Supplementary Information

Figure S1. Structures of Known Metabolites Isolated from the Extract of IL-381—Plate I Figure S2. Structures of Known Metabolites Isolated from the Extract of IL-381—Plate II Figure S3. ¹H NMR Spectrum of Aeruginosin KB676 (1) in DMSO-d₆ Figure S4. ¹³C NMR Spectrum of Aeruginosin KB676 (1) in DMSO-d₆ Figure S5. HSQC Spectrum of Aeruginosin KB676 (1) in DMSO-d6 Figure S6. HMBC Spectrum of Aeruginosin KB676 (1) in DMSO-d₆ Figure S7. COSY Spectrum of Aeruginosin KB676 (1) in DMSO-d6 Figure S8. ROESY Spectrum of Aeruginosin KB676 (1) in DMSO-d6 Table S1. NMR Data of the Minor Rotamer of Aeruginosin KB676 (1) in DMSO-d₆ Figure S9. HR ESI MS data of Aeruginosin KB676 (1) Figure S10. ¹H NMR Spectrum of Microphycin KB921 (2) in DMSO-d₆ Figure S11. ¹³C NMR Spectrum of Microphycin KB921 (2) in DMSO-d₆ Figure S12. HSQC Spectrum of Microphycin KB921 (2) in DMSO-d₆ Figure S13. HMBC Spectrum of Microphycin KB921 (2) in DMSO-d6 Figure S14. COSY Spectrum of Microphycin KB921 (2) in DMSO-d₆ Figure S15. ROESY Spectrum of Microphycin KB921 (2) in DMSO-d₆ **Table S2.** NMR Data of Microphycin KB921 (2) in DMSO-*d*₆ Figure S16. HR ESI MS data of Microphycin KB921 (2) Figure S17. ESI MS/MS CID spectra of Microphycin KB921 (2) at 40 (lower trace) and 60 (upper trace) Volt Figure S18. ¹H NMR Spectrum of Anabaenopeptin KB906 (3) in DMSO-d₆ Figure S19. ¹³C NMR Spectrum of Anabaenopeptin KB906 (3) in DMSO-d₆ Figure S20. HSQC Spectrum of Anabaenopeptin KB906 (3) in DMSO-d₆ Figure S21. HMBC Spectrum of Anabaenopeptin KB906 (3) in DMSO-d₆ Figure S22. COSY Spectrum of Anabaenopeptin KB906 (3) in DMSO-d₆ **Table S3.** NMR Data of Anabaenopeptin KB906 (3) in DMSO-d₆ Figure S23. HR ESI MS data of Anabaenopeptin KB906 (3) Figure S24. ¹H NMR Spectrum of Anabaenopeptin KB899 (4) in DMSO-d₆ Figure S25. ¹³C NMR Spectrum of Anabaenopeptin KB899 (4) in DMSO-d₆ Figure S26. HSOC Spectrum of Anabaenopeptin KB899 (4) in DMSO-d₆ Figure S27. HMBC Spectrum of Anabaenopeptin KB899 (4) in DMSO-d₆ Figure S28. COSY Spectrum of Anabaenopeptin KB899 (4) in DMSO-d₆ Figure S29. ROESY Spectrum of Anabaenopeptin KB899 (4) in DMSO-d6 Table S4. NMR Data of Anabaenopeptin KB899 (4) in DMSO-d₆ Figure S30. HR ESI MS data of Anabaenopeptin KB899 (4) Figure S31. ¹H NMR Spectrum of Micropeptin KB928 (5) in DMSO-d₆ Figure S32. ¹³C NMR Spectrum of Micropeptin KB928 (5) in DMSO-d₆ Figure S33. HSQC Spectrum of Micropeptin KB928 (5) in DMSO-d₆ Figure S34. HMBC Spectrum of Micropeptin KB928 (5) in DMSO-d6 Figure S35. COSY Spectrum of Micropeptin KB928 (5) in DMSO-d₆ Figure S36. ROESY Spectrum of Micropeptin KB928 (5) in DMSO-d₆

Table S5. NMR Data of Micropeptin KB928 (5) in DMSO-d₆ Figure S37. HR ESI MS data of Micropeptin KB928 (5) Figure S38. ¹H NMR Spectrum of Micropeptin KB956 (6) in DMSO-d₆ Figure S39. ¹³C NMR Spectrum of Micropeptin KB956 (6) in DMSO-d₆ Figure S40. HSOC Spectrum of Micropeptin KB956 (6) in DMSO-d6 Figure S41. HMBC Spectrum of Micropeptin KB956 (6) in DMSO-d₆ Figure S42. COSY Spectrum of Micropeptin KB956 (6) in DMSO-d₆ Figure S43. ROESY Spectrum of Micropeptin KB956 (6) in DMSO-d₆ Table S6. NMR Data of Micropeptin KB956 (6) in DMSO-d₆ Figure S44. HR ESI MS data of Micropeptin KB956 (6) Figure S45. ¹H NMR Spectrum of Micropeptin KB970A (7) in DMSO-d₆ Figure S46. ¹³C NMR Spectrum of Micropeptin KB970A (7) in DMSO-d₆ Figure S47. HSQC Spectrum of Micropeptin KB970A (7) in DMSO-d₆ Figure S48. HMBC Spectrum of Micropeptin KB970A (7) in DMSO-d₆ Figure S49. COSY Spectrum of Micropeptin KB970A (7) in DMSO-d₆ Figure S50. ROESY Spectrum of Micropeptin KB970A (7) in DMSO-d₆ Table S7. NMR Data of Micropeptin KB970A (7) in DMSO-d₆ Figure S51. HR ESI MS data of Micropeptin KB970A (7) Figure S52. ¹H NMR Spectrum of Micropeptin KB970B (8) in DMSO-d₆ Figure S53. ¹³C NMR Spectrum of Micropeptin KB970B (8) in DMSO-d₆ Figure S54. HSQC Spectrum of Micropeptin KB970B (8) in DMSO-d₆ Figure S55. HMBC Spectrum of Micropeptin KB970B (8) in DMSO-d₆ Figure S56. COSY Spectrum of Micropeptin KB970B (8) in DMSO-d₆ Figure S57. ROESY Spectrum of Micropeptin KB970B (8) in DMSO-d₆ **Table S8.** NMR Data of Micropeptin KB970B (8) in DMSO-d₆ Figure S58. HR ESI MS data of Micropeptin KB970B (8) Figure S59. ¹H NMR Spectrum of Micropeptin KB984 (9) in DMSO-d₆ Figure S60. ¹³C NMR Spectrum of Micropeptin KB984 (9) in DMSO-d₆ Figure S61. HSQC Spectrum of Micropeptin KB984 (9) in DMSO-d₆ Figure S62. HMBC Spectrum of Micropeptin KB984 (9) in DMSO-d₆ Figure S63. COSY Spectrum of Micropeptin KB984 (9) in DMSO-d6 Figure S64. ROESY Spectrum of Micropeptin KB984 (9) in DMSO-d₆ Table S9. NMR Data of Micropeptin KB984 (9) in DMSO-d₆ Figure S65. HR ESI MS data of Micropeptin KB984 (9) Figure S66. ¹H NMR Spectrum of Micropeptin KB970C (10) in DMSO-d₆ Figure S67. ¹³C NMR Spectrum of Micropeptin KB970C (10) in DMSO-d₆ Figure S68. HSQC Spectrum of Micropeptin KB970C (10) in DMSO-d₆ Figure S69. HMBC Spectrum of Micropeptin KB970C (10) in DMSO-d6 Figure S70. COSY Spectrum of Micropeptin KB970C (10) in DMSO-d₆ Figure S71. ROESY Spectrum of Micropeptin KB970C (10) in DMSO-d₆ Table S10. NMR Data of Micropeptin KB970C (10) in DMSO-d6 Figure S72. HR ESI MS data of Micropeptin KB970C (10)

Figure S73. ¹H NMR Spectrum of Micropeptin KB1048 (11) in DMSO-d₆ Figure S74. ¹³C NMR Spectrum of Micropeptin KB1048 (11) in DMSO-d₆ Figure S75. HSQC Spectrum of Micropeptin KB1048 (11) in DMSO-d6 Figure S76. HMBC Spectrum of Micropeptin KB1048 (11) in DMSO-d₆ Figure S77. COSY Spectrum of Micropeptin KB1048 (11) in DMSO-d₆ Figure S78. ROESY Spectrum of Micropeptin KB1048 (11) in DMSO-d6 Table S11. NMR Data of Micropeptin KB1048 (11) in DMSO-d6 Figure S79. HR ESI MS data of Micropeptin KB1048 (11) Figure S80. ¹H NMR Spectrum of Micropeptin KB992 (12) in DMSO-d₆ Figure S81. ¹³C NMR Spectrum of Micropeptin KB992 (12) in DMSO-d₆ Figure S82. HSQC Spectrum of Micropeptin KB992 (12) in DMSO-d6 Figure S83. HMBC Spectrum of Micropeptin KB992 (12) in DMSO-d₆ Figure S84. COSY Spectrum of Micropeptin KB992 (12) in DMSO-d₆ Figure S85. ROESY Spectrum of Micropeptin KB992 (12) in DMSO-d6 Table S12. NMR Data of Micropeptin KB992 (12) in DMSO-d₆ Figure S86. HR ESI MS data of Micropeptin KB992 (12) Figure S87. ¹H NMR Spectrum of Micropeptin KB1046 (13) in DMSO-d₆ Figure S88. ¹³C NMR Spectrum of Micropeptin KB1046 (13) in DMSO-d₆ Figure S89. HSQC Spectrum of Micropeptin KB1046 (13) in DMSO-d₆ Figure S90. HMBC Spectrum of Micropeptin KB1046 (13) in DMSO-d₆ Figure S91. COSY Spectrum of Micropeptin KB1046 (13) in DMSO-d₆ Figure S92. ROESY Spectrum of Micropeptin KB1046 (13) in DMSO-d₆ Table S13. NMR Data of Micropeptin KB1046 (13) in DMSO-d6 Figure S93. HR ESI MS data of Micropeptin KB1046 (13)

Figure S1. Structures of Known Metabolites Isolated from the Extract of IL-381—Plate I.

Figure S2. Structures of Known Metabolites Isolated from the Extract of IL-381—Plate II.

Figure S3. ¹H NMR Spectrum (500 MHz) of Aeruginosin KB676 (1) in DMSO-*d*₆.

Figure S4. ¹³C NMR Spectrum (125 MHz) of Aeruginosin KB676 (1) in DMSO-*d*₆.

Figure S5. HSQC Spectrum of Aeruginosin KB676 (1) in DMSO-*d*₆ (Red: CH, CH₃; Blue: CH₂).

Figure S6. HMBC Spectrum of Aeruginosin KB676 (1) in DMSO-*d*₆.

Figure S7. COSY Spectrum of Aeruginosin KB676 (1) in DMSO-*d*₆.

Figure S8. ROESY Spectrum of Aeruginosin KB676 (1) in DMSO-*d*₆ (Blue: NOE correlation).

