

106–111] 

LMW-S-fucans    Anticoagulant [112] 

Laminaran; 

S-laminaran or 

otherwise modified 

 Glc  
Anticoagulant, antitumor; serum hypocholesterolaemic, hypotensive, 

antibacterial, immunomodulator 
[56,59,61] 

  



 

Table 2. Marine species of red macroalgae (RHODOPHYTES) producing PS: some structural features and applications. 

Type of PS Source 

Structure 

Action/ Application References Main mono-Sugars/ 

Disaccharide Units 
Glycosidic Bonds of Backbone 

 
Rhodophyta 

Bangiales 
    

S-galactan porphyran Porphyra spp. Gal (1,3)-β-D-gal or (1,4)-α-L-gal 
Antitumor, hypotensive, regulates 

blood cholesterol 
[113,114] 

sPS P. haitanensis   Antioxidant [115] 

Porphyran P. yezoensis   
Antitumor, immunomodulatory, 

hypolipidaemic 
[116–119] 

 Ceramiales     

S-agarans Bostrychia montagnei   Antiviral [120] 

S-agarans Cryptopleura ramosa   Antiviral [121] 

 Digenea simplex   Antiviral [122] 

 Corallinales     

LMW-PS Corallina sp.   Antiviral [32] 

 Cryptonemiales     

 Cryptonemia crenulata Gal  Antiviral [123] 

S-agaran Gloiopeltis complanata Gal, Agal 
[→3)-β-D-gal-(1→4)-3,6-α-L-Agal-(1→], 

and [→3)-β-D-gal-(1→4)-α-L-gal-(1→] 
 [114] 

Agaroid-carrageenan G. furcata Gal 

6-O-methyl-gal, 3,6Agal 

(1,3)-β-D-, and (1,4)-α-L-gal or  

(1,4)-α-L-Agal 

 [124] 
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 Gelidiales     

di-S-galactan Gelidium crinale Gal  Anticoagulant [125] 

S-agarans and hybrid 

DL-galactans 
Pterocladia capillacea Gal  Antiviral [126] 

      

 Gigartinales     

S-agarans 

S-galactans 
Aghardiella tenera 

 

Gal 
 Antiviral [127,128] 

S-λ-carrageenan Chondrus crispus Gal, Agal 
(1,3)-α-D-gal, and (1,4)-β-3,6-Agal 

or (1,4)-β-D-gal (alternating) 
Antiviral, anticoagulant, antithrombotic [1,5,129–131] 

LMW-sPS C. ocellatus   Antitumor [132] 

S-galactans Euchema cottonii Gal  Antioxidant [2] 

S-κ-carrageenan E. spinosa Gal, Agal 
(1,3)-α-D-gal, and (1,4)-β-3,6-Agal 

or (1,4)-β-D-gal (alternating) 
Anticoagulant, anti-thrombotic [5,130,131] 

LMW-sPS Furcellaria lumbricalis   Immunostimulant [133] 

S-galactans Gigartina acicularis Gal  Antioxidant [2] 

S-carrageenans G. skottsbergii Gal, Agal 
(1,3)-α-D-gal, and (1,4)-β-3,6-Agal 

or (1,4)-β-D-gal (alternating) 
Antiviral, anticoagulant [130,131,134,135] 

Hybrid DL-galactans Gymnogongrus torulosus Gal  Antiviral [136] 

LMW-PS Hypnea charoides   Antiviral [32] 

LMW-S-carrageenans Kappaphycus striatus Gal, Agal 
(1,3)-α-D-gal, and (1,4)-β-3,6-Agal 

or (1,4)-β-D-gal (alternating) 
Antitumor, immunomodulator [1,131] 

S-λ-carrageenan Phyllophora brodiei Gal, Agal 
(1,3)-α-D-gal, and (1,4)-β-3,6-Agal 

or (1,4)-β-D-gal (alternating) 
Anticoagulant, antithrombotic [130,131,137] 

LMW-sPS Soliera chordalis   Immunostimulant [138] 

S-carrageenans Stenogramme interrupta Gal, Agal 
(1,3)-α-D-gal, and (1,4)-β-3,6-Agal 

or (1,4)-β-D-gal (alternating) 
Antiviral [130,131,139] 
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 Gracilariales   Antioxidant [2] 

sPS Gracilaria caudata     

S-agarans 

S-galactans 
G.corticata Gal  Antiviral [140] 

sPS G. verrucosa   Immunomodulator [141] 

 Halymeniales     

 
S-galactan 

 

Grateloupia indica Gal  Anticoagulant, antithrombotic [137] 

 Nemaliales     

S-mannans Nemalion helminthoides Man  Antiviral [142] 

Xylogalactans 

S-xylomannans 
Nothogenia fastigiata 

Xyl, gal 

Xyl, man 
 Antiviral, anticoagulant [143–145] 

 Nematomatales     

S-galactans Schizymenia dubyi Gal, uronic acid  Antiviral [146] 

S-λ-carrageenan S. pacifica Gal, Agal 
(1,3)-α-D-gal, and (1,4)-β-3,6-Agal 

or (1,4)-β-D-gal (alternating) 
Antiviral [130,131,147] 

S-galactan S. binderi Gal  Anticoagulant [148] 

 Rhodymeniales     

di-S-galactan;  

LMW-sPS 
Botryocladia occidentalis Gal  Anticoagulant; anti-venom [149,150] 

LMW-carrageenans Champia feldmannii Gal, Agal 
(1,3)-α-D-gal, and (1,4)-β-3,6-Agal 

or (1,4)-β-D-gal (alternating) 
Antitumor [130,131,151] 

 Sebdeniales     

S-xylomannans Sebdenia polydactyla Xyl, man  Antiviral [152] 

  



 
Table 3. Marine species of green macroalgae (CHLOROPHYTES) producing PS: some structural features and applications. 

Type of PS Source 

Structure 

Action/ Application References Main Mono-Sugars/ 

Disaccharide Units 
Glycosidic Bonds of Backbone 

 
Chlorophyta 

Bryopsidales 
    

sPS, including  

S-galactans 
Caulerpa spp.   

Antioxidant, anticoagulant, antithrombotic; 

antiviral, anti-proliferative, antitumor 
[2,153,154] 

sPS and derivatives C. cupressoides Gal, man, xyl  Anti-inflammatory, antinociceptive [8,155,156] 

LMW-PS 

sPS 
C. racemosa Gal, glc, ara, uronic acid  

Antiviral; 

antitumor 
[32,154,157] 

S-arabinogalactans Codium spp. Gal, ara (1,3)-β-D-gal Anticoagulant, antithrombotic, antiviral [124,153,158–161] 

S-pyrulylated-galactans C. isthmocladum  (1,3)-β-D-gal Antioxidant, anticoagulant, anti-proliferative [2,162] 

 Ulotrichales     

S-mannans Capsosiphon fulvescens Man, glcAc, gal  Immunomodulator [163] 

S-rhamnans and  

LMW-S-rhamnans 
Monostroma latissimum Rham 

(1,3)-α-L-rham, and (1,3)-α-L-

rham or (1,2)-α-L-rham or 

(1→2,3)-α-L-rham 

Antiviral, anticoagulant [164–168] 

S-rhamnans M. nitidum Rham, glc  

Anticoagulant, antithrombotic, 

hepatoprotective, antitumor, 

immnunomodulator 

[165,166,169–171] 

 Ulvales     

Rhamnans Enteromorpha intestinalis Rham, xyl, glcAc  Antitumor, immunomodulator [172,173] 

LMW-sPS E. linza   Anticoagulant [174] 

S-ulvans and 

derivatives 
E. prolifera   

Immunomodulator, antioxidant, 

hypolipidaemic 
[124,175–177] 
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S-ulvans and 

derivatives 
Ulva spp. Rham, xyl, glc, glcAc, IduAc  

Anti-adhesive, antiproliferative, 

hepatoprotective 
[178–179] 

sPS U. conglobata Rham, uronic acid  Anticoagulant [180] 

sPS U. fasciata rham  Antioxidant. antitumor [181] 

S-galactans 

 

 

sPS 

U. lactuca 

 

 

 

Rham, xyl, glcAc 

 

Antioxidant, anti-proliferative, 

hypocholesterolaemic, hepatoprotective, 

antitumor; 

Antiviral, anti-inflammatory, antinociceptive 

[90,182–189] 

S-ulvans U. pertusa Rham, xyl, glcAc, iduAc 
[→4)-β-D-GlcAc-(1,4)-α-L-rham3S-(1→], and 

[→4)-α-L-IduAc-(1,4)-α-L-rham3S-(1→] 

Antioxidant, anti-proliferative, 

hypocholesterolaemic 
[90,182–185] 

LMW-S-ulvan or 

otherwise modified 
U. pertusa   

Antioxidant, hypotriglyceridaemic, decrease 

LDL- and increases HDL-cholesterol, 

immunostimulatory 

[166,185,190,191] 

S-PS U. rigida Rham, glcAc β-D-glcAc-(1,4)-L-rham (disacharide) Immunostimulatory [178,192] 

 

   



 

Table 4. Marine species of microalgae/blue-green algae producing PS; main neutral sugars. 