Position	$\delta_{\rm C}$ mult. ^b	$\delta_{ m H}$ mult. ^b <i>J</i> in Hz	HMBC Correlations ^c	NOE Correlations ^d
Hpla 1	173.7, qC	-		
2	72.4, CH	3.95, m		Hpla-3,3',5,5'; Phe- <i>N</i> H
2	20 5 CU	2.72, dd (14.5,3.3)	Hpla-1,2,4,5,5'	Hpla-2,3',5,5'
3	39.5, CH ₂	2.44, m	Hpla-1,2,4,5,5'	Hpla-2,3,5,5′
4	128.6, qC	-		
5,5'	130.5, CH	6.93, d (8.3)	Hpla-3,6,6',7	Hpla-2,3,3',6,6'
6,6′	115.0, CH	6.62, d (8.3)	Hpla-4,7	Hpla-5,5',7- <i>O</i> H
7	155.9, qC	-		
2- <i>O</i> H	-	5.36, brs		
7- <i>O</i> H	-	9.12, s	Hpla-7	Hpla-6,6′
Phe 1	169.2, qC	-		
2	51.3, CH	4.65, q (6.0)	Phe-1,3	Phe-3,3'5,5',NH; Choi-7,7a; Agm-1-NH
2		2.92, m	Phe-1,4	Phe-2,3',5,5',7
3	57.7, CH ₂	2.78, m	Phe-1,4	Phe-2,3,5,5',7, <i>N</i> H
4	137.2, qC	-		
5,5'	129.5, CH	7.18, m	Phe-3,7	Phe-2,3,6,6'; Choi-7a
6,6′	128.5, CH	7.27, m	Phe-4	Phe-5,5'
7	126.8, CH	7.18, m	Phe-5	Phe-6,6'; Choi-7a
NH	-	7.70, d (8.0)	Hpla-1; Phe-2	Phe-2,3; Hpla-2
Choi 1	171.6, qC	-		
2	59.6, CH	4.16, d (9.0)	Choi-1,3	Choi-3,3',3a; Agm-1-NH
2		2.16, m (ax)		Choi-2,3',3a,4,
3	33.6, CH ₂	1.50, m (eq)	Choi-7a	Choi-2,3,3a
3a	34.8, CH	2.38, m		Choi-2,3,3',4,7a
4	22.8, CH ₂	1.63, m (2H)		Choi-3,3a,5,7a

Table S1. NMR Data of the minor rotamer of Aeruginosin KB676 (1) in DMSO-d6.

5	20.0 CH.	1.53, m (eq)		Choi-5′,6,
5	$29.9, CH_2$	1.16, m (ax)		Choi-5; Agm-1,4
6	66.9, CH	3.32, m		Choi-5,7eq,7a
6- <i>O</i> H	-	4.52, brs		
7	20.0. CH	1.80, m (eq)		Choi-6,7ax,7a
1	$59.0, CH_2$	0.98, m (ax)	Choi-6,7a	Choi-5ax,7eq
7a	57.0, CH	4.19, m		Choi-3a,4,7eq
4 Mananyi A am 1	29.0. CH	3.02, m		Agm-1',2,3,4,7,1- <i>N</i> H
⁴ <i>N</i> -prenyl-Agm 1	$38.0, CH_2$	2.95, m	Agm-3	Agm-1,2,1- <i>N</i> H
2	26.4, CH ₂	1.33, m	Agm-1	Agm-1,1',4,6,1- <i>N</i> H
3	24.4, CH ₂	1.45, m	Agm-1	Agm-1,4,6,7,1- <i>N</i> H
4	47.3, CH ₂	3.16, m	Agm-5	Agm-1',2,3,6,7,1- <i>N</i> H
5	155.8, qC	-		
6	45.8, CH ₂	3.87, brd (6.0)	Agm-4,5,7,8	Agm-2,3,4,7,9,10
7	118.6, CH	5.08, brt (6.0)	Agm-9	Agm-1,1',3,4,6,9
8	137.1, qC	-		
9	25.7, CH ₃	1.70, brs	Agm-7,8	Agm-6,7
10	18.0, CH ₃	1.64, brs	Agm-7,8	Agm-6,1- <i>N</i> H
1 <i>-N</i> H	-	7.55, t (5.5)	Choi-1	Agm-1,1',2,3,4,10; Choi-2
5- <i>N</i> H, <i>N</i> H ₂	-	7.25, brm		

 Table S1. Cont.

^a 125 MHz for carbons and 500 MHz for protons; ^b Multiplicity and assignment from HSQC experiment; ^c Determined from HMBC experiment, ⁿ $J_{CH} = 8$ Hz, recycle time 1 s; ^d Selected NOE's from ROESY experiment.

Elemental Composition Report

677.4067

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 190 formula(e) evaluated with 8 results within limits (up to 4 best isotopic matches for each mass) Elements Used: C: 30-50 H: 40-60 N: 0-10 O: 0-10 SP-257/1 Shira Peer carmeli359c 28 (1.244) Cm (27:29) 677.4031 100-%-678.4080 679.4244 678.8373 679.0693 679.8967 680.0583 677.8954 678.0984 680.8633 680.9935 681.4293 681.5484 676.5471 677.1880 676.0950 0-4-----1111 11111 -http:// m/z ____ 677.00 677.50 675.50 676.00 676.50 678.00 678.50 679.00 679.50 680.00 680.50 681.00 681.50 -1.5 50.0 Minimum: Maximum: 5.0 10.0 Mass Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula 677.4031 677.4027 0.4 0.6 14.5 143.7 1.5 C37 H53 N6 O6 677.4013 1.8 2.7 9.5 143.5 1.2 C36 H57 N2 010 677.4053 -2.2 -3.2 13.5 143.4 1.1 C41 H57 O8

144.0

Figure S9. HR ESI MS data of Aeruginosin KB676 (1).

C42 H53 N4 04

1: TOF MS ES+ 1.09e+003

682.00

Figure S10. ¹H NMR Spectrum (500 MHz) of Microphycin KB921 (2) in DMSO-*d*₆.

Figure S11. ¹³C NMR Spectrum (125 MHz) of Microphycin KB921 (2) in DMSO-*d*₆.

Figure S12. HSQC Spectrum of Microphycin KB921 (2) in DMSO-*d*₆ (Red: CH, CH₃; Blue: CH₂).

Figure S13. HMBC Spectrum of Microphycin KB921 (2) in DMSO-*d*₆.

Figure S14. COSY Spectrum of Microphycin KB921 (2) in DMSO-*d*₆.

Figure S15. ROESY Spectrum of Microphycin KB921 (2) in DMSO-*d*₆ (Blue: NOE correlation).

Position	$\delta_{\rm C}$ mult. ^b	$\delta_{ m H}$ mult. ^b J in Hz	HMBC Correlations ^c	NOE Correlations ^d
¹ Phe 1	171.1, qC			
2	52.9, CH	4.91, brdd (11.0,8.5)	¹ Phe-1	¹ Phe1- 3a, <i>N</i> H; ² Ala- <i>N</i> H
2	20.0. CH	3.38, m	¹ Phe-4,5,5′	¹ Phe1-2,3b
3	$39.0, CH_2$	2.62, t (11.0)	¹ Phe-5,5′	¹ Phe1-3a,5,5',6,6', <i>N</i> H
4	137.7, qC	-		
5,5'	129.7, CH	7.31, m	¹ Phe-3,7	¹ Phe1-3b,6,6',7
6,6′	128.2, CH	7.27, m	¹ Phe-4	¹ Phe1-3b,5,5',7
7	126.5, CH	7.20, m	¹ Phe-5,5′	¹ Phe1-5,5',6,6'
NH		7.27, m	¹ Phe-3; ⁸ Phe-1	¹ Phe1-2,3b; ⁸ Phe- <i>N</i> H
² Ala 1	173.6, qC	-		
2	52.6, CH	3.84, dq (4.0,7.5)	² Ala-1	² Ala-3, <i>N</i> H
3	17.0, CH ₃	1.31, d (7.5)	² Ala-1,2	² Ala-2, <i>N</i> H; Gln- <i>N</i> H
NH		8.96, m		² Ala-2,3; ¹ Phe- <i>N</i> H
³ Gln 1	174.0, qC	-		
2	53.1, CH	4.08, dt (5.5,7.0)		Gln-3a,3b,4, <i>N</i> H
2		2.12, m	Gln-1	Gln-2,3b, <i>N</i> H ₂ (b), <i>N</i> H
3	$29.7, CH_2$	1.84, m	Gln-1,2	Gln-2,3a,4, <i>N</i> H ₂ (b), <i>N</i> H
4	31.8, CH ₂	2.14, m	Gln-5	Gln-2,3b, <i>N</i> H ₂ (b), <i>N</i> H
5	174.3, qC	-		
NH	-	8.18, d (7.0)	² Ala-1	Gln-2,3a,3b,4; ² Ala-3
177 1		6.80, s	80, s	$Gln-NH_2(b)$
NH_2 ab	-	7.33, s	Gln-4,5	$Gln-3a, 3b, 4, NH_2(a)$
⁴ Ala 1	171.9, qC	-		
2	47.2, CH	4.58, dq (6.5,7.1)	⁴ Ala-1,3	⁴ Ala-3, <i>N</i> H
3	16.4, CH ₃	1.21, d (7.1)	⁴ Ala-1,2	⁴ Ala-2, <i>N</i> H

Table S2. NMR Data of Microphycin KB921 (2) in DMSO-*d*6.

NH	-	7.07, m		⁴ Ala-2,3; Pro-5a
⁵ Pro 1	174.8, qC	-		
2	62.8, CH	4.31, t (8.0)	Pro-1,3	Pro-3a,4a,5a
2		2.15, dd (9.0,8.0)	Dec. 4.5	Pro-2,3b,4a,4b
3	$29.2, CH_2$	1.67, m	Pro-4,5	Pro-3a,4a,4b
4		1.85, m		Pro-2,3a,3b,5a
4	24.0, CH_2	1.47, m	PTO-2	Pro-3a,3b
F	47.2 CU	3.54, m		Pro-2,4a,5b; ⁴ Ala- <i>N</i> H
5	$47.3, CH_2$	3.38, m		Pro-5a
⁶ Leu 1	171.0, qC	-		
2	53.8, CH	3.67, m	Leu-1	Leu-3a,3b,4,5,6,NH
2	29 C CH	1.30, m		Leu-2,3b,5,6, <i>N</i> H
3	$58.0, CH_2$	1.11, m	Leu-1,2,4,5	Leu-2,3a,4
4	24.3, CH	1.33, m	Leu-3	Leu-2,3b,5,6, <i>N</i> H
5	22.6, CH ₃	0.79, d (6.5)	Leu-3,4,6	Leu-2,3a,4,6
6	21.6, CH ₃	0.67, d (6.5)	Leu-3,4,5	Leu-2,3a,4,5
NH	-	8.16, d (6.5)	Pro-1	Leu-2,3a,4; ⁷ Phe- <i>N</i> H
⁷ Phe 1	170. 4, qC	-		
2	53.2, CH	4.32, brdd (13.0,10.0)	⁷ Phe-1	⁷ Phe-3a,5,5'; ⁸ Phe3- <i>N</i> H
2	260 011	3.47, m		⁷ Phe-2,3b,5,5′
3	$50.9, CH_2$	2.73, t (13.0)	⁷ Phe-2,4,5,5′	⁷ Phe-3a, <i>N</i> H
4	138.6, qC	-		
5,5'	129.2, CH	7.14, m	⁷ Phe-3,7	⁷ Phe-2,3a,6,6',7
6,6′	128.2, CH	7.22, m	⁷ Phe-4	⁷ Phe-5,5',7
7	126.4, CH	7.17, m	⁷ Phe-5,5′	⁷ Phe-5,5',6,6'
NH	-	7.78, d (10.0)	Leu-1	⁷ Phe-2,3b; Leu- <i>N</i> H; ⁸ Phe3- <i>N</i> I

 Table S2. Cont.