Type of PS Source Main Neutral Sugars Action/Application References 

 MICROALGAE    

 Diatoms    

sPS Cylindrotheca closterium xyl, glc, man, rham  [193,194] 

sPS Navicula salinarum glc, xyl, gal, man  [193] 

s-EPS Phaeodactylum tricornutum glc, man, xyl, rham Anti-adhesive [195–197] 

EPS Haslea ostrearia   [198] 

EPS Nitzschia closterium   [199] 

EPS Skeletonema costatum    

EPS Chaetoceros spp. rham, fuc, gal, man  [200] 

EPS Amphora sp.   [201] 

 Chlorophytes    

sPS Chlorella stigmatophora glc, xyl, fuc, Anti-inflammatory, immunomodulator [195] 

sPS C. autotrophica   [202] 

PS 

 

β-(1,3)-glucan 

C. vulgaris 

rham, gal, arab, 

2-O-methyl-rham 

glc 

 

 

Antitumor, infection preventive agent 

[24,203,204] 

EPS Dunaliella salina gal, glc, xyl, fru  [205] 

EPS Ankistrodesmus angustus   [201] 

EPS Botryococcus braunii gal, fuc, glc, rham  [206,207] 

 Prasinophyte    

sPS Tetraselmis sp.  Anti-adhesive [202] 

 Prymnesiophyte/haptophyte    

sPS Isochrysis sp.   [202] 
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 Rhodophytes    

sPS Porphyridium sp. xyl, gal, glc 

Anti-inflammatory, immunomodulator, 

prevention of tumour cell growth, anti-adhesive, 

antiviral, biolubricant 

[208–213] 

sPS P. cruentum 
xyl, gal, glc, glcAc, 

3-O-methyl-xyl 

Antioxidant and free radical scavenging, 

immunomodulator, antiviral, antibacterial, 

antilipidaemic, antiglycaemic 

[214–222] 

sPS P. purpureum  antiviral [223] 

sPS Rhodella reticulata 

xyl, rham, 

3-O-methyl-rham,  

4-O-methyl-gal 

Antiviral, antilipidaemic, antiglycaemic, 

prevention of tumour cell growth 
[208,213,219], 

 R. maculata 
xyl, gal, glc, 

3-O-methyl-xyl 
 [224,225] 

 Dinoflagellates    

sPS Cochlodinium polykrikoides man, gal, glc Antiviral [226] 

sPS Gyrodinium impudicum gal 

Antiviral, anti-inflammatory, 

immunomodulator, anti-proliferative, prevention 

of tumour cell growth 

[23,227–229] 

 CYANOBACTERIA    

EPS Aphanothece halophytica glc, fuc, man, arab, glcAc  [230] 

EPS 

 

 

s-Spirulan 

Arthrospira platensis 

gal, xyl, glc, fru 

 

 

rham, fuc, glc, 

3-O-methyl-rham 

Antiviral, antibacterial, prevention of tumour 

cell growth 

 

Anti-proliferative, anti-adhesive,  

anti-metastatic 

[19,223,231–235] 

sPS 
Anabaena, Gloethece, Nostoc Aphanocapsa, 

Phormidium, Synechocystis, Cyanothece 
  [19] 
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Both micro- and macroalgae are excellent sources of PS, most of them being sulphated (sPS). They 

are associated with several biological activities and potential health benefits, making them interesting 

compounds for the application in pharmaceuticals, therapeutics, and regenerative medicine. Some of 

the beneficial bioactivities demonstrated by the crude PS and their derivatives, either in vitro or in 

vivo, upon various kinds of cell-lines and animal models, include anticoagulant and/or antithrombotic 

properties, immunomodulatory ability, antitumor and cancer preventive activity (as anti-proliferative 

agents, tumour suppressors or natural cell-killers). They are also good antidislipidaemic and 

hypoglycaemic agents, and can be powerful antioxidants, antibiotics and anti-inflammatory. For 

example, the sPS from Enteromorpha and Porphyridium have demonstrated strong antitumor and 

immunomodulating properties [173,211]; those from Caulerpa cupressoides and Dyctiota menstrualis 

are good antinociceptive agents [1,155], and the sPS from Cladosiphon okaramanus showed angiogenic, 

gastro- and cardioprotective bioactivities [15,46,47] 

2. Some Structural Characteristics of Polysaccharides Produced by Marine Algae 

The chemical structure of PS produced by macro- and microalgae may significantly determine their 

properties, namely physico-chemical and biochemical, and reflect their physical behavior and 

biological activities, as will be discussed further on in this review. 

2.1. Macroalgae 

Seaweeds (or marine macroalgae), whose PS have been studied more often, belong to the groups 

Chlorophyta (green seaweeds), Phaeophyceae (brown algae, Chromophyta) and Rhodophyta  

(red macroalgae). 

Brown seaweeds usually contain fucoidans; the oligosaccharides obtained from the hydrolysis of 

fucoidans may often contain gal, glc, uronic acids, and/or other monosaccharides (Table 1), linked 

together and to the main chain by different types of glycosidic bonds. This is the case, for example, for 

the laminaran from E. bicyclis (Laminarales), or the galactofucan from Sargassum sp. (Fucales), and 

the fucan from P. tetrastromatica (Dictyotales) (Table 1). However, the structure complexity of these 

fucoidans makes difficult to establish a relationship between the PS-chains/composition and their 

biological actions, and/or some kind of protocols to design universal pharmaceuticals or other  

drug-like substances to prevent and/or cure specific diseases. This issue will be discussed later in  

this review.  

The monosaccharide composition, the linkage types, the overall structure of fucoidans, and some of 

their di- and oligosaccharides were well explored by Ale et al. [75], Fedorov et al. [3] and Li et al. [103]. 

For example, Ale’s group [75] showed the difference between sPS from three species of Fucus by 

focusing on the various substituents at C-2 and C-4 carbons, despite the similarities of their backbones; 

they also highlighted the possible structures of fucoidans from two species of Sargassum, already 

suggested by Duarte et al. [78] and Li et al. [71]. Cumashi and coworkers suggested some structures 

for the backbone chain of several seaweeds [15]. Among them are the schemes for the components of 

the main chain showing either the (1,3)-, and (1,3)- and (1,4)-linked fuc residues or some di- and 

trisaccharide repeating units for A. nodosum, C. okamuranus, L. saccharina (a.k.a. Saccharina 

latissima), and some species of Fucus. On the other hand, Fedorov et al. [3] focused on the structures 
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and bioactivities of different sPS, such as fucoidans (e.g., galactofucan from Laminaria (a.k.a. 

Saccharina japonica), and laminarans (e.g., the one from E. bicyclis) (Table 1). 

Red macroalgae contain large amounts of sPS (Table 2), mostly galactans (agaroids and/or 

carrageenans), with alternating repeating units of 1,3-α-gal and 1,4-β-D-gal [236], and/or 3,6-anhydrogal 

(3,6-Agal) [237]. Substituents can be other monosaccharides (man, xyl), sulphate, methoxy and/or 

pyruvate groups, the pattern of sulphation dividing carrageenans into different families, for example, in 

C-4 for κ-carrageenan, and in C-2 for λ-carrageenan. In addition, the rotation of gal in 1,3-linked 

residues divides agaroids (L-isomer) from carrageenans (D-isomer) [18]. Apart from agarans [18], 

found in species of Porphyra, Polysiphonia, Acanthophora, Goiopeltis, Bostrychia or Cryptopleura 

(Table 2), red seaweeds are also good sources of κ-carrageenan (E. spinosa, K. alvarezii), λ-carrageenan 

(Chondrus sp, G. skottsbergii and Phillophora) (Table 2) [238], ι-carrageenan (E. spinosa) [239], and 

other heterogalactans with man and/or xyl bulding up their backbones.  Among these, we may find 

xylogalactans in N. fastigiata [143], xylomannans in S. polydactyla [152] (Table 2). 

Regarding green macroalgae, the information on their structures and applications is scarce. 

Nevertheless, Wangs’s group [8] has made an excellent overview on those properties for the sPS from 

several genera of “macro-chlorophytes”. These sPS are very diverse and complex, with various types 

of glycosidic bonds between monomers, and include galactans (Caulerpa spp.), rhamnans (C. fulvescens 

and Enteromorpha), arabino- and pyruvylated galactans (Codium spp.), and the most known ulvans 

from Ulva spp and E. prolifera (Table 3). Wang and coworkers [8] also included some repeating 

aldobiuronic di-units for the backbone of ulvans, containing IduAc or glcAc (U. armoricana and  

U. rigida, respectively), disaccharides (S-)xyl-S-rham, and a trisaccharide unit composed by 1,4-linked 

glcAc, glcAc, and S-rham. The backbone of rhamnans seems to be somewhat simpler (Table 3), but 

other types of glycosidic bonds can also appear. For example, four repeating disaccharide units were 

indicated for the homopolymer of M. latissimum [240] (Table 3). Species from Codium are very 

interesting: their sPS may include different percentages of arabinose (ara) and gal, giving place to 

arabinans (C. adhaerens; [153]), galactans (C. yezoense) [241], arabinogalactans [8]. Pyruvylated 

galactans were also identified in C. yezoense [241], C. isthmocladium [2] and C. fragile [242]. Some 

other species of Codium present other PS-types such as (1,4)-β-D mannans in C. vermilara [158], or 

the rare (1,3)-β-D mannans in C. fragile [243], with various sulphation patterns. C. fulvescens contains 

“vary branched” S-mannan as well [163]. 

2.2. Microalgae and Cyanobacteria 

The characteristics of the various PS produced by microalgae, including their composition and 

structure, were recently discussed [14]. Some particular aspects about these polymers came to light. 

For example, it seems that concerning microalgae only G. impudicum and C. vulgaris contain  

homo-PS of galactose (gal) [23] and glucose (glc) [24], respectively, while the PS from the other 

species are heteropolymers of gal, xylose (xyl) and glc in different proportions. Rhamnose (rham), fuc 

and fructose can also appear, and some of the microalgal PS present uronic acids as well (Table 4). 

The glycosidic bonds are described for only a few PS, such as the one from Aphanothece halophytica, 

whose monosaccharides are mainly 1,3-linked, but linkages of type 1 also appear for glc and glcAc [230], 

which suggests that these two last molecules are terminal, and some multiple bonds, such as 1,2,4-linked 
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and 1,3,6-linked mannose (man) residues [230], are present as well, suggesting some branches coming 

out from the backbone of the PS. Further, there are some special features of microalgal PS, as it is the 

case of acofriose 3-O-methyl-rham in the polymers of Chlorella [203], Botryococcus braunii and 

calcium-spirulan (CaSp) of Arthrospira platensis [244]. In Porphyridium cruentum, an aldobiuronic 

acid [3-O-(α-D-glucopyranosyluronic acid)-L-galactopyranose), or glcAc-gal disaccharide], and two 

hetero-oligosaccharides were also identified [245], and so did two other aldobiuronic acids [246], 

which were also found in other species of Porphyridium and Rhodella [247]. Furthermore, other 

repeating disaccharide-units [233,234], and some oligosaccharides were also highlighted [233].  

In addition, Ford and Percival [196,197] found that the structure of the sPS from Phaeodactylum 

tricornutum was a ramified sulphated glucoronomannan, with a backbone composed by β-(1,3)-linked 

man; a triuronic acid, an aldobiuronic acid and a glucan made of β-(1,3)-linked glc were also 

identified as being constituents of the side chains of that polymer. 

Figure 1 illustrates the structures of some PS from macro- and microalgae. 

(A) 

(B) 

Figure 1. Cont. 
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Figure 1. Cont.  
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Figure 1. Cont. 
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(H) 

Figure 1. Examples of structures of PS from macro- and microalgae. (A) Repeating units 

suggested for the structure of alginates [3]; (B) Repeating units of some carrageenans [3]; 

(C) Fucoidan backbone of A. nodosum and three species of Fucus, showing the different 

distribution pattern of sulphate [75]; (D) Repeating units, sulphation pattern and gycosidic 

bounds of the backbone structures of PS of three different brown seaweeds [75];  

(E) Alternative positions and combinations for the repeating units of ulvans. A3s and B3s 

are aldobiouronic repeating di-units suggested for U. rigida and U. armoricana. U3s and 

U2s,3s are, respectively, a xyl-(S-rham) and a (S-xyl)-(S-rham) disaccharides [8];  

(F) Galactans of Codium spp. (a) linear (1,3)-β-D-galactan, (b) and (c) pyruvylated 

branched sulphated galactans [8]; (G) A rare mannan of the PS from C. fragile, with  

(1,3)-β-man residues and branches at C-2 [8]. Tabarsa et al. [243] referred that either 

branches or sulphates may be bound at the C-2 and/or C-4 positions along the PS 

backbone); (H) Models 1 or 2 for the possible acidic repeating unit in polysaccharide II, 

from Porphyridium sp. R = H, SO2O, terminal gal or terminal xyl, m = 2 or 3 [14]. 

3. Potential Medical/Biomedical Applications of Polysaccharides from Marine Algae. Relation 

with Some Chemical Features of Their Structures 

The PS are complex and heterogeneous macromolecules, coming from different genera belonging 

to the larger groups of algae, and species and strains of the same genus. Often, difficulties are found in 

identifying their chemical structure and therefore, their biological activities not being thoroughly 

understood. Few researchers have focused on such a challenging task as the exploitation of possible 

relation chemical structure–activity of PS. One approach to look for structure–biological activity 

relationships has been to make inferences based on information obtained from studies of invertebrate 

sulphated polysaccharides that have a regular structure and, thus, could be more easily studied [18]. 
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The types of glycosidic linkages and the contents and positions of the sulphate groups may be 

significantly different in the various sPS, depending on species, region of the thallus, growing conditions, 

extraction procedures, and analytical methods [2,186]. The biological and pharmacological activities 

of sPS normally result from a complex interaction of several structural features, including the 

sulphation level, distribution of sulphate groups along the polysaccharide backbone, molecular weight, 

sugar residue composition, and stereochemistry [248,249]. For instance, the general structural features 

of fucans that are important in their anticoagulation activity include the sugar composition, molecular 

weight, sulphation level and the position of sulphate groups on the sugar backbone [84,86,250,251]. 

Also, it has been observed that the antiviral activity of sPS increases with the molecular weight [252]. 

Galactans, fucans and galactofucans are representative polysaccharides from brown and red seaweeds 

that differ in structure, sulphation level and molecular weight, and yet all were shown to inhibit HSV-1 

and HSV-2 infection [253]. Recently, by using NMR, it was found that branched fucoidan oligosaccharides 

might present higher imuno-inflammatory activity than linear structures, because they were better at 

inhibiting the complement system [254]. Usov [236] compared two sulphated galactans from 

Botryocladia occidentalis and Gelidium crinale. He concluded that the interaction of the sPS with 

different compounds participating in the coagulation process depends on the differences in the 

structural features; unfortunately, data on the configuration of galactose in the galactan from G. crinale 

are not sufficient to fully understand the relationship.  

3.1. Antiviral, Antibacterial and Antifungal Activities 

An overview on the antiviral activity against several kinds of virus and retrovirus, enveloped or 

naked was well documented by Carlucci et al. [255] and Wijesekara et al. [21]. These reviews focused 

on the HIV type 1 and type 2, the human papilloma virus (HPV), the encephalo-myocarditis virus, the 

hepatitis virus type A and type B and the dengue and yellow fever virus.  The inhibition of infection by 

most of these viruses was explained by the action of sPS, which might block the attachment of virions 

to the host cell surfaces [140,256]. Another way of exerting their activity is by inhibiting the 

replication of the enveloped virus, such as the HIV, the human cytomegalovirus (HCMV) and the 

respiratory syncytial virus (RSV) [18,147,153], either by inhibiting the virus adsorption or the entry 

into the host cells. Some of the sPS are effective only if applied simultaneously with the virus or 

immediately after infection [18]. Another mechanism of action of fucoidans and other sPS is through 

the inhibition of the syncytium formation induced by viruses [21,257]. 

Some S-xylomannans were reported to present antiviral sulphate-dependent activity, as it was the 

case of PS from S. polydactyla and S. latifolium, which inhibited the multiplication of HSV-1 in  

Vero-cells [152,258]. In addition, the molecular weight (MW) seems to play an important role in the 

antiviral properties of the sPS, the effect increasing with the MW [18]. However, other structural 

features can be co-responsible for the reinforcement of the antiviral effectiveness, like sulphation 

patterns, composition and distribution of sugar residues along the backbone, and the complexity of the 

polymers [18,152,248,253]. Further, the fucoidans from L. japonica already proved their effectiveness 

in fighting both RNA and DNA viruses [103], such as poliovirus III, adenovirus III, ECHO6 virus, 

coxsackie B3 and A16 viruses. Moreover, these sPS can protect host cells by inhibiting the cytopathic 

activity of those viruses [99]. 
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In addition to their virucidal activity against HIV and other viruses associated to sexually 

transmitted diseases (STD) [5], including HPV, some carrageenans might find application as vaginal 

lubricant gels and coatings of condoms, with microbicidal activity, for they do not present any 

significant anticoagulant properties or cytotoxicity [259,260]. Furthermore, some fucoidans, apart from 

inhibiting attachment of virus particles to host cells, were able to inhibit the attachment of human 

spermatozoids to the zona pellucida of oocytes [261]; this property could be used for the development 

of a contraceptive gel with microbicidal characteristics [20]. 

The polysaccharides produced by some marine microalgae, and which may be released into the 

culture medium, showed antiviral activity against different kinds of viruses, such as the HIV-1, HSV-1 

and HSV-2, VACV and Flu-A (Table 4), as described by Raposo et al. [14]. Sulphated PS, in 

particular, proved to increase the antiviral capacity [231]. In fact, the antiviral activity of the PS may 

depend on the culture medium, algal strain and cell line used for testing, but also on the methodology, 

and the degree of sulphation, as is the case of EPS from P. cruentum [216,262]. Despite the slight 

toxicity that some PS may present, they could be safely applied in in vivo experiments, decreasing the 

replication of the virus VACV, for instance [223].  