Table S2. Cont.				
⁸ Phe 1	169.5, qC			
2	56.9, CH	3.65, m	⁷ Phe-1	⁸ Phe-3,5,5', <i>N</i> H
3	32.6, CH ₂	3.22, m	⁸ Phe-2,4,5,5′	⁸ Phe-2,5,5′
4	139.5, qC	-		
5,5'	129.0, CH	7.07, m	⁸ Phe-3,4,7	⁸ Phe-2,3,6,6',7
6,6′	128.4, CH	7.20, m	⁸ Phe-4	⁸ Phe-5,5′,7
7	126.2, CH	7.18, m	⁸ Phe-5,5′	⁸ Phe-5,5',6,6'
NH	-	7.57, d (7.0)	⁷ Phe-1	⁸ Phe-2, <i>N</i> H; ⁷ Phe-2, <i>N</i> H

^a 125 MHz for carbons and 500 MHz for protons; ^b Multiplicity and assignment from HSQC experiment; ^cDetermined from HMBC experiment, ⁿ $J_{CH} = 8$ Hz, recycle time

1 s; ^d Selected NOE's from ROESY experiment.

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 443 formula(e) evaluated with 10 results within limits (up to 4 best isotopic matches for each mass) Elements Used: C: 35-50 H: 50-80 N: 5-15 O: 5-15 Na: 0-1

Figure S16. HR ESI MS data of Microphycin KB921 (2).

Figure S17. ESI MS/MS CID spectra of Microphycin KB921 (2) at 40 (lower trace) and 60 (upper trace) Volt.

Figure S18. ¹H NMR Spectrum (500 MHz) of Anabaenopeptin KB906 (3) in DMSO-*d*₆.

Figure S19. ¹³C NMR Spectrum (125 MHz) of Anabaenopeptin KB906 (3) in DMSO-*d*₆.

Figure S20. HSQC Spectrum of Anabaenopeptin KB906 (3) in DMSO-*d*₆ (Red: CH, CH₃; Blue: CH₂).

Figure S21. HMBC Spectrum of Anabaenopeptin KB906 (3) in DMSO-*d*₆.

Figure S22. COSY Spectrum of Anabaenopeptin KB906 (3) in DMSO-*d*₆.

Position	$\delta_{\rm C}$ mult. ^b	δ _H mult. ^b J in Hz	HMBC Correlations ^c	NOE Correlations ^d
¹ Ile 1	170.7, qC	-		
2	58.1, CH	4.19, m	¹ Ile-1,3,4,6	¹ Ile-3,4a,5,6, <i>N</i> H; Lys-ε- <i>N</i> H
3	36.1, CH	1.97, m		¹ Ile-2,4a,5,6, <i>N</i> H; Lys-ε- <i>N</i> H
4 1		1.31, m		¹ Ile-2,3,4b,5, <i>N</i> H
4 ab	24.2, CH_2	0.98, m	¹ Ile-5,6	¹ Ile-4a,5,6, <i>N</i> H
5	11.6, CH ₃	0.75, t (7.0)	¹ Ile-2,3,4	¹ Ile-2,3,4a,4b, <i>N</i> H
6	16.1, CH ₃	0.77, d (6.5)	¹ Ile-2,3,4	¹ Ile-2,3,4b, <i>N</i> H
NH	-	8.10, d (9.5)	NMeHty-1	¹ Ile-2,3,4a,4b,5,6; Lys-ε- <i>N</i> H; <i>N</i> MeHty-2, <i>N</i> Me
² <i>N</i> MeHty 1	169.5, qC	-		
2	59.5, CH	4.66, t (7.0)	<i>N</i> MeHty-1,3, <i>N</i> Me; Hph-1	<i>N</i> MeHty-3a,3b,4a,4b, <i>N</i> Me; Hph-2; ¹ Ile- <i>N</i> H
2 1		2.03, m		NMeHty-2,3b,4a,4b,6,6',NMe
3 ab	3 ab $30.9, CH_2$	1.70, m		NMeHty-2,3a,4b,6,6',NMe
4.1		2.32, m	<i>N</i> MeHty-3,5,6,6′	<i>N</i> MeHty-2,3a,4b,6,6′
4 ab	31.6, CH ₂	2.23, m	<i>N</i> MeHty-5,6,6′	<i>N</i> MeHty-2,3a,3b,4a,6,6', <i>N</i> Me
5	131.6, qC	-	·	
6,6′	129.1, CH	6.95, d (7.9)	<i>N</i> MeHty-4,7,7',8	<i>N</i> MeHty-3a,3b,4a,4b,7,7', <i>N</i> Me
7,7′	115.4, CH	6.66, d (7.9)	NMeHty-5,6,6',8	NMeHty-6,6',OH
8	155.7, qC	-		·
<i>N</i> Me	28.8, CH ₃	2.58, s	NMeHty-2; Hph-1	<i>N</i> MeHty-2,3a,3b,4b,6,6'; ¹ Ile- <i>N</i> H
ОН		9.15 s	<i>N</i> MeHty-7,7′,8	NMeHty-7,7'
³ Hph 1	172.4, qC	-	·	
2	48.6, CH	4.71, m		Hph-3b,4b,NH; NMeHty-2
		2.00, m		Hph-3b,4, <i>N</i> H
3 ab	$33.2, CH_2$	1.78, m		Hph-2,3a,4a,NH
4.1		2.81, m	Hph-6,6'	Hph-3a,3b,4b, <i>N</i> H
4 ab	31./, CH ₂	2.66, m	Hph-3,6,6'	Hph-2,4a,6,6', <i>N</i> H

Table S3. NMR Data of Anabaenopeptin KB906 (3) in DMSO-*d*6.

	Table S3. Cont.					
5	141.3, qC	-				
6,6′	128.6, CH	7.25, d (7.3)	Hph-4,7,7'	Hph-4b,7,7',8		
7,7′	128.6, CH	7.23, t (7.3)	Hph-6,6',8	Hph-6,6',8		
8	126.4, CH	7.18, t (7.3)	Hph-6,6',7,7'	Hph-6,6',7,7'		
NH	-	8.93, d (4.9)	⁴ Ile -1	Hph-2,3a,3b,4a,4b; ⁴ Ile-2		
⁴ Ile	173.1, qC	-				
2	55.6, CH	4.21, t (6.4)	⁴ Ile-1,4,6	⁴ Ile-3,4a,5,6, <i>N</i> H; Hph- <i>N</i> H		
3	36.4, CH	1.80, m	⁴ Ile-6	⁴ Ile-2,4a,4b,6, <i>N</i> H		
4 ab	25 7 CH	1.34, m	⁴ Ile-2,3,5,6	⁴ Ile-2,3,4b, <i>N</i> H		
4 80	$25.7, CH_2$	1.12 m	⁴ Ile-3,5,6	⁴ Ile-3,4a,5		
5	11.8, CH ₃	0.83, t (7.0)	4Ile-3,4	⁴ Ile-2,4b		
6	14.5, CH ₃	0.78, d (6.4)	⁴ Ile-2,3,4,	⁴ Ile-2,3		
NH	-	6.70, d (7.0)	Lys-1	⁴ Ile-2,3,4a; Lys-2,3, <i>N</i> H		
⁵ Lys 1	172.4, qC	-				
2	55.0, CH	3.88, ddd (6.4,5.8,4.6)	Lys-1,3,4, CO	Lys-3,4a,5,α- <i>N</i> H; ⁴ Ile- <i>N</i> H		
3	30.9, CH ₂	1.61, m		Lys-2,4b,α- <i>N</i> H; ⁴ Ile- <i>N</i> H		
1 ab	20 6 CH	1.30, m		Lys-2,4b,a-NH,ɛ-NH		
4 ab	$20.0, CH_2$	1.24, m		Lys-3,4a,5,α- <i>N</i> H,ε- <i>N</i> H		
5	28.3, CH ₂	1.38, m		Lys-2,4′,6a,6b,α- <i>N</i> H,ε- <i>N</i> H		
6 ab	29.2 CH	3.48, m	L via 5	Lys-5,6b,ɛ- <i>N</i> H		
0 ab	$56.2, CH_2$	2.78, m	Lys-5	Lys-5,6a,ɛ- <i>N</i> H		
δ- <i>N</i> H	-	6.51, d (5.8)		Lys-2,3,4a,4b,5; ⁴ Ile- <i>N</i> H; Arg-α- <i>N</i> H		
δ -NH	-	7.13, m	¹ Ile-1	Lys-4a,4b,5,6a,6b; ¹ Ile-2,3, <i>N</i> H		
⁶ Arg 1	174.3, qC	-				
2	52.1, CH	4.09, dt (8.2,5.2)	Arg-1,3	Arg-3a,3b,4,α- <i>N</i> H		

Table S3. Cont.					
2 ah	20 6 CU	1.69, m	Arg-2	Arg-2,3b,5,a-NH	
5 80	29.0, CH_2	1.52, m	Arg-2,4,5	Arg-2,3a,5,α- <i>N</i> H	
4	25.2, CH ₂	1.46, m	Arg-5	Arg-2,3a,5,α-NH,δ- <i>N</i> H	
5	40.5, CH ₂	3.09, m	Arg-6	Arg-3a,3b,4,δ- <i>N</i> H	
6	156.9, qC	-			
7	-	-			
α- <i>N</i> H	-	6.42, d (8.2)	CO	Arg-2,3a,3b,4; Lys-α- <i>N</i> H	
δ- <i>N</i> H	-	7.50, brm		Arg-4,5	
		6.65, brm			
NH//NH2	-	7.30, brm			
CO	157.5, qC	-			

^a 125 MHz for carbons and 500 MHz for protons; ^b Multiplicity and assignment from HSQC experiment; ^c Determined from HMBC experiment, ${}^{n}J_{CH} = 8$ Hz, recycle time 1 s; ^d Selected NOE's from ROESY experiment.

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 323 formula(e) evaluated with 4 results within limits (up to 4 best isotopic matches for each mass) Elements Used: C: 25-50 H: 40-75 N: 5-15 O: 0-15

Figure S23. HR ESI MS data of Anabaenopeptin KB906 (3).

Figure S24. ¹H NMR Sp0ectrum (400 MHz) of Anabaenopeptin KB899 (4) in DMSO-*d*₆.

Figure S25. ¹³C NMR Spectrum (100 MHz) of Anabaenopeptin KB899 (4) in DMSO-*d*₆.

Figure S26. HSQC Spectrum of Anabaenopeptin KB899 (4) in DMSO-*d*₆ (Red: CH, CH₃; Blue: CH₂).

Figure S27. HMBC Spectrum of Anabaenopeptin KB899 (4) in DMSO-*d*₆.

Figure S28. COSY Spectrum of Anabaenopeptin KB899 (4) in DMSO-*d*₆.

Figure S29. ROESY Spectrum of Anabaenopeptin KB899 (4) in DMSO-*d*₆ (Blue: NOE correlation).

Position	$\delta_{\rm C}$ mult. ^b	$\delta_{\rm H}$ mult. ^b J in Hz	HMBC Correlations ^c	NOE Correlations ^d
¹ Ile 1	170.7, qC	-		
2	58.1, CH	4.15, m	Ile-1,3,4,6	Ile-3,5,6, <i>N</i> H; Lys-ε- <i>N</i> H
3	35.9, CH	1.98, m		Ile-2,4a,5,6, <i>N</i> H; Lys-ε- <i>N</i> H
4 -1		1.28, m		Ile-3,4b,5,6, <i>N</i> H
4 ab	$24.2, CH_2$	0.93, m		Ile-4a,5,6, <i>N</i> H; <i>N</i> MeHty- <i>N</i> Me
5	11.4, CH ₃	0.75, t (7.5)	Ile-2,3,4	Ile-2,3,4a,4b,NH; NMeHty-NMe
6	16.1, CH ₃	0.76, d (7.0)	Ile-2,3,4	Ile-2,3,4a,4b,NH; NMeHty-NMe
NH	-	8.17, d (9.6)	NMeHty-1	Ile-2,3,4b, Lys-6b, <i>ɛ</i> - <i>N</i> H; <i>N</i> MeHty-2,3, <i>N</i> Me
² <i>N</i> MeHty 1	169.5, qC	-		
2	59.5, CH	4.58, t (6.0)	NMeHty-1,3,NMe; Hph-1	NMeHty-3a,3b,NMe; Hph-2, Ile-NH
2 .1	20.9 CH	1.98, m		NMeHty-2,3b,6,6',NMe; Ile-NH
5 ab	$50.8, CH_2$	1.70, m		<i>N</i> MeHty-2,3a,4b,6,6', <i>N</i> Me
4 1		2.31, m	NMeHty-3,5,6,6'	NMeHty-6,6′
4 ab	$31.4, CH_2$	2.27, m	NMeHty-3,5,6,6'	<i>N</i> MeHty-2,3b,6,6', <i>N</i> Me
5	131.6, qC	-		
6,6′	129.0, CH	6.95, d (8.4)	<i>N</i> MeHty-4,7,7′,8	<i>N</i> MeHty-3a,3b,4a,4b,7,7', <i>N</i> Me
7,7′	115.3, CH	6.66, d (8.4)	<i>N</i> MeHty-5,6,6',8	NMeHty-6,6',OH
8	155.7, qC	-		
NMe	28.6, CH ₃	2.57, s	NMeHty-2; Hph-1	<i>N</i> MeHty-3a,3b,4b,6,6'; Ile-4b,5,6, <i>N</i> H
ОН		9.15 s	<i>N</i> MeHty-7,7′,8	NMeHty-7,7'
³ Hph 1	172.3, qC	-		
2	48.1, CH	4.69, m		Hph-3b,4b,7,7',NH; NMeHty-2; Ile-NH
2 .h	22.2 CH	2.02, m	Hab 45	Hph-3b,7,7',NH
3 ad	$55.2, CH_2$	1.75, m	npn-4,5	Hph-2,3a,7,7',NH

Table S4. NMR Data of Anabaenopeptin KB899 (4) in DMSO- d_6 .

	Table 54. Com.						
4 -1	21 6 611	2.81, m	Hph-3,6,6'	Hph-4b,8,NH			
4 ab	4 ab 51.0, CH ₂	2.66, m	Hph-3,5,6,6'	Hph-2,4a,7,7',NH			
5	141.2, qC	-					
6,6′	128.6, CH	7.25, m	Hph-4,7,7',8	Hph-7,7'			
7,7′	128.5, CH	7.23, m	Hph-6,6',8	Hph-2,3a,3b,4a,4b; NMeHty-4			
8	126.3, CH	7.18, m	Hph-6,6',7,7'	Hph-4a			
NH	-	8.98, d (4.8)	Hph-1; Val-1	Hph-2,3a,4a,4b; Val-2,3,4,5			
⁴ Val	172.9, qC	-					
2	58.1, CH	3.94, dd (6.8,5.6)	Val-1,3,5	Val-3,4,5,NH; Hph-NH			
3	30.1, CH	1.88, m	Val-2,5	Val-2,4,5, <i>N</i> H; Hph- <i>N</i> H			
4	19.1, CH ₃	0.88, d (6.7)	Val-2,3,5	Val-2,3,5,NH; Hph-NH			
5	18.7, CH ₃	0.87, d (6.5)	Val-2,3	Val-2,3,4,NH; Hph-NH			
NH	-	6.78, d (5.6)	Val-1,2,3; Lys-1	Val-2,3,4,5; Lys-3,4, -NH			
⁵ Lys 1	172.4, qC	-					
2	54.9, CH	3.85, ddd (6.4,5.6,4.6)	Lys-1,3,4	Lys-3,4a,5,α- <i>N</i> H; Val- <i>N</i> H			
3	31.1, CH ₂	1.61, m	Lys-1	Lys-2,4b,α- <i>N</i> H; Val- <i>N</i> H			
4 -1		1.39, m		Lys-6a,6b,α-NH,ε-NH			
4 ab	$20.0, CH_2$	1.32, m		Lys-3,a-NH,E-NH			
5	28.2, CH ₂	1.40, m		Lys-2,6a,6b,α- <i>N</i> H,ε- <i>N</i> H			
Cab	20.2 CH	3.43, m	I 5	Lys-4a,5,6b, <i>ɛ</i> - <i>N</i> H			
o ad	$38.3, CH_2$	2.81, m	Lys-5	Lys-4a,5,6a,ɛ- <i>N</i> H			
α- <i>N</i> H	-	6.53, d (6.4)	Lys-1; CO	Lys-2,3,4a,4b,5; Val- <i>N</i> H; Tyr-2,α- <i>N</i> H			
ε- <i>Ν</i> Η	-	7.07, m	¹ Ile-1	Lys-4a,4b,5,6a,6b; ¹ Ile-2,3, <i>N</i> H			
⁶ Tyr 1	173.9, qC	-					
2	54.2, CH	4.26, m	Tyr-1,3	Tyr-3a,3b,5,5′, <i>N</i> H; Lys-α- <i>N</i> H			

	Table S4. Cont.				
3 ab	36.9, CH ₂	2.86, m 2.75, m	Tyr-1,2,4,5 Tyr-1,2,4,5	Tyr-2,3b,5,5',6,6', <i>O</i> H, <i>N</i> H Tyr-2,3a,5,5',6,6', <i>N</i> H	
4	127.4, qC	-			
5,5	130.3, CH	6.95, d (8.4)	Tyr-3,6,6',7	Tyr-2,3a,3b,6,6', <i>O</i> H	
6,6′	115.2, CH	6.64, d (8.4)	Tyr-4,7	Tyr-3a,3b,5,5', <i>N</i> H	
7	156.1, qC	-			
7-OH	-	9.21, s	Tyr-6,6′,7	Tyr-3a,5,5′	
NH	-	6.19, d (8.0)	Tyr-1,2; CO	Tyr-2,3a,3b,5,5',6,6'; Lys-α- <i>N</i> H	
СО	157.2, qC	-			

^a 100 MHz for carbons and 400 MHz for protons; ^b Multiplicity and assignment from HSQC experiment; ^c Determined from HMBC experiment, ⁿ $J_{CH} = 8$ Hz, recycle time 1 s; ^d Selected NOE's from ROESY experiment.

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 1300 formula(e) evaluated with 27 results within limits (up to 4 best isotopic matches for each mass) Elements Used: C: 40-60 H: 55-80 N: 0-20 O: 0-20 Na: 0-1

Figure S30. HR ESI MS data of Anabaenopeptin KB899 (4).

Figure S31. ¹H NMR Spectrum (400 MHz) of Micropeptin KB928 (5) in DMSO-*d*₆.

Figure S32. ¹³C NMR Spectrum (100 MHz) of Micropeptin KB928 (5) in DMSO-*d*₆.

Figure S33. HSQC Spectrum of Micropeptin KB928 (5) in DMSO-*d*₆ (Red: CH, CH₃; Blue: CH₂).

Figure S34. HMBC Spectrum of Micropeptin KB928 (5) in DMSO-*d*₆.

Figure S35. COSY Spectrum of Micropeptin KB928 (5) in DMSO-*d*₆.

Figure S36. ROESY Spectrum of Micropeptin KB928 (5) in DMSO-*d*₆ (Blue: NOE correlation).

Position	δ _C mult. ^b	$\delta_{\rm H}$ mult. ^b J in Hz	HMBC Correlations ^c	NOE Correlations ^d
¹ Ba 1	172.0, qC	-		
2	37.4, CH ₂	2.11, t (7.2)	Ba-1,3,4	Ba-3,4; Asp- <i>N</i> H
3	18.9, CH ₂	1.53, qi (7.2)	Ba-1,2,3	Ba-2,4
4	13.8, CH ₃	0.88, t (7.2)	Ba-2,3	Ba-2,3
² Asp 1	172.6, qC	-		
2	49.8, CH	4.55, m	Asp-1,4	Asp-3a,3b,NH; Thr-NH
2 sh	20.0. CIL	2.58, m		Asp-2,3b, <i>N</i> H
5 ab	39.0, CH ₂	2.20, m		Asp-2,3a, <i>N</i> H
4	172.0, qC	-		
NH	-	8.09, d (8.0)	Ba-1	Asp-2,3a,3b; Ba-2, Thr- <i>N</i> H
³ Thr 1	169.2, qC	-		
2	54.8, CH	4.62, d (9.2)	Asp-1; Thr-1	Thr-3,4,NH; Arg-NH
3	72.2, CH	5.45, q (6.8)	Thr-4; Ile-1	Thr-2,4,NH; Arg-NH; Ahp-NH
4	17.8, CH ₃	1.17, d (6.8)	Thr-2,3	Thr-2,3
NH	-	7.44, brd (9.0)		Thr-2,3; Asp-2,3a, <i>N</i> H
⁴ Arg 1	170.3, qC			
2	51.8, CH	4.28, m		Arg-3a,3b,4,5, <i>N</i> H; Ahp- <i>N</i> H
2 1	07 5 CH	2.02, m		Arg-2,3b,4,5
3 ab	$27.5, CH_2$	1.45,m		Arg-2,3a,5, <i>N</i> H
4	25.2, CH ₂	1.45, m		Arg-2,3a,5, <i>N</i> H
5	40.1, CH ₂	3.05, m		Arg-2,3a,3b,4
NH	-	8.57, d 8.8	Thr-1	Arg-2,3b,4; Thr-2,3; Ahp- <i>N</i> H
5- <i>N</i> H	-	7.49, brt 5.2		_
6	156.9, qC	-		
6- <i>N</i> H, <i>N</i> H ₂	-	7.30, brm 6.60, brm		

Table S5. NMR Data of Micropeptin KB928 (5) in DMSO-*d*6.