The mechanisms involved in the antiviral activity of sPS may be understood analyzing what 

happens when cells are infected by a virus. Just before infection, viruses have to interact with some 

glycosaminoglycan receptors (GAG), such as heparin sulphate (HS) [263]. The GAG to which a 

protein can be covalently bound are part of the target cell surface and can also be found in the 

intracellular matrix of various connective and muscle tissues. SPS may impair the attachment of the 

virus particles by competing for those GAG-receptors, as they are chemically similar to HS [130,255], 

most of them having a covalently linked core protein [264,265]. Besides, as it happens with GAG,  

sPS are negatively charged and highly sulphated polymers [40,255,266], whose monosaccharide 

distribution pattern might influence the specificity of the bound protein, determining several biological 

functions [263]. For viruses to attach to the host cell surface, the linkage between the basic groups of 

the glycoproteins of the virus and the anionic components of the PS (sulphate, for example) at the cell 

surface must be established [248]. In fact, whichever the algal PS is, either from seaweeds or 

microalgae, by mimicking these GAG, they may induce the formation of a virus-algal PS complex, 

thus, impairing the cell infection by blocking the interaction virus-host cell receptor. Hidari and 

coworkers [40], for instance, showed that dengue virus (DENV) establishes an exclusive complex with 

fucoidan, and viral infection is, therefore, inhibited. They suggested that arginine-323 had a high 

influence on the interaction between the DENV-2 virus and the fucoidan, in an in vitro experiment 

with BHK-21 cells. These researchers also found that glucuronic acid seems to be crucial since no 

antiviral activity was observed when this compound was reduced to glucose. 

Sulphated polysaccharides from seaweeds, such as alginates, fucoidans and laminaran appear to 

have antibacterial activity against E. coli and species from Staphylococcus. A fucoidan from L. japonica 

and sodium alginate were found to inhibit E. coli [267], for example, by adhering to bacteria and 

killing those microorganisms [5], thus showing bactericidal properties. This type of PS is also a good 

antibacterial agent against Helicobacter pylori, eradicating their colonies, restoring the stomach 

mucosa, in clinical trial studies, and regenerating biocenosis in the intestines [268]. Laminaran from Fucus, 

Laminaria, A. nodosum and U. pinnatifida demonstrated to have an effect on pathogenic bacteria [56] 

as well, with the advantage of being unable to promote blood coagulation [269]. An S-galactan from 
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Chaetomorpha aerea inhibited the growth of Staphylococcus aureus (50 mg/mL of extract) but not 

that of Salmonella enteritidis [270]. In contrast, the carrageenans from some seaweeds [271] and the 

sulphated exopolysaccharide (sEPS) from the red microalga Porphyridium cruentum, despite the 

higher concentration used [216], showed a significant inhibitory activity against S. enteritidis. In fact, 

some PS from microalgae, such as A. platensis (Table 4), may present antibacterial properties against 

some specific bacteria, the activity depending on the solvent used to extract the polymer, as referred to 

by Raposo et al. [14].  

By stimulating the production and/or expression of ILs, dectin-1 and toll-like receptors-2 on 

macrophages and dendritic cells, respectively, (1,3)-β-glucans from, e.g., C. vulgaris, and laminarans, 

also induced antifungal and antibacterial responses in rats [272], and some resistance to mammal 

organisms towards infections by E. coli [273]. Therefore, these types of PS promise to be good 

antimicrobial agents. 

3.2. Anti-Inflammatory and Immunomodulatory Activities 

Polysaccharides from macro- and microalgae have long demonstrated to have biological and 

pharmaceutical properties, such as anti-inflammatory and immunomodulation (Tables 1–4) [14]. 

Neverthless, the anti-inflammatory properties may be shown in several ways, depending on the PS, its 

source and type/site of inflammation. There is growing evidence that sPS are able to interefere with 

the migration of leukocytes to the sites of inflammation. For example, the heterofucan from  

D. menstrualis decreases inflammation by directly binding to the cell surface of leukocytes, especially 

polymorphonuclear cells (PMNs). It completely inhibits the migration of the leukocytes into the 

peritoneal cavity of mice where the injured tissue was after being submitted to simulated pain  

and inflammation, without the production of pro-inflammatory cytokines [1]. Sometimes, the 

recruitment of these PMNs shows to be dependent on P- and/or L-selectins, as it was demonstrated for 

fucoidans of some brown seaweeds [15,112]. 

Some other studies refer the association of the anti-inflammatory activity with the immunomodulatory 

ability. This seems to be the case in the work by Kang et al. [88], who simulated an inflammation 

process in RAW 264.7 cells (peritoneal macrophage primary cells) induced by lipopolysaccharides 

(LPS). They found that the fucoidan from E. cava inhibited, in a dose-dependent manner, the enzyme 

nitric oxide synthase induced by LPS (iNOS) and the gene expression for the enzyme  

cyclooxygenase-2 (COX-2) and, as a consequence, the production of nitric oxide (NO) and 

prostaglandin E2 (PGL2). Li et al. [274] confirmed the anti-inflammation mechanism in vivo via the 

immunomodulatory system in vivo, since the fucoidan from L. japonica reduced the inflammation of 

rats’ myocardium damaged cells, by inactivating the cytokines HMG B1 and NF-κB, two groups of 

proteins secreted by the immune cells during inflammatory diseases. These protective and regenerative 

effects of fucoidans (from A. nodosum), via the immunomodulatory system, were also verified in the 

destruction/proteolysis of connective tissue by Senni et al. [275]. These researchers referred to the fact 

that severe inflammation and the subsequent excessive release of cytokines and matrix proteinases 

could result in rheumatoid arthritis or chronic wounds and leg ulcers, which could be treated with 

fucoidans [275]. 
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In addition to the polysaccharide from Ulva rigida, a green seaweed [192], the sPS p-KG03 from 

the marine dinoflagellate G. impudicum, also activates the production of nitric oxide and immunostimulates 

the production of cytokines in macrophages [227]. 

The enhancement of the immunomodulatory system by some sPS from marine algae is also a way 

for sPS to suppress tumour cell’s growth and their proliferation, and to be natural neoplastic-cell 

killers (apoptotic effect). 

Studies with arabinogalactan and other fucoidans revealed them to be immunostimulators by 

activating macrophages and lymphocytes, which suggests their effectiveness in the immuno-prevention 

of cancer [22,276]. The PS from U. pinnatifida was also suggested to treat/relieve the symptoms of 

pulmonary allergic inflammation as it supresses the activity of Th2 immune responses [111]. On the 

other hand, fucoidan activated macrophages and splenocytes to produce cytokines and chemokines [277]. 

Polysaccharides from marine microalgae, such as Porphyridium, Phaeodactylum, and  

C. stigmatophora (Table 4), showed pharmacological properties, such as anti-inflammatory activity 

and as immunomodulatory agents, as reported by Raposo et al. [14]. Some of these sPS, for example, 

the ones from C. stigmatophora and P. tricornutum (Table 4), have revealed anti-inflammatory 

efficacy in vivo and in vitro [195]. The mechanisms underlying the anti-inflammatory and 

immunomodulatory activities may be unsderstood by making some considerations at the molecular 

level. On one side, the protein moiety that is covalently bound to most PS seems to play a critical role 

in the activation of NF-κB and MAPK pathways involved in the macrophage stimulation [265,278]. 

This was evidenced in an in vitro experiment performed by Tabarsa and colleagues [265]. They 

showed that the PS from C. fragile was not able to stimulate RAW264.7 cells to produce NO and the 

protein alone was also unable to induce NO release, but the complex sPS-protein did inhibit the 

inflammatory process. On the other side, several other researchers found that proteins were not 

essential or responsible for the immunostimulatory responses of the cells [192,279]. In addition, 

Tabarsa and coworkers [265] demonstrated that the sulphate content and the MW were not crucial for 

the stimulation of murine macrophage cells. In fact, both desulphated and LMW-PS derivatives of  

C. fragile produced immunomodulatory responses similar to the ones of the original PS. In contrast, 

the sPS from U. rigida induced a strong sulphate-dependent release of NO [192], thus, the sulphate 

content showing to be essential for the stimulation of macrophages. These researchers mentioned the 

possibility of the sulphate interfering in the interaction PS-cell surface receptors.  

The interaction of algal sPS with the complement system suggests that they might influence the 

innate immunity to reduce the pro-inflammatory state [254]. In addition, algal polysaccharides have 

been shown to regulate the innate immune response directly by binding to pattern recognition receptors 

(PRRs) [280]. For example, λ-carrageenan stimulated mouse T cell cultures in a toll-like receptor-4 

(TLR4) [281]. 

Different effects were observed in other types of sPS: Zhou et al. [282] proved that carrageenans 

from Chondrus with lower molecular weights better stimulated the immune system. The same trend 

was verified for the sEPS from the red microalga Porphyridium [221], a 6.53 kDa LMW-fragment at 

100 µg/mL presenting the strongest immunostimulating activity. 

It is worth remarking that carrageenans from red seaweeds are recognized for triggering potent 

inflammatory and carcinogenic effects either in rats and mice cells [130]. However, while some 

carrageenans stimulate the activity of macrophages, others inhibit macrophage activities [21]. 
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Although PS from various macro- and microalgae do not show anticoagulant and/or antithrombotic 

activities, attention should be paid to the anticoagulant properties of some PS, since their use could 

cause severe bleeding complications. This issue will be discussed further on in this review. 