			Tuble Bet Conn.	
⁵ Ahp 2	169.5, qC	-		
3	49.0, CH	4.44, m	Ahp-2,4	Ahp-4b,5, <i>N</i> H; Val-3,4
4	21 7 CH	2.55, m		Ahp-4b,NH,OH
4	$21.7, CH_2$	1.73, m		Ahp-4b,NH,OH
5	29.2, CH ₂	1.70, m		Ahp-3,4b,6,0H
6	74.2, CH	4.91, brs		Ahp-4b,5; Val-3,4
NH	-	7.30, d (10.0)	Arg-1	Ahp-3,4a; Thr-3; Arg-2, <i>N</i> H
OH		6.11, d (3.2)		Ahp-4a,5; Val-3; NMePhe-NMe; Ile-4a,5,6,NH
⁶ Val 1	169.8, qC	-		
2	55.7, CH	4.31, d (10.4)	Ahp-2,6; Val-1,3,4,5	Val-3,4,5; <i>N</i> MePhe-2,5,5',6,6'
3	27.5, CH	1.90, m	Val-4,5	Val-2,4,5; Ahp-3,6, <i>O</i> H
4	18.2, CH ₃	0.46, d (6.8)	Val-3,5	Val-2,3,5; Ahp-3,6; NMePhe-2,5,5'
5	18.1, CH ₃	-0.20, d (6.4)	Val-3,4	Val-2,3,4; <i>N</i> MePhe-2,5,5',6,6'
⁷ <i>N</i> MePhe 1	169.2, qC	-		
2	60.6, CH	5.06, brd (11.2)	NMePhe-1,NMe	<i>N</i> MePhe-3a,3b,5,5', <i>N</i> Me; Val-2,4,5; Ile- <i>N</i> H
3	343 CH	3.28, m	<i>N</i> MePhe-4,5,5′	$MMePhe_2$ 3h 5 5' MMe · IIe_MH
5	54.5, CH ₂	2.80, m	<i>N</i> MePhe-4,5,5′	WWEI IIC-2,50,5,5 ,WWE, IIC-WII
4	137.8, qC			NMePhe-2,3a,5,5',6,6'
5,5'	129.8, CH	7.23, d (7.6)	NMePhe-3,4,7	
6,6′	128.7, CH	7.26, t (7.6)	NMePhe-4	<i>N</i> MePhe-2,3a,3b,6,6',7, <i>N</i> Me; Val-2,4,5,Ile-4a
7	126.8 CH	7.19, t (7.6)	NMePhe-5,5'	<i>N</i> MePhe-3b,5,5',7; Val-2,5; Ile-4a
NMe	30.3, CH ₃	2.73, s	Val-1; NMePhe-1,2	<i>N</i> MePhe-5,5',6,6'
⁸ Ile 1	172.7, qC	-		
2	55.9, CH	4.69, dd (9.2,5.2)	Ile-1,3,4,6	Ile-3,4b,5,6, <i>N</i> H
3	37.4, CH	1.78, m		Ile-2,4a,4b,5,6, <i>N</i> H

Table S5. Cont.

			Table S5. Cont.	
/	24.7 CH	1.23, m	Ile-5,6	Ile-3,4b,NH; Ahp-OH; NMePhe-5,6
4	$24.7, CH_2$	1.04, m	Ile-3,5,6	Ile-2,3,4a,5,6, <i>N</i> H; Ahp- <i>O</i> H
5	11.3, CH ₃	0.81, t (7.2)	Ile-3,4	Ile-2,3,4b,NH; Ahp-OH; NMePhe-NMe
6	16.0, CH ₃	0.83, d (7.6)	Ile-2,4	Ile-2,3,4b,NH, Ahp-OH, NMePhe-NMe
NH	-	7.68, d (9.6)	NMePhe-1	Ile-2,3,4a,4b,5,6; Ahp- <i>O</i> H; <i>N</i> MePhe-2,3a, <i>N</i> Me

^a 100 MHz for carbons and 400 MHz for protons; ^b Multiplicity and assignment from HSQC experiment; ^c Determined from HMBC experiment, ⁿ $J_{CH} = 8$ Hz, recycle time 1 s; ^d Selected NOE's from ROESY experiment.

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 467 formula(e) evaluated with 9 results within limits (up to 4 best isotopic matches for each mass) Elements Used:

Figure S37. HR ESI MS date of micropeptin KB928 (5).

S54

Page 1

Figure S38. ¹H NMR Spectrum (400 MHz) of Micropeptin KB956 (6) in DMSO-*d*₆.

Figure S39. ¹³C NMR Spectrum (100 MHz) of Micropeptin KB956 (6) in DMSO-*d*₆.

Figure S40. HSQC Spectrum of Micropeptin KB956 (6) in DMSO-*d*₆ (Red: CH, CH₃; Blue: CH₂).

Figure S41. HMBC Spectrum of Micropeptin KB956 (6) in DMSO-*d*₆.

Figure S42. COSY Spectrum of Micropeptin KB956 (6) in DMSO-*d*₆.

Figure S43. ROESY Spectrum of Micropeptin KB956 (6) in DMSO-*d*₆ (Blue: NOE correlation).

Position	$\delta_{\rm C}$ mult. ^b	$\delta_{\rm H}$ mult. ^b J in Hz	HMBC Correlations ^c	NOE Correlations ^d
¹ Ba 1	172.8, qC	-		
2	37.3, CH ₂	2.11, t (7.2)	Ba-1,3,4	Ba-3,4
3	18.9, CH ₂	1.55, qi (7.2)	Ba-1,2,3	Ba-2,4
4	13.8, CH ₃	0.88, t (7.2)	Ba-2,3	Ba-2,3
² Asp 1	171.4, qC	-		
2	49.5, CH	4.86, q (8.0)	Asp-1,4	Asp-3a,3b, <i>N</i> H; Thr- <i>N</i> H
2 ah	25.5 CH	2.80, m	Asp-2,4	Asp-2,3b,NH; Thr-NH
5 ab	$55.5, CH_2$	2.60, dd (16.8,8.0)	Asp-2,4	Asp-2,3a, <i>N</i> H
4	170.9, qC	-		
NH	-	8.33, d (7.2)	Ba-1	Asp-2,3a,3b; Thr- <i>N</i> H
<i>O</i> Me	51.7, CH ₃	3.56, s	Asp-4	
³ Thr 1	169.0, qC	-		
2	54.9, CH	4.60, d (9.6)	Asp-1; Thr-1	Thr-3,4, <i>N</i> H; Arg- <i>N</i> H
3	72.2, CH	5.49, q (6.4)	Thr-4; Ile-1	Thr-2,4,NH; Arg-NH; Ahp-NH
4	18.2, CH ₃	1.18, d (6.4)	Thr-2,3	Thr-2,3
NH	-	7.65, d (9.6)	Asp-1	Thr-2,3; Asp-2,3a,NH
⁴ Arg 1	170.3, qC	-		
2	52.2, CH	4.28, m	Arg-1	Arg-3a,3b,4,5, <i>N</i> H; Amp- <i>N</i> H
2	27.7 CH	2.02, m	Arg-4,5	Arg-2,3b,4,5,5- <i>N</i> H
3	$27.7, CH_2$	1.45, m	Arg-4,5	Arg-2,3a,5, <i>N</i> H,5- <i>N</i> H
4	25.4, CH ₂	1.45, m	Arg-3,5	Arg-2,3a,5, <i>N</i> H,5- <i>N</i> H
5	40.8, CH ₂	3.08, m	Arg-6	Arg-2,3a,3b,4,5- <i>N</i> H
NH	-	8.57, d (7.6)	Thr-1; Arg-2	Arg-2,3b,4; Thr-2,3; Amp- <i>N</i> H
5- <i>N</i> H	-	7.53, t (5.2)	Arg-5,6	Arg-3a,3b,4,5
6	156.8, qC	-		

Table S6. NMR Data of Micropeptin KB956 (6) in DMSO- d_6 .

 Table S6. Cont.

		7 20 1		
6- <i>N</i> H, <i>N</i> H ₂	-	7.30, brm		
5		6.70, brm		
⁵ Amp 2	169.2, qC	-		
3	49.3, CH	4.45, m	Amp-2,4	Amp-4b,5b, <i>N</i> H
4	217 CH.	2.40, brq (12.5)		Amp-4b,5a,NH
4	$21.7, CH_{2}$	1.70, m	Amp-2	Amp-3,4a
~	22 0. CH	2.05, m	A 6	Amp-4a,5b,6,0Me; NMePhe-NMe
5	$23.8, CH_2$	1.75, m	Amp-6	Amp-3,5a,6
6	83.3, CH	4.44, brs	Amp-4,0Me	Ahp-5a,5b,OMe; Val-3
NH	-	7.23, m	Arg-1	Ahp-3,4a; Thr-3; Arg-2, <i>N</i> H
<i>O</i> Me	55.5, CH ₃	3.02, s	Amp-6	Amp-5a,6; Ile-NH
⁶ Val 1	169.7, qC	-		
2	55.7, CH	4.35, d (10.4)	Amp-2,6; Val-1,3,4	Val-3,4,5; NMePhe-2,5,5',6,6'
3	27.2, CH	1.95, m	Val-4,5	Val-2,4,5; Amp-6
4	18.9, CH ₃	0.46, d (6.0)	Val-2,3,5	Val-2,3,5; <i>N</i> MePhe-2
5	17.8, CH ₃	-0.24, d (6.0)	Val-2,3,4	Val-2,3,4; NMePhe-2,5,5',6,6'
⁷ <i>N</i> MePhe 1	169.1, qC	-		
2	60.8, CH	5.09, brd (11.2)	NMePhe-1,3,NMe	<i>N</i> MePhe-3a,3b,5,5',6,6', <i>N</i> Me; Val-2,4,5; Ile- <i>N</i> H
2	24.2 CH	3.25, m	<i>N</i> MePhe-4,5,5′	<i>N</i> MePhe-2,3b,5,5',6,6', <i>N</i> Me
3	$34.2, CH_2$	2.80, m	<i>N</i> MePhe-4,5,5′	NMePhe-2,3a,5,5',6,6'
4	137.7, qC	-		
5,5'	129.7, CH	7.22, m	NMePhe-3,7	NMePhe-2,3a,3b,6,6',7; Val-2,5
6,6′	128.8, CH	7.27, m	NMePhe-4	NMePhe-2,3a,3b,5,5',7,NMe; Val-2.5
7	126.9, CH	7.19, m	NMePhe-5,5'	NMePhe-5,5',6,6'
NMe	30.2, CH ₃	2.73, s	Val-1; NMePhe-2	<i>N</i> MePhe-2,3a,5,5'; Ile-4a,4b, <i>N</i> H
⁸ Ile 1	172.6, qC	-		

Table S6. Cont.						
2	56.6, CH	4.64, dd (8.8,6.0)	Ile-1,3,4,6	Ile-3,5,6, <i>N</i> H		
3	37.7, CH	1.74, m		Ile-2,4a,4b,5,6, <i>N</i> H		
4	24 8 CH	1.31, m	Ile-3,5,6	Ile-3,4b,NH; NMePhe-NMe		
	24.8, CH_2	1.10, m	Ile-3,5,6	Ile-3,4a,5,6,NH; Amp-OMe;, NMePhe-NMe		
5	11.1, CH ₃	0.83, t (7.5)	Ile-4	Ile-2,3,4b, <i>N</i> H		
6	16.0, CH ₃	0.85, d (6.5)	Ile-2,3,4	Ile-2,3,4b, <i>N</i> H		
NH	-	6.96, d (9.2)	NMePhe-1	Ile-2,3,4a,4b,5,6; Amp-OMe; NMePhe-2,3b,NMe		

^a 100 MHz for carbons and 400 MHz for protons; ^b Multiplicity and assignment from HSQC experiment; ^c Determined from HMBC experiment, ${}^{n}J_{CH} = 8$ Hz, recycle time 1 s; ^d Selected NOE's from ROESY experiment.