3.3. Anti-Proliferative, Tumour Suppressor, Apoptotic and Cytotoxicity Activities 

Because of the growing number of individuals suffering from different types of cancer and the 

secondary effects of synthetic chemicals and other types of treatment used against tumour damages, 

research was driven towards demand for natural therapeutics with bioactive compounds. In this 

context, sPS from both macro- and microalgae already proved to have antitumor biological activities. 

An S-fucoidan from C. okamuranus exhibited anti-proliferative activity in U937 cells (myeloid 

cancer cell-line) by inducing cell apoptosis following a pathway dependent of Caspases-3 and -7 [43]. 

In another study, conducted by Heneji’s group [283], a similar fucoidan induced apoptosis in two 

different leukaemia cell lines. These results indicate that fucoidans might be good candidates for 

alternative therapeutics in treating adult T-cell leukaemia [22]. S-fucoidans from E. cava also seem to 

be promising to treat other types of human leukaemia (monocyte- and promyelocytic-origin)  

cell-lines [284]. There was some evidence that the fucoidan from L. guryanovae inactivated the epidermal 

growth factor (tyrosine kinase) receptor (EGFR), which is greatly involved in cell transformation, 

differentiation and proliferation [285,286]. Therefore, this kind of sPS could be used as antitumor and 

anti-metastatic therapeutical/preventing agent, which might act either on tumour cells or by stimulating 

the immune response [287]. 

Further, the sPS from E. bicyclis and several other seaweeds (Tables 1–3) have demonstrated  

their potent bioactivity against different kinds of tumours, including lung and skin, both in vitro and  

in vivo [62,83,288,289] causing apoptosis in various tumour cell-lines [62,290–292]. The mechanisms 

involved in this antitumor activity might be associated again with the production of pro-inflammatory 

interleukins IL-2 and IL-12 and cytokine interferon-gamma (INF-γ) by the immune-stimulated 

macrophages, together with the increase of the activity of the natural killer cells (NK cells) and the 

induction of apoptosis [62,293]. NK cells can also upregulate the secretion of IFN-γ, which can 

activate either the T-cells for the production of IL-2 or the macrophages, which, after being activated, 

keep on producing IL-12 and activating NK cells [293,294]. The enhancement of the cytotoxicity of 

these NK cells (lymphocytes and macrophages) can be stimulated by other sPS such as fucoidans and 

carrageenans from other seaweeds [276,282]. Polysaccharides can also activate some signalling 

receptors in the membranes of macrophages, such as Toll-like receptor-4 (TLR-4), cluster of 

differentiation 14 (CD14), competent receptor-3 (CR-3) and scavenging receptor (SR) [295]; these are 

also activated by other intracellular pathways, involving several other protein-kinases, that enhance the 

production of NO, which, in turn, plays an important role in causing tumour apoptosis [295]. These 

immunomodulation properties of S-fucoidans could be used for the protection of the damaged gastric 

mucosa as it was already demonstrated by using rat-models [296]. More information on the pathways 

and mechanisms responsible for the immune-inflammatory activities, including the involvement of the 

complementary system, may be found in Jiao and colleagues’ work [18]. 

The anti-adhesive properties of some sPS, especially fucoidans might also explain their anti-metastatic 

activity (Tables 1–3), both in vitro and in vivo, in various animal-models [15,297], as they can inhibit 
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the adhesion of tumour cells to platelets, thus decreasing the possibilities of proliferation of neoplastic 

cells. The mechanisms by which fucoidans and other sPS exert their anti-adhesive ability were well 

documented by Li’s group [103]. Some researchers also highlighted the mitogenic properties and the 

cytotoxicity and tumoricidal activity of some arabinogalactans and fucoidans as well [42,276], either 

in different cell-lines or various animal-models. 

The anti-adhesive properties of algal sPS may also be relevant as these polymers can block the 

adhesion of tumour cells to the basal membrane, thus demonstrating to impair implantation of tumour 

cells and metastatic activity by binding to the extracellular matrix [37]. For example, the sPS from 

Cladosiphon was shown to prevent gastric cancer in vivo, since it inhibited the adhesion of H. pylori to 

the stomach mucosa (mucin) of gerbils [45]. Metastasis appearance could also be reduced in vivo by  

S-laminaran, a 1,3:1,6-β-D-glucan, because this compound inhibited the activity of heparanase, an 

endo-β-D-glucuronidase involved in the degradation of the main PS component in the basal membrane 

and the extracellular matrix. The expression of this enzyme is known to be associated with tumour 

metastasis [59]. 

These antitumor properties may also be found in some PS from microalgae, such as A. platensis, 

which are inhibitors of cell proliferation [234]. Other sPS, such as sPS p-KG03 from G. impudicum, 

have also anti-proliferative activity in cancer cell lines (in vitro) and inhibitory activity against tumour 

growth (in vivo) [227,228,298]. Other PS from microalgae, such as C. vulgaris (Table 4), and sPS or 

LMW-derivatives of sPS from P. cruentum (Table 4), for example, are described as having similar 

properties in the review performed by Raposo et al. [14]. 

In some research work, the immunomodulatory activity was associated to the ability of inhibiting 

carcinogenesis. For example, Jiao’s group [172] found that a sulphated rhamnan and some derivatives 

from the green seaweed E. intestinalis suppressed tumour cell growth in vivo (mice), but they did not 

show any toxicity against tumour cells in vitro. The oral administration of the sPS to mice enhanced 

the spleen and thymus indexes, and also induced the production of TNF-α and NO in macrophages, 

increased lymphocyte proliferation, and enhanced TNF-α release into serum. 

The degree of sulphation may play some role in the carcinogenesis process, although the action of 

the sPS may also depend on the type of tumour. In fact, an oversulphated PS demonstrated the 

capacity of inhibiting the growth of L-1210 leukaemia tumour in mice, but, on the other hand, it was 

unable to inhibit the growth of Sarcoma-180 tumour in mice [83]. In addition to the sulphation level, 

MW may also influence the anticancer activity. For instance, LMW-PS derivatives showed to enhance 

antitumor activity [91,299]. However, the increment in the anticancer activity greatly depends on the 

conditions of the PS depolymerisation [299]. Kaeffer et al. [186] suggested that the in vitro antitumor 

activity of LMW-PS, sulphated or not, against cancerous colonic epithelial cells (Caco cells) might be 

associated with the inhibition of tumour cells proliferation and/or differentiation. 

3.4. Anticoagulant and Antithrombotic Activities 

There are several studies on the anticoagulant properties of PS isolated from seaweeds, presented in 

a recent review [14] by different groups of researchers: Wang et al. [8], Costa and colleagues [2], 

Cumashi et al. [15], Athukorala et al. [300] and Wijesekara and coworkers [21]. 
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The main sources of the sPS from green seaweeds with anticoagulant properties are Codium and 

Monostroma [167,301]. Some of the PS, such as S-rhamnans, showed their action by extending the 

clotting time via the intrinsic and extrinsic pathways [167]. In fact, Codium spp present strong 

anticoagulant effects [159,160], but other species from Division/Phyllum Chlorophyta also contain 

sPS (native, low-molecular or otherwise modified) with anticoagulant properties (Table 3). The 

mechanism of action of the referred PS is mostly attributed to either a direct inhibition of thrombin or 

by enhancing the power of antithrombin III [302,303].  

Some other PS from green seaweeds also showed potent anticoagulant properties but their 

mechanisms of action are associated not only to a direct increase in the clotting time (APTT assays) by 

inhibiting the contact activation pathway (intrinsic pathway), but also by inhibiting the heparin 

cofactor II-mediated action of thrombin [180,304] thus showing a potent antithrombotic bioactivity. 

In addition to their anticoagulant properties demonstrated in vitro by APTT and TT tests, several 

sPS from algae of different groups (Tables 1–3) present antithrombotic qualities in vivo [305,306] by 

increasing the time of clot formation. In fact, Wang and colleagues [8] published an exhaustive work 

on this issue by including a summary table with 24 references about both the anticoagulant, and anti- 

and prothrombotic activities of several sPS from various green seaweeds. In two other studies, 

Wijesekara et al. [21] and Costa and coworkers [2] also included the sPS from brown and red 

macroalgae that present effects on the blood clotting time. Wijesekara and colleagues [21] referred to 

the fact that there are few reports on the interference of PS from algae on the PT (prothrombin) pathway, 

meaning that most of the marine sPS may not affect the extrinsic pathway of coagulation [21]. As a 

matter of fact, Costa et al. [2] did not detect any inhibition in the extrinsic coagulation pathway (PT 

test), for the concentrations used; only C. cupressoides increased the clotting time. In addition, they 

found no anticoagulant properties (APTT and PT assays) in the sPS from a brown seaweed  

(S. filipendula) and a red macroalga (G. caudate). Further, in our laboratory we found no anticoagulant 

properties in the sEPS from different strains of the red microalga P. cruentum, despite the high content 

in sulphate and molecular weight. As Costa et al. [2] observed, this could be due to the absence of 

sulphate groups in the monosaccharides at the non-reducing ends of the branches, which impaired the 

interaction between target proteases and coagulation factors. Nishino et al. [84] and Dobashi et al. [72] 

defended that there might be no effect above an upper limit for the content in sulphate, since the 

difference in the anticoagulant and antithrombotic activities decreased with the increase of the  

sulphate content.  

It seems that some of the chemical and structural features of the sPS may have some influence on 

their anticoagulant and/or antithrombotic activities. The degree and distribution pattern of sulphate, the 

nature and distribution of monosaccharides and their glycosidic bonds, and also the molecular weight 

showed to play some role on the coagulation and platelet aggregation processes induced by S-galactans 

and S-fucoidans [2,307,308]. In fact, at least for some fucoidans, the anticoagulant properties are 

related to the content in C-2 and C-2,3 (di)sulphate, this last feature being usually common in these  

PS [52,53,105]. Several other studies documented the anticoagulant activity and inhibition of platelet 

aggregation [22,103,130], supplying more information on the mechanisms of different sPS for these 

biological activities. Higher MW-PS usually present stronger anticoagulant activity [309] and if a  

PS has a more linear backbone, a longer polymer is required to accomplish the same anticoagulant 

effects [251]. However, both the native PS and LMW-derivatives of the green seaweed M. latissimum 
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presented strong anticoagulant activities [168]. Nishino and colleagues also observed that high 

molecular weight fucans (e.g., 27 and 58 kDa) showed greater anticoagulant activity than the ones with 

lower molecular weight (~10 kDa) [85]. They found that a higher content of fucose and sulphate 

groups coincided with higher anticoagulant activities of sulphated polysaccharide fractions from  

E. kurome [84]. However, despite its high sulphation level, the galactofucan from U. pinnatifida lacks 

significant anticoagulation activity [38]. Moreover, an S-galactofucan from the brown seaweed  

S. schröederi did not present any anticoagulant properties in vitro, but demonstrated a strong 

antithrombotic activity when administered to an animal-model during an experimental induced venous 

thrombosis, this effect disappearing with the desulphation of the polymer [38]. 

As for other PS, the anticoagulant properties of the PS from marine microalgae may not only depend 

on the percentage of sulphate residues, but rather on the distribution/position of sulphate groups and, 

probably, on the configuration of the polymer chains [14]. Spirulan from A. platensis (Table 4) is one 

of the PS from marine microalgae that strongly interferes with the blood coagulation-fibrinolytic 

system and exhibits antithrombogenic properties [159,310], therefore, promising to be an anti-thrombotic 

agent in clots’ breakdown, although care should be taken regarding hemorrhagic strokes [14]. 

It seems that the anticoagulant mechanisms of action of PS may be attributed to: (i) the inhibition of 

thrombin directly or via antithrombin III (AT-III) [66,302,303,311,312]; (ii) the increment in the 

activity of thrombin inhibitors, such as AT-III and/or heparin cofactor II (HC-II) [130,304,313], in 

both the intrinsic (contact activation or normal, measured by APPT test) and extrinsic (Tissue factor, 

TF, measured by PT test) pathways [314], the activation of HC-II seeming to be sulphate-dependent [315]. 

One explanation for the sPS to act directly on thrombin may be associated with the ability of those 

polymers to bind to thrombin, thus, hindering its catalytic activity [15,316]. In addition, some sPS may 

also inhibit thrombin from linking to their receptors in human platelets (protease activated receptor-1 

and GP-1b) [317]. However, a high content of glucuronic acid might render a sPS unable to interfere 

in the coagulation process [15]. 

3.5. Antilipidaemic (Hypocholesterolaemic and Hypotriglyreridaemic), Hypoglycaemic and 

Hypotensive Activities 

Sulphated PS from seaweeds are potent inhibitors of human pancreatic cholesterol esterase, an 

enzyme that promotes its absorption at the intestinal level; this inhibitory effect is enhanced by higher 

molecular weights and degree of sulphation [6]. 

An S-ulvan from U. pertusa in an in vivo study using mice-models regulated the ratio HDL/ 

LDL-cholesterol and reduced the levels of triglycerides (TG) in serum [185]. However, in another 

experiment with rats and mice, using native ulvans from the same species, the animals experienced a 

hypocholesterolaemic effect but no reduction in the TG profile [318]. An opposite reaction was 

observed when the PS was acetylated and oversulphated, as TG levels were normalized. It seems that 

the ability to sequester bile extracts may be involved [185]. The contents in sulphate and acetylate 

groups play important roles during the dislipidaemia process [191,319]. Ulvans from Ulva spp also 

showed antiperoxidative properties, preventing liver tissues from hyperlipidaemia, including that 

induced by toxic chemicals and protecting the injured tissue from the oxidative stress [189], and 

improving antioxidant performance of the animal models. In fact, these sPS regulated superoxide 
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dismutase (SOD) and catalase, increased vitamins E and C, and reduced-glutathione, and had some 

role in reducing the levels of aspartate and alanine transaminases in the rats’ liver [179,185]. Further, 

the sPS from M. nitidum also demonstrated hepatoprotective activity by increasing the expression of 

liver detoxifying enzymes, and, therefore, showed to be good agents for chemoprevention medicine [171]. 

The activity of these PS may be related to their uronic acid and sulphate content, which are able to 

sequester and bind to bile acids [320], reducing their levels. Other sPS from green seaweeds also 

revealed hypolipidaemic properties, such as that from E. prolifera. This PS regulated the lipidic profile 

both in plasma and liver, increasing HDL-cholesterol, in rats [177]. Fucoidans from L. japonica, the 

native or LMW-derivate, have hypolipidaemic effects, decreasing total and LDL-cholesterol in the 

serum and TG in rats [321], and they prevented hypercholesterolaemia in mice [322]. Another 

mechanism to reduce blood cholesterol in humans by sPS is associated to their high capacity to inhibit 

pancreatic cholesterol esterase, which is responsible for the absorption of cholesterol and fatty acids at 

the intestine [6]. It seems that the presence of sulphate at the C-3 position of the sugar residues greatly 

enhances that inhibition [6]. Porphyran from P. yezoensis has anti-hyperlipidaemic properties [119,323] 

by reducing the release of apolipoprotein-B100 (apoB100) and decreasing the synthesis of lipids in 

human liver cultured cells [324]. By reducing the secretion of apoB100, porphyran has the potential to 

be used as a therapeutic agent to treat CVD. In addition, some types of carrageenans have already 

proved to decrease blood cholesterol in humans [325] and in rats fed on a diet enriched with a mixture 

of κ/λ-carrageenans from G. radula [326]. 

Most of the PS from marine microalgae are naturally highly sulphated, with high molecular 

weights, making them not-easily absorbable and thus enabling them to be used as anticholesterolaemic 

agents. Few studies were carried out in this area, namely focusing on Porphyridium, P. cruentum,  

R. reticulata (Table 4) [327–330], but these suggest a strong potential of sulphated polysaccharides 

from unicellular algae to be used as hypolipidaemic and hypoglycaemic agents, and as promising 

agents for reducing coronary heart disease, due to their hypocholesterolaemic effects [14]. 

As far as we know, scarce research was performed on the mechanisms underlying the 

antihyperlipidaemic activity. However, the sequestration and disruption of the enterophatic circulation 

of the bile acids may be involved [185,331,332]. For example, ulvans and their LMW-derivatives, and 

also the sEPS from Porphyridium showed to increase the excretion of bile [185,333]. Another 

explanation for the antihyperlipidaemic activity of sPS may be associated to the fact that they can 

effectively increase the anionic charges on the cell surface, which improve the removal of cholesterol 

excess from the blood, thus, resulting in a decrease of serum cholesterol [103]. In addition, most PS 

have ion exchange capacity, such as those from Porphyridium and Rhodella [334], and they can 

function as dietary fibres. This could also explain the ability to lower down cholesterol [335]. PS may 

act as dietary fibres, immunostimulating the goblet cells in the intestine to increase the release and 

effects of mucin [336]. Moreover, the administration of PS may increase the viscosity of the intestinal 

contents, interfering with the formation of micelles and nutrient absorption, thus, lowering lipid 

absorption, and reducing gastrointestinal transit time (GTT) [333,337]. 

Other PS have the ability to inhibit the enzyme α-glucosidase, thus improving the postprandial 

hyperglycaemia [338], and another can also reduce the blood pressure by inhibiting the release of 

plasma angiotensin II [339]. 
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3.6. Antiaging (Antioxidant) Activity 

The main mechanism by which sPS from green seaweeds exert their primary antioxidant action is 

by scavenging free-radicals (superoxide, hydroxyl, 1,1-diphenyl-2-picrylhydrazyl (DPPH)-radicals) or 

by inhibiting their appearance [8]. They also demonstrated to have total antioxidant capacity, and a 

strong ability as reducing agents and as ferrous chelators [8]. However, some other sPS, such as  

S-heterogalactan (C. cupressoides) do not show a good scavenging power, but they are rather powerful 

against reactive oxygen species (ROS) [340]. It is interesting to note that fucoidans from brown 

seaweeds seem to exert a reducing power bigger than the sPS from other groups [2]; the PS from  

S. filipendula has an effect even stronger than vitamin C. Moreover, the fucoidan from L. japonica has 

a great potential to be used in medicine in order to prevent free-radical-mediated diseases, as it successfully 

prevented peroxidation of lipids in plasma, liver and spleen in vivo (mice), despite showing no effects 

in vitro [100]. The sPS from another species of Sargassum (S. fulvellum) has shown a NO scavenging 

activity higher than some commercial antioxidants [341]. In addition, the sPS from the red macroalga 

P. haitanensis demonstrated to decrease antioxidant damages in aging mice [115]. 

It seems that LMW-sPS may present higher antioxidant activity than the native polymers, as it was 

verified with the PS from U. pertusa and E. prolifera [166,342]. It is probably related with the ability 

of PS to be incorporated in the cells and to donate protons [21]. 