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons 66 formula(e) evaluated with 2 results within limits (up to 4 best isotopic matches for each mass)

Elements Used: C: 45-55 H: 70-80 N: 5-15 O: 5-15 SP-245/2 carmeli 317b 64 (2.822) Cm (61:64)

Shira Peer

1: TOF MS ES+ 1.99e+004 957.5412 100 958.5444 % 959.5482 960.5570 965.0925 966.1339 966.5515 954.2136 956.2328 961.5638 958.0413 959.0258 962.5558 954.7758 956.8344 963.6212 964.5845 0 --- m/z 954.0 955.0 956.0 957.0 958.0 959.0 960.0 961.0 962.0 963.0 964.0 965.0 966.0 967.0 -1.5 Minimum: 50.0 Maximum: 5.0 10.0 Calc. Mass ΡPΜ DBE i-FIT i-FIT (Norm) Formula Mass mDa 957.5412 957.5409 0.3 0.3 15.5 114.2 0.0 C46 H73 N10 O12 4.4 118.6 957.5450 -3.8 -4.0 19.5 C51 H73 N8 O10

Figure S44. HR ESI MS data of Micropeptin KB956 (6).

Page 1

Figure S45. ¹H NMR Spectrum (400 MHz) of Micropeptin KB970A (7) in DMSO-*d*₆.

Figure S46. ¹³C NMR Spectrum (100 MHz) of Micropeptin KB970A (7) in DMSO-*d*₆.

Figure S47. HSQC Spectrum of Micropeptin KB970A (7) in DMSO-*d*₆ (Red: CH, CH₃; Blue: CH₂).

Figure S48. HMBC Spectrum of Micropeptin KB970A (7) in DMSO-*d*₆.

Figure S49. COSY Spectrum of Micropeptin KB970A (7) in DMSO-*d*₆.

Figure S50. ROESY Spectrum of Micropeptin KB970A (7) in DMSO-*d*₆ (Blue: NOE correlation).

Position	$\delta_{\rm C}$ mult. ^b	δ _H mult. ^b J in Hz	HMBC Correlations ^c	NOE Correlations ^d
¹ Ha 1	173.0, qC	-		
2	35.4, CH ₂	2.13, t (7.6)	Ha-1,3,4	Ha-3,4; Asp- <i>N</i> H
3	25.2, CH ₂	1.52, qi (7.6)	Ha-1,2,4,5	Ha-2,4,5; Asp- <i>N</i> H
4	31.1, CH ₂	1.22, m	Ha-5	Ha-2,3,5,6
5	22.1, CH ₂	1.27, m	Ha-4,6	Ha-3,4,6
6	14.2, CH ₃	0.84, t (6.8)	Ha-4,5	Ha-4,5
² Asp 1	171.6, qC	-		
2	49.7, CH	4.71, ddd (8.0,7.6,5.6)	Ha-1; Asp-1,3,4	Asp-3a,3b,NH; Thr-NH
3 ab	35.7, CH ₂	2.82, dd (16.4,5.6) 2.58, dd (16.4.8.0)	Asp-2,4 Asp-2,4	Asp-2,3b, <i>N</i> H; Thr- <i>N</i> H Asp-2.3a, <i>N</i> H
4	171.0, qC	-	F -, :	
NH	-	8.27, d (7.6)	Ha-1; Asp-2,3	Asp-2,3a,3b; Ha-2,3; Thr-4, <i>N</i> H
<i>O</i> Me	51.8, CH ₃	3.56, s	Asp-4	-
³ Thr 1	169.3, qC	-	-	
2	55.1, CH	4.57, d (9.2)	Asp-1; Thr-1,3	Thr-3,4,NH; Arg-NH
3	72.2, CH	5.47, q (6.4)	Thr-4; Ile-1	Thr-2,4,NH; Arg-NH; Ahp-NH
4	18.2, CH ₃	1.19, d (6.4)	Thr-2,3	Thr-2,3, <i>N</i> H; Asp- <i>N</i> H
NH	-	7.46, d (9.2)	Asp-1	Thr-2,3; Asp-2,3a, <i>N</i> H
⁴ Arg 1	170.4, qC	-		
2	52.5, CH	4.26, m	Arg-1,3	Arg-3a,3b,4,5,NH; Ahp-NH
2 sh	27 C CH	2.02, m		Arg-2,3b,4,5, <i>N</i> H,5- <i>N</i> H
5 ab	$27.0, CH_2$	1.45, m		Arg-2,3a,5, <i>N</i> H,5- <i>N</i> H
4	25.8, CH ₂	1.45, m	Arg-3	Arg-2,3a,5, <i>N</i> H,5- <i>N</i> H
5	41.0, CH ₂	3.09, m	Arg-3,4,6	Arg-2,3a,3b,4,5- <i>N</i> H
NH	-	8.50, d (8.4)	Thr-1; Arg-3	Arg-2,3a,3b,4; Thr-2,3; Ahp- <i>N</i> H

 Table S7. NMR Data of Micropeptin KB970A (7) in DMSO-d6.

5- <i>N</i> H	-	7.49, t (4.8)	Arg-4,5	Arg-3a,3b,4,5
6	157.0, qC	-		
6- <i>N</i> H, <i>N</i> H ₂	-	7.30, brm 6.80, brm		
⁵ Ahp 2	169.5, qC	-		
3	49.3, CH	4.44, m	Ahp-2	Ahp-4b,5, <i>N</i> H; Val-2,4
4	21.9, CH ₂	2.53, m 1.73, m	Ahp-2	Ahp-4b,5, <i>O</i> H, <i>N</i> H; Ile- <i>N</i> H Ahp-3,4a,6
5	$30.0, CH_2$	1.72, m	Ahp-6	Ahp-3,4a,6, <i>O</i> H
6	74.3, CH	4.91, brs	Ahp-2	Ahp-4b,5,0H; Val-3,4,5
NH	-	7.36, d (8.8)	Arg-1; Ahp-3,6	Ahp-3,4a, Thr-3; Arg-2, <i>N</i> H
ОН	-	6.17, d (2.8)		Ahp-4a,5,6; Val-3; Ile-4a,4b,5,6,NH
⁶ Val 1	170.0, qC	-		_
2	56.1, CH	4.31, d (10.8)	Ahp-2,6; Val-1,3,4,5	Val-3,4,5; Ahp-3; NMePhe-2,5,5',6,6'
3	27.8, CH	1.90, m	Val-2,4,5	Val-2,4,5; Ahp-6,OH
4	18.4, CH ₃	0.46, d (6.4)	Val-2,3,5	Val-2,3,5; Ahp-3,6; NMePhe-2,5,5',6,6'
5	18.4, CH ₃	-0.19, d (6.4)	Val-2,3,4	Val-2,3,4; Ahp-6; NMePhe-2,5,5',6,6',NMe
⁷ <i>N</i> MePhe 1	169.5, qC	-		
2	60.8, CH	5.06, brd (10.2)	NMePhe-1,3,NMe	<i>N</i> MePhe-3a,3b,5,5',6,6', <i>N</i> Me; Val-2,4,5; Ile- <i>N</i> H
3	34.4, CH ₂	3.26, m 2.80, dd (14.4,10.2)	<i>N</i> MePhe-2,4,5,5' <i>N</i> MePhe-2,4,5,5'	<i>N</i> MePhe-2,3b,5,5',6,6', <i>N</i> Me <i>N</i> MePhe-2,3a,5,5',6,6', <i>N</i> Me; Ile- <i>N</i> H
4	137.9, qC	-		
5,5'	129.9, CH	7.22, d (7.5)	NMePhe-3,7	<i>N</i> MePhe-2,3a,3b,6,6',7, <i>N</i> Me; Val-2,4,5
6,6′	128.9, CH	7.27, d (7.5)	NMePhe-4	<i>N</i> MePhe-2,3a,3b,5,5',7, <i>N</i> Me; Val-2,5
7	127.0, CH	7.19, d (7.5)	NMePhe-5,5'	<i>N</i> MePhe-5,5',6,6'
NMe	30.4, CH ₃	2.73, s	Val-1; NMePhe-2	<i>N</i> MePhe-2,3a,3b, 5,5',6,6'; Val-4,5; Ile-4b,5,6, <i>N</i> H

Table S7. Cont.
Table S7. Cont.						
⁸ Ile 1	172.9, qC	-				
2	56.0, CH	4.63, dd (9.2,6.0)	Ile-1,3,4,6	Ile-3,4b,5,6, <i>N</i> H		
3	37.3, CH	1.77, m		Ile-2,4a,5,6, <i>N</i> H		
4	24.8, CH ₂	1.23, m	Ile-5,6	Ile-3,4b,NH; Ahp-OH; NMePhe-5,5'		
4		1.02, m	Ile-3,5,6	Ile-2,4a,5,6,NH; Ahp-OH; NMePhe-NMe		
5	11.4, CH ₃	0.80, t (7.3)	Ile-3,4	Ile-2,3,4b,NH; Ahp-OH; NMePhe-NMe		
6	16.2, CH ₃	0.84, d (6.4)	Ile-2,3,4	Ile-2,3,4b,NH; Ahp-OH; NMePhe-NMe		
NH	-	7.76, d (9.2)	NMePhe-1, Ile-1	Ile-2,3,4a,4b,5,6; Ahp-4a,OH; NMePhe-2,3b		

^a 100 MHz for carbons and 400 MHz for protons; ^b Multiplicity and assignment from HSQC experiment; ^c Determined from HMBC experiment, ${}^{n}J_{CH} = 8$ Hz, recycle time 1 s; ^d Selected NOE's from ROESY experiment.