As noted by Raposo et al. [14], sulphated PS produced and secreted out by marine microalgae have 

shown the capacity to prevent the accumulation and the activity of free radicals and reactive chemical 

species. Therefore, sPS might act as protecting systems against these oxidative and radical stress 

agents. The sPS from Porphyridium and Rhodella reticulata (Table 4) exhibited antioxidant  

activity [343,344], although some research revealed no scavenging activity and no ability to inhibit the 

oxidative damage in cells and tissues for the crude sPS with high molecular weight from Porphyridium 

cruentum, while the EPS-derived products after microwave treatment showed antioxidant activity [220]. 

In all cases, the antioxidant activity was dose-dependent. Methanolic extracts of EPS from A. platensis 

also exhibit a very high antioxidant capacity [235]. 

Due to their strong antioxidant properties, most of the sPS from marine macro- and microalgae are 

promising since they may protect human health from injuries induced by ROS, which can result in 

cancer, diabetes, some inflammatory and neurodegenerative diseases, and some other aging-related 

disorders, such as Alzheimer and CVD. 

The influence of sulphate content on the antioxidant activity depends rather on the origin of the PS. 

For example, the PS from U. fasciata and other macro- and microalgae with lower sulphate content 

demonstrated a strong antioxidative power [165,181,220,343], while the antioxidant activity observed 

in PS from E. linza and other seaweeds showed to be sulphate-dependent [174,345]. Furthermore, high 

sulphated PS was shown to have an enhanced scavenging power [97,182], this property being also 

dependent on the sulphate distribution pattern [2]. It seems, in addition, that the protein moiety of PS 

may play some role on the antioxidative power. For example, Tannin-Spitz et al. [343] reported a 

stronger antioxidant activity for the crude PS of Porphyridium than for the denatured PS. 

Zhao et al. [346] found that the antioxidant activity of sPS was apparently related, not only to 

molecular weight and sulphated ester content, but also to glucuronic acid and fructose content. This 
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antioxidant activity seems to be attributable to metal chelating, free radical and hydroxyl radical 

scavenging activities of the sPS. 

3.7. Nutritional Applications: Fibres (Dietary), Prebiotic and Probiotic 

As already mentioned by Raposo et al. [14], PS can find applications in the food industry as 

emulsifying and gelling agents, as flocculant and hydrating agents, emulsifiers, stabilizers, thickening 

agents, i.e., food additives [347], like agar E406, alginates E400-404, carrageenan E407. The sPS from 

marine microalgae could be used as nutraceuticals due to their content in fibres, the ability of acid 

binding and for cation exchange, and the properties of faecal bulking as well, being also good 

candidates as prebiotics [348]. The PS alone or in combination with other compounds have a great 

potential to be used in edible films and coatings of foods, while carriers of flavors, colorants, spices 

and nutraceuticals [349]. In our laboratory, experiments have already been carried out with based EPS 

from P. cruentum-coatings applied to fresh-cut apple. These polymers also have the potential to be 

used in low-fat or fat-free food products, as fat substitutes in mayonnaises [350,351], salad dressings 

and other food emulsions [352]. 

3.8. Other Biological Activities 

As it happens in relation to the fucoidan from S. schröederi (Dictyotales) [36], a  

heterofucan-derivative from D. menstrualis, another member of Dictyotales, also presented 

antinociceptive activity. It acted as a peripheral analgesic agent, reaching 61.2% of pain reduction  

(4 mg/kg) in mice, this effect being as potent as dipyrone’s, and it was dose-dependent [1]. This 

suggests that this kind of S-fucans and some S-galactans can act as analgesic agents but not as 

anaesthetic ones, as they do not decrease pain when it involves the CNS. S-galactan from G. cornea is 

another sPS with analgesic characteristics, but at a higher concentration (9 mg/kg) [353]. A S-galactan 

from C. feldmannii is a more potent antinociceptive agent (80% reduction in contractions), but it also 

presents good anticoagulant properties [354]. Sulphated PS from C. cupressoides [155,156], at a dose 

of 27 mg/kg/day, reduced by 90% the writhes induced in mice by acetic acid, but they also showed 

analgesic effects only via peripheral mechanisms [156]. It seems that these sPS act by binding to the 

surface of the leukocytes, hindering their migration to the focus of tissue injury [1,355], therefore, 

demonstrating anti-inflammatory properties as well. Thus, all these sPS promise to be good peripheral 

antinociceptive agents, with some special care in relation to the galactan from Champia feldmannii due 

to its anticoagulant properties. 

The angiogenic (neovascularization) properties of PS can be considered according to two angles. 

When dealing with treatment/prevention of neoplasias it is very important that the PS in question does 

not show that ability, so that the tumour will be reduced, and cells might die if not irrigated. Therefore, 

sPS, such as fucoidans may function as tumour supressors by inhibiting angiogenesis induced by 

tumour cells [3]. However, if the disorder we are dealing with is the result of an ischaemic issue, a PS 

with angiogenic activity should be used in order to re-establish the blood flow of the injured tissues, 

thus, acting as cardioprotective after ischaemia. The angiogenic mechanisms of fucoidans and glucans 

were well explained by Fedorov et al. [3] and Cumashi et al. [15]. 
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Angiogenesis involves the differentiation of mature endothelial cells, their proliferation and migration. 

In fact, some sPS demonstrated the capacity to promote therapeutic revascularization in animal 

models, increasing the vessel formation when administered by injection in rats with ischaemic hind 

limb [57]. The mechanisms involved in the angiogenic properties of modified fucoidans are associated with 

the ability of these polymers to interact with endothelial cells, modulating the activity of proangiogenic 

growth factors, such as fibroblast growth factor-2 (FGF-2). The latter is mitogenic for that type of 

cells, fibroblasts and smooth muscle cells [103], and extracellular matrix components [58,356,357].  

In fact, there is a correlation of the reduction of plasminogen-activator inhibitor (PAI-1) secretion  

with the upregulation of cell-surface α-6 integrin sub-unit. This could be an explanation for the 

proangiogenic ability, including the induction in vitro of tube formation by human endothelial cells. 

The fucoidans of C. okamuranus and F. vesiculosus are promising in treatment of ischaemic disorders, 

including infarcted myocardium, as they did not show to inhibit tubulogenesis in HUVEC cells. This 

cardioprotective activity was confirmed in animal models by enhancing creatinine phosphokinase, 

lactate dehydrogenase, and alanine and aspartate transaminases [47]. 

Fucoidans from two species of Laminaria and three species of Fucus revealed antiangiogenic 

properties, through the inhibition of the in vitro neogenesis of tubules in human umbilical vein 

endothelial cells (HUVEC), while a decrease in PAI-1 in HUVEC supernatants was also observed [15]. 

It is worth noting that these sPS revealed anticoagulant and antithrombotic activities, and some of 

these fucoidans inhibited the adhesion of breast cancer cells to platelets, as well, thus showing  

anti-adhesive and anti-metastatic properties. These features suggest that this type of polymers could be 

used as complementary agents in the therapeutical treatment of cancer. 

In addition to the cardioprotective effects, the fucoidan from C. okamuranus Tokida demonstrated a 

great potential to be used as a gastroprotective agent [46]. It was used as a component of a new drug to 

treat/prevent gastric ulcers, and to inhibit Helicobacter pylori from adhering to the mucosa of the 

stomach [358], and also inhibited stomach cancer [44]. 

The fucoidans from other seaweeds are promising as well, not only as hepatoprotective agents 

against chemical damages, stimulating the release of IL-10 and inhibiting proinflammatory  

cytokines [359,360], but also against hepatic fibrosis, protecting hepatocytes and inhibiting the 

proliferation of hepatic stellate cells, which are co-responsible in the process [361]. 

Being an antioxidant against free radicals, fucoidan from F. vesiculosus might be an alternative  

or complementary therapeutic in uropathy and renalpathy, since it could prevent from the injuries 

caused by oxalate-induced free radicals [362] and from the mitochondrial damages associated to the 

process [363]. Several other disorders of the urinary system, including Heymann nephritis, are also 

liable to treatment or complementary therapeutics through the use of fucoidans [293,364–367]. 