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 212 formula(e) evaluated with 4 results within limits (up to 4 best isotopic matches for each mass) Elements Used: C: 40-55 H: 65-90 N: 5-15 O: 5-15

Figure S51. HR ESI MS data of Micropeptin KB970A (7).

Figure S52. ¹H NMR Spectrum (500 MHz) of Micropeptin KB970B (8) in DMSO-*d*₆.

Figure S53. ¹³C NMR Spectrum (125 MHz) of Micropeptin KB970B (8) in DMSO-*d*₆.

Figure S54. HSQC Spectrum of Micropeptin KB970B (8) in DMSO-*d*₆ (Red: CH, CH₃; Blue: CH₂).

Figure S55. HMBC Spectrum of Micropeptin KB970B (8) in DMSO- d_6 .

Figure S56. COSY Spectrum of Micropeptin KB970B (8) in DMSO-*d*₆.

Figure S57. ROESY Spectrum of Micropeptin KB970B (8) in DMSO-*d*₆ (Blue: NOE correlation).

Position	$\delta_{\rm C}$ mult. ^a	$\delta_{\rm H}$ mult. ^b J in Hz	HMBC Correlations ^c	NOE Correlations ^d
¹ Ha 1	173.0, qC	-		
2	35.6, CH ₂	2.13, t	Ba-1,3,4	Ba-3,4; Asp-NH
3	25.1, CH ₂	1.53, qi	Ba-1,2,3	Ba-2,4
4	31.1, CH ₂	1.25, m	Ba-2,3	Ba-2,3
5	22.0, CH ₂	1.27, m		
6	14.1, CH ₃	0.85, t		
² Asp 1	171.7, qC	-		
2	49.7, CH	4.63, m	Asp-1,4	Asp-3a,3b,NH; Thr-NH
2 .1	25 4 CH	2.80, m		Asp-2,3b, <i>N</i> H
3 ab	$35.4, CH_2$	2.58, m		Asp-2,3a, <i>N</i> H
4	172.0, qC	-		
NH	-	8.28, d	Ba-1	Asp-2,3a,3b; Ba-2; Thr- <i>N</i> H
³ Thr 1	169.1, qC	-		
2	54.9, CH	4.60, d	Asp-1; Thr-1	Thr-3,4,NH; Arg-NH
3	72.3, CH	5.48, q	Thr-4; Ile-1	Thr-2,4,NH; Arg-NH; Ahp-NH
4	17.8, CH ₃	1.17, d	Thr-2,3	Thr-2,3
NH	-	7.63, d		Thr-2,3; Asp-2,3a, <i>N</i> H
⁴ Arg 1	170.4, qC	-		
2	52.2, CH	4.28, m	Arg-3	Arg-3a,3b,4,5, <i>N</i> H; Amp- <i>N</i> H
2 .1		2.02, m		Arg-2,3b,4,5
3 ab	$27.8, CH_2$	1.45, m	Arg-4	Arg-2,3a,5, <i>N</i> H,5- <i>N</i> H
4	25.4, CH ₂	1.45, m	Arg-3	Arg-2,3a,5,NH,5-NH
5	40.2, CH ₂	3.09, m	Arg-3,4,6	Arg-2,3a,3b,4,5- <i>N</i> H
NH	-	8.54, d (8.5)	Thr-1	Arg-2,3b,4; Thr-2,3; Amp- <i>N</i> H
5- <i>N</i> H	-	7.47, m		Arg-3a,3b,4,5
6	156.9, qC	-		-

Table S8. NMR Data of Micropeptin KB970B (8) in DMSO-d6.

6- <i>N</i> H, <i>N</i> H ₂		7.30, brm		
⁵ Amp 2	169.2, qC	-		
3	49.4, CH	4.47, m	Amp-2,4	Amp-4b,5b, <i>N</i> H; Val-4
4 1		2.40, brq (13.0)	_	Amp-4b,5a,NH
4 ab	$21.7, CH_2$	1.75, m	Amp-2	Amp-3,4a,5b,6
7 1		2.05, m	_	Amp-4a,5b,6,0Me
5 ab	$23.8, CH_2$	1.70, m		Amp-3,4b,5a,6
6	83.3, CH	4.44, brs		Amp-5a,5b,OMe,NH; Val-3,4, Ile-NH
NH		7.24, m	Arg-1	Amp-3,4a; Thr-3; Arg-2, <i>N</i> H
<i>O</i> Me	55.6, CH ₃	3.02, s	Amp-6	Amp-5a,6; Ile-NH
⁶ Val 1	169.8, qC	-		
2	55.8, CH	4.35, d (10.5)	Amp-2,6; Val-1,3,5	Val-3,4,5; NMePhe-2,5,5',6,6'
3	27.3, CH	1.95, m	Val-2,5	Val-2,4,5; Amp-6
4	18.3, CH ₃	0.46, d (6.5)	Val-2,3,5	Val-2,3,5; Amp-3,6; NMePhe-2,5,6',6,6'
5	17.8, CH ₃	-0.23, d (6.0)	Val-2,3,4	Val-2,3,4; <i>N</i> MePhe-5,5',6,6'
⁷ <i>N</i> MePhe 1	169.2, qC	-		
2	60.9, CH	5.10, brd (11.0)	NMePhe-1,NMe	<i>N</i> MePhe-3a,3b,5,5',6,6', <i>N</i> Me; Val-2,4; Ile- <i>N</i> H
2 ab	34.3, CH ₂	3.30, m	NMePhe-2,4,5,NMe	<i>N</i> MePhe-3b,5,5',6,6', <i>N</i> Me
3 ad		2.81, dd (14.2,11.0)	NMePhe-2,4,5,NMe	NMePhe-2,3a,5,5',6,6',NMe
4	137.8, qC	-		
5,5'	129.8, CH	7.22, m	NMePhe-3	<i>N</i> MePhe-2,3a,3b,6,6',7, <i>N</i> Me; Val-2,4,5; Ile- <i>N</i> H
6,6′	128.9, CH	7.27, m	NMePhe-4	<i>N</i> MePhe-2,3a,3b,5,5',7, <i>N</i> Me; Val-2,4,5
7	127.0, CH	7.19, m	NMePhe-5,5'	<i>N</i> MePhe-5,5',6,6'
NMe	30.3, CH ₃	2.73, s	Val-1; NMePhe-2	<i>N</i> MePhe-2,3a,3b,5,5',6,6'; Ile-2,5,6, <i>N</i> H
⁸ Ile 1	172.6. aC	-		

Table S8. Cont.

			Table S8. Cont.	
2	55.6, CH	4.64, m	Ile-1,3,4,6	Ile-3,4a,4b,5,6, <i>N</i> H; <i>N</i> MePhe- <i>N</i> Me
3	37.8, CH	1.74, m		Ile-2,4a,4b,5,6, <i>N</i> H
4	24.9, CH ₂	1.30, m	Ile-5,6	Ile-2,3,4b,5,6, <i>N</i> H
4		1.10, m	Ile-3,5,6	Ile-2,3,4a, <i>N</i> H
5	11.2, CH ₃	0.85, t	Ile-3,4	Ile-2,3,4b,NH; NMePhe-NMe
6	16.0, CH ₃	0.87, d	Ile-2,3,4	Ile-2,3,4a,NH; NMePhe-NMe
NH	-	6.95, d	NMePhe-1	Ile-2,3,4a,4b,5,6; Amp-6, <i>O</i> Me; <i>N</i> MePhe-2,5,5', <i>N</i> Me

^a 125 MHz for carbons and 500 MHz for protons; ^b Multiplicity and assignment from HSQC experiment; ^c Determined from HMBC experiment, ⁿ $J_{CH} = 8$ Hz, recycle time 1 s; ^d Selected NOE's from ROESY experiment.

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 127 formula(e) evaluated with 4 results within limits (up to 4 best isotopic matches for each mass) Elements Used:

C: 40-55 H: 65-80 N: 5-15 O: 5-15 SP-253/2 carmeli365 44 (1.945) Cm (43:44)

1: TOF MS ES+

Shira Peer

Figure S58. HR ESI MS data of Micropeptin KB970B (8).

Figure S59. ¹H NMR Spectrum (400 MHz) of Micropeptin KB984 (9) in DMSO-*d*₆.

Figure S60. ¹³C NMR Spectrum (100 MHz) of Micropeptin KB984 (9) in DMSO-*d*₆.

Figure S61. HSQC Spectrum of Micropeptin KB984 (9) in DMSO-*d*₆ (Red: CH, CH₃; Blue: CH₂).

Figure S62. HMBC Spectrum of Micropeptin KB984 (9) in DMSO-*d*₆.

Figure S63. COSY Spectrum of Micropeptin KB984 (9) in DMSO-*d*₆.

Figure S64. ROESY Spectrum of Micropeptin KB984 (9) in DMSO-*d*₆ (Blue: NOE correlation).

Position	δ_{C} mult. ^b	$\delta_{\rm H}$ mult. ^b J in Hz	HMBC Correlations ^c	NOE Correlations ^d
¹ Ha 1	173.1, qC	-		
2	35.7, CH ₂	2.13, t (7.2)	Ha-1,3,4	Ha-3,4; Asp- <i>N</i> H
3	25.2, CH ₂	1.51, qi (7.2)	Ha-1,2,4	Ha-2,4,5
4	31.1, CH ₂	1.23, m	Ha-2,3	Ha-3,5,6
5	$22.1, CH_2$	1.27, m	Ha-4,6	Ha-3,4,6
6	14.2, CH ₃	0.84, t (7.2)	Ha-4	Ha-4,5
² Asp 1	171.6, qC	-		
2	49.6, CH	4.71, dt (8.0,7.6)	Ha-1; Asp-1,4	Asp-3a,3b,NH; Thr-NH
2 ah	25 4 CH	2.81, m	Asp-2,4	Asp-2,3b, <i>N</i> H; Thr- <i>N</i> H
5 80	$55.4, CH_2$	2.58, dd (16.4,8.0)	Asp-2,4	Asp-2,3a, <i>N</i> H
4	171.0, qC	-		
NH	-	8.28, d (7.6)	Ha-1; Asp-2	Asp-2,3a,3b; Ha-2; Thr- <i>N</i> H
<i>O</i> Me	51.8, CH ₃	3.56, s	Asp-4	
³ Thr 1	169.2, qC	-		
2	55.1, CH	4.60, d (9.2)	Asp-1; Thr-1,3,4	Thr-3,4,NH; Arg-NH
3	72.3, CH	5.49, q (6.4)	Thr-4; Ile-1	Thr-2,4,NH; Arg-NH; Amp-NH
4	18.0, CH ₃	1.18, d (6.4)	Thr-2,3	Thr-2,3, <i>N</i> H
NH	-	7.68, d (9.2)	Asp-1; Thr-2	Thr-2,3,4; Asp-2,3a, <i>N</i> H
⁴ Arg 1	170.5, qC	-		
2	52.4, CH	4.27, m	Arg-1,3	Arg-3a,3b,4,5, <i>N</i> H; Amp- <i>N</i> H
2 sh	27.0 CH	2.02, m		Arg-2,3b,4,5,5- <i>N</i> H
3 ab	$27.9, CH_2$	1.45, m	Arg-4,5	Arg-2,3a,5,NH,5- <i>N</i> H
4	25.5, CH ₂	1.45, m	Arg-3,5	Arg-2,3a,5,NH,5- <i>N</i> H
5	40.7, CH ₂	3.09, m	Arg-3,4,6	Arg-2,3a,3b,4,5- <i>N</i> H
NH	-	8.56, d (8.4)	Thr-1; Arg-2,3	Arg-3a,3b,4,5; Thr-2,3; Amp-NH
5- <i>N</i> H	-	7.56, t (5.2)	Arg-4,5,6	Arg-3a,3b,4,5

Table S9. NMR Data of Micropeptin KB984 (9) in DMSO-*d*6.