The PS from other seaweeds demonstrated either stimulatory or inhibitory effects on some enzymes 

as was reported in the review by Smit [20], and inhibited cytotoxic and myotoxic effects against snake 

venoms as well, thus protecting the muscle from necrosis [368]. 
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3.9. Biomedical Applications 

Biomedical field is constantly demanding for new biomaterials with innovative properties. Natural 

polymers appear as materials of election for this objective due to their biocompatibility and 

biodegradability [369].  

Alongside their biological activity and potential pharmaceutical use, as has already been addressed 

in this review, PS may be used as biomaterials, as such, or in combination with other synthetic or 

natural substances. There are several potential biomedical applications for PS in: regenerative 

medicine, such as wound management products, drug delivery systems (DDSs), tissue engineering, 

and medical fibres and biotextiles [369,370] (Table 5).  

Table 5. Some applications of algal PS in biomedicine. 

Groups of PSs Possible Sources Applications References 

Alginates 
Laminaria spp, A. nodosum, Ecklonia sp., 

M. pyrifera, Durvillaea, Lessonia 

Drugs carriers [371] 

Encapsulation 

[372–374] 
Scaffolds for ligaments and tissue engineering 

Regeneration of tissues 

Moulding in dentistry 

Wound healing and dressings [375–377] 

Agaroids 
B. montaignei, Goiopeltis spp., A. tenera, 

P. capillacea 

Cell encapsulation  

Scaffolds for tissue engineering [378] 

Wound healing and dressings [379] 

Revascularization [380] 

Ulvans Ulva rigida, Ulva spp. 

Drug carriers [381] 

Wound dressings [382,383] 

Tissue engineering [384] 

β-glucans 

A. nodosum, E. bicyclis, Fucus sp., 

Laminaria sp., U. pinnatifida (laminaran); 

C. vulgaris 

Wound healing 
[385–387] 

Burn-wound dressings 

Tissue regeneration [388–390] 

fucoidans U. pinnatifida Vaccines for immunotherapy [299] 

PSs from microalgae A. platensis Production of nanofibers [391] 

  Gluing and soft tissue closure after surgery [6] 

 Porphyridium Lubricants for bone joints [212,392] 

Alginates from macroalgae have been most used in several applications: controlled drug  

release [371], cell encapsulation, scafold in ligament, tissue engineering and regeneration of almost all 

tissues in the human organism, or even preparation of moulds in dentistry [372–374]. A review 

recently made available was devoted to the processing of alginate fibres for use as wound management 

materials [375,376]. PS have been widely applied as hydrogels, eventually combined with other 

substances, for: the encapsulation and delivery of Langerhans islets [393], ovarian follicles [394] and 

stem cells in neural tissue engineering [395], skin tissue engineering [396], bone tissue engineering [397] 

and skeletal muscle regeneration [398]; regenerating the osteochondral interface [399]; capturing of 

endothelial progenitor cells from the human blood [400]. Kaltostat® is a commercially available 

alginate dressing that promotes haemostasis and manages exudate in low to moderately exuding 
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wounds. In the form of porous scaffolds, alginate has been used for creating a capillary bed in newly 

reconstructed tissues [401], and in the form of electrospin nanofibrous scaffolds, for constructing 

vascular replacements containing endothelial cells and smooth muscle cells (SMC) [402]. Alginate 

may also be used as a component of scaffolds for heart valve engineering [403], and for cardiac tissue 

engineering [404]. 

Similarly to alginate, agar can be used for cell encapsulation in tissue engineering applications.  

Due to its chondrogenic potential, agar was selected to entrap chondrocytes within poly-L-lactide 

scaffolds [378]. Composite membranes with agar proved to be promising wound dressings for healing 

burns or ulcers [379]. Agar gel supported the formation of in vivo autologous vascular prosthetic 

tissues, called “biotubes” [380]. 

However, not all polysaccharides are suitable for tissue engineering, mainly due to their jelly-like 

consistency and insufficient mechanical properties. As referred above, even PS used in tissue 

engineering usually need to be combined with other natural or synthetic polymers, or reinforced with 

inorganic substances [405]. 

A new generation of medical textiles incorporated with PS, such as alginate, is growing with 

respect to, in wound management products [406]. The main qualities of fibres and wound dressing 

products include antiviral, fungistatic, non-toxic, highly absorbent, non-allergic, breathable, haemostatic, 

and biocompatible. Such products with good mechanical properties may incorporate medication [377].  

sPS are capable of binding to protein and may be involved in the cell development, cell 

differentiation, cell adhesion, cell signaling and cell matrix interactions. These bioactive molecules 

present a great potential for medical, pharmaceutical and biotechnological applications, such as wound 

dressings, biomaterials, tissue regeneration and 3D culture scaffolds, and even drugs [19]. Their 

biological activities and their resemblance to glycosaminoglycans (GAGs), which have been most 

studied, might position these PS in advantage. For example, ulvans from green algae, may be processed 

into porous structures, including nanofibres [381], particles [382], membranes [383] and hydrogels [384], 

which make them good candidates for medical applications, such as drug delivery, wound dressing and 

bone tissue engineering [381–384]. Carrageenans, besides being hydrogels, may also be processed into 

fibres, membranes or porous structures for several biomedical applications [407].  

Fucoidans from brown algae besides having application in the biopharmaceutical industry 

(immunomodulatory, antiviral and anticoagulant agents), have found new applications in biomedicine, 

for instance, as nanoparticles of fucoidan and chitosan [408], and more recently in the synthesis of 

biohybrid glycopolymers [409]. 

The (1,3)-β-glucans have been used to help healing wounds, by inducing the migration of macrophages 

to the wound site [385], to accelerate the healing process as a constituent in composites [386,410], and 

in burn-wound dressings, therefore, reducing the need for analgesics [387]. Fucoidan-chitosan films 

and/or gels may be used to treat dermal burns and regenerate epithelial tissue [388]. The mechanism of 

action of hydrocolloids may be associated to the fact that wound dressings with sPS decrease wound 

secretions and scars, reducing the bacterial inflammation [389,390], with the advantage of being free 

from prions or other animal contaminants. 

Native sPS, LMW- or otherwise modified derivatives, are also promising in the prevention of 

arteriosclerosis after cardiac transplantation [411,412], in coating encapsulates for controlled drug 

delivering, as new materials for cell immobilization and tissue engineering [7,413], and as  
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carrier-materials for transplantation of chondrocytes and osteoblasts, improving neo-cartilage and  

neo-bone formation [414].  

The use of fucoidans in dendritic cell-based vaccines for cancer immunotherapy has been also 

suggested [299]. 

Another promising and emerging application of the PS from microalgae might be associated to the 

production of nanofibres from the biomass of A. platensis (Table 4), to be used as extracellular 

matrices for the culture of stem cells in order to treat spinal cord injuries [391]. 

Their gluing and adhesive capacities, as well as their strong cohesive and binding strength, allied to 

their non-toxic and non-irritating properties, make the bioadhesive PS produced by marine microalgae 

good candidates as mucobioadhesives or glues for bone gluing and soft tissue closure after surgery. 

They might also replace the metallic screws and traditional wound closure methods, respectively [6]. 

The sEPS from Porphyridium (Table 4) has already shown a good lubrication capacity [355], being 

an excellent candidate to substitute for hyaluronic acid as a biolubricant. Another promising 

application could be as a component of a joint-lubricating solution, as it was demonstrated by injecting 

the EPS from Porphyridium into the joints of rabbits’ knees [212], thus mitigating degenerative joint 

disorders caused by arthritis. 

4. Conclusions 

Polysaccharides may be regarded as key ingredients for the production of bio-based materials in life 

sciences (e.g., medical devices, pharmaceutics, food, cosmetics). There are an enormous variety of 

polysaccharides that can be synthetized and/or released by marine macro- and microalgae. Both these 

marine organisms are excellent sources of PS, most of them sulphated (sPS). Although some 

similarities may be found between the PS from each group of organisms, they can be very 

heterogeneous and structurally different. The biological source and biodegradability of these biopolymers, 

coupled to the large variety of functionalities they encompass, make them promising compounds for 

the application in pharmaceuticals, therapeutics, and regenerative medicine. Some of the beneficial 

bioactivities demonstrated by the crude PS and their derivatives, either in vitro or in vivo, include 

anticoagulant and/or antithrombotic properties, immunomodulatory ability, antitumor and cancer 

preventive activity. They are also good antilipidaemic and hypoglycaemic agents, and can be powerful 

antioxidants, antibiotics and anti-inflammatory. Other biomedical properties of PS have been 

discussed, such as antinociceptive, angiogenic, cardioprotective, gastroprotective and hepatoprotective 

activities. The biomedical applications and potentialities of PS in this area were listed, such as healing 

wound agents, mucobioadhesives for bone and soft tissue closure, biolubricants to mitigate joint 

disorders caused by arthritis, vaccines for cancer immunotherapy, or in a new generation of biotextiles 

and medical fibres, in drug delivery systems, and scaffolds in regenerative medicine. 

From the extensive list above, the importance of this type of compounds—PS from macro- and 

microalgae—for medical use is quite obvious. However, despite all the interesting properties and 

potentialities for human health, the use of these PS, especially those from microalgae need to be 

further explored. In particular, the toxicity and bioavailability of some of these polymers are yet to be 

studied on humans. 
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