6	157.0, qC	-		
		7.30, brm		
0-лип,лип2		6.85, brm		
⁵ Amp 2	169.3, qC	-		
3	49.4, CH	4.47, m	Amp-2,4	Amp-4b,5b,NH; Val-4
4 -1	21.0 CH	2.40, brq (13.2)		Amp-4b,5a,NH; Ile-NH
4 ab	$21.9, CH_2$	1.70, m	Amp-2	Amp-3,4a
7 1		2.05, m		Amp-4a,5b,6,0Me
5 ab	$23.9, CH_2$	1.75, m	Amp-6	Amp-3,4b,5a,6,0Me; NMePhe-NMe
6	83.4, CH	4.44, brs	Amp-2,4, <i>O</i> Me	Amp-5a,5b,0Me,NH; Val-3,4
NH		7.25, m	Arg-1	Amp-3,4a, Thr-3; Arg-2, <i>N</i> H
<i>O</i> Me	55.6, CH ₃	3.02, s	Amp-6	Amp-5a,6; Ile-4a,4b,5,6, <i>N</i> H
⁶ Val 1	169.9, qC	-		
2	55.9, CH	4.36, d (10.4)	Amp-2,6; Val-1,3,4,5	Val-3,4,5; NMePhe-2,3a,5,5',6,6'
3	27.4, CH	1.95, m	Val-2,4,5	Val-2,4,5; Amp-6
4	18.4, CH ₃	0.46, d (6.4)	Val-2,3,5	Val-2,3,5; Amp-3,6; NMePhe-2
5	18.0, CH ₃	-0.23, d (6.4)	Val-2,3,4	Val-2,3,4; NMePhe-2,5,5',6,6',NMe
⁷ <i>N</i> MePhe 1	169.3, qC	-		
2	61.0, CH	5.10, brd (11.0)	Val-1; NMePhe-1,3,NMe	<i>N</i> MePhe-3a,3b,5,5',6,6', <i>N</i> Me; Val-2,4; Ile- <i>N</i> H
2 1		3.29, m	NMePhe-2,4,5,NMe	<i>N</i> MePhe-2,3b,5,5,6, <i>N</i> Me; Val-2
3 ab	$34.4, CH_2$	2.80, m	NMePhe-2,4,5,NMe	NMePhe-2,3a,5,6,NMe; Ile-NH
4	137.8, qC	-		
5,5'	129.9, CH	7.22, m	NMePhe-3,7	<i>N</i> MePhe-2,3a,3b,6,6', <i>N</i> Me; Val-2,5
6,6′	129.0, CH	7.27, m	NMePhe-4	<i>N</i> MePhe-2,3a,3b,5,5',7, <i>N</i> Me; Val-2,5
7	127.0, CH	7.19, m	NMePhe-5,5'	NMePhe-6,6'
NMe	30.4, CH ₃	2.73, s	Val-1; NMePhe-2	<i>N</i> MePhe-2,3a,3b,5,5',6,6'; Val-5; Ile-4a,4b,5,6, <i>N</i> H

Table S9. Cont.

	Table S9. Cont.					
⁸ Ile 1	172.7, qC	-				
2	55.8, CH	4.65, dd (9.6,6.0)	Ile-1,3,4,6	Ile-3,5,6, <i>N</i> H		
3	37.8, CH	1.74, m	Ile-5,6	Ile-2,4a,5,6, <i>N</i> H		
1 ab	25.0, CH ₂	1.30, m	Ile-3,5,6	Ile-2,3,4b,5,6,NH; Amp-OMe; NMePhe-NMe		
4 80		1.10, m	Ile-5,6	Ile-2,3,4a,NH; Amp-OMe; NMePhe-NMe		
5	11.2, CH ₃	0.84, t (7.2)	Ile-3,4	Ile-2,3,4b,NH; Amp-OMe; NMePhe-NMe		
6	16.1, CH ₃	0.87, d (6.8)	Ile-2,3,4	Ile-2,3,4a,NH; Amp-OMe; NMePhe-NMe		
NH	-	6.96, d (9.6)	NMePhe-1; Ile-1,2	Ile-2,3,4a,4b,5,6; Amp-4a, <i>O</i> Me; <i>N</i> MePhe-2,3b		

^a 100 MHz for carbons and 400 MHz for protons; ^b Multiplicity and assignment from HSQC experiment; ^c Determined from HMBC experiment, ⁿ $J_{CH} = 8$ Hz, recycle time 1 s; ^d Selected NOE's from ROESY experiment.

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 65 formula(e) evaluated with 4 results within limits (up to 4 best isotopic matches for each mass) Elements Used:

Figure S65. HR ESI MS data of Micropeptin KB984 (9).

Figure S66. ¹H NMR Spectrum (500 MHz) of Micropeptin KB970C (10) in DMSO-*d*₆.

Figure S67. ¹³C NMR Spectrum (125 MHz) of Micropeptin KB970C (10) in DMSO-*d*₆.

Figure S68. HSQC Spectrum of Micropeptin KB970C (10) in DMSO-*d*₆ (Red: CH, CH₃; Blue: CH₂).

Figure S69. HMBC Spectrum of Micropeptin KB970C (10) in DMSO-*d*₆.

Figure S70. COSY Spectrum of Micropeptin KB970C (10) in DMSO-*d*₆.

Figure S71. ROESY Spectrum of Micropeptin KB970C (10) in DMSO-*d*₆ (Blue: NOE correlation).

Position	$\delta_{\rm C}$ mult. ^b	δ _H mult. ^b J in Hz	HMBC Correlations ^c	NOE Correlations ^d
¹ Ha 1	172.9, qC	-		
2	35.6, CH ₂	2.13, t (7.5)	Ha-1,3,4	Ha-3,4; Asp- <i>N</i> H
3	$25.1, CH_2$	1.52, qi (7.5)	Ha-1,2,4	Ha-2,4,5; Asp- <i>N</i> H
4	31.0, CH ₂	1.25, m	Ha-2,3,5	Ha-3,5,6
5	$22.1, CH_2$	1.27, m	Ha-4	Ha-3,4,6
6	14.1, CH ₃	0.84, t (7.2)	Ha-4,5	Ha-4,5
² Asp 1	171.5, qC	-		
2	49.5, CH	4.70, ddd (8.0,7.5,6.0)	Asp-1,3,4	Asp-3a,3b,NH; Thr-NH
2 ab	25.2 CH	2.80, m	Asp-2,4	Asp-2,3b,NH; Thr-NH
5 ad	$35.3, CH_2$	2.58, dd (16.4,8.0)	Asp-2,4	Asp-2,3a,NH
4	170.8, qC	-		
NH	-	8.27, d (7.5)	Ha-1	Asp-2,3a,3b; Ha-2,3; Thr- <i>N</i> H
<i>O</i> Me	51.7, CH ₃	3.56, s	Asp-4	
³ Thr 1	169.1, qC	-		
2	55.0, CH	4.58, d (9.5)	Asp-1; Thr-1,2	Thr-3,4,NH; Arg-NH
3	72.2, CH	5.50, q (6.5)	Thr-4; ⁸ Val-1	Thr-2,4, <i>N</i> H; Arg- <i>N</i> H; Amp- <i>N</i> H
4	17.9, CH ₃	1.18, d (6.5)	Thr-2,3	Thr-2,3
NH	-	7.68, d (9.5)	Asp-1	Thr-2,3; Asp-2,3a, <i>N</i> H
⁴ Arg 1	170.4, qC	-		
2	52.2, CH	4.27, m	Arg-3	Arg-3a,3b,4,5, <i>N</i> H; Amp- <i>N</i> H
2 ab	27.9 CU	2.02, m		Arg-2,3b,4,5,5- <i>N</i> H
5 80	$27.8, CH_2$	1.45, m	Arg-4	Arg-2,3a,5, <i>N</i> H,5- <i>N</i> H
4	25.4, CH ₂	1.45, m	Arg-3	Arg-2,3a,5, <i>N</i> H,5- <i>N</i> H
5	40.2, CH ₂	3.09, m	Arg-4,6	Arg-2,3a,3b,4,5- <i>N</i> H
NH	-	8.56, d (8.5)	Thr-1	Arg-2,3b,4; Thr-2,3; Amp- <i>N</i> H

Table S10. NMR Data of Micropeptin KB970C (10) in DMSO-*d*6.

5- <i>N</i> H	-	7.56, t (5.0)	Arg-5,6	Arg-2,3b,4,5
6	156.9, qC	-		
		7.30, brm		
0-1011,10112	-	6.90, brm		
⁵ Amp 2	169.2, qC	-		
3	49.4, CH	4.47 m	Amp-2	Amp-4b,5b, <i>N</i> H; Val-4
1 a b	21 7 CH	2.40, brq (12.5)		Amp-4b,5a,6, <i>N</i> H
4 ab	$21.7, CH_2$	1.75, m		Amp-3,4a
5 ah	22.9 CH	2.05, m		Amp-4a,5b,6,0Me
5 ab	$23.8, CH_2$	1.70, m		Amp-3,5a,6
6	83.3, CH	4.44, brs		Amp-5a,5b,OMe,NH; ⁶ Val-3,4
NH	-	7.24, m	Arg-1	Amp-3,4a; Thr-3; Arg-2, <i>N</i> H
<i>O</i> Me	55.6, CH ₃	3.03, s	Amp-6	Amp-5a,6; ⁸ Val-4,5, <i>N</i> H
⁶ Val 1	169.8, qC	-		
2	55.8, CH	4.36, d (10.5)	Amp-2,6; ⁶ Val-1,3,4	⁶ Val-3,4,5, <i>N</i> MePhe-2,5,5'
3	27.3, CH	1.95, m	⁶ Val-5	⁶ Val-2,4,5; Amp-6
4	18.3, CH ₃	0.46, d (6.5)	⁶ Val-2,3,5	⁶ Val-2,3,5; Amp-3,6
5	17.9, CH ₃	-0.23, d (6.0)	⁶ Val-2,3,4	⁶ Val-2,3,4; <i>N</i> MePhe-5,5',6,6'
⁷ <i>N</i> MePhe 1	169.4, qC	-		
2	61.0, CH	5.10, brd (11.0)	NMePhe-1,NMe	<i>N</i> MePhe-3a,5,5',6,6', <i>N</i> Me; ⁶ Val-2; ⁸ Val- <i>N</i> H
2 .1	24.2 CH	3.30, m	NMePhe-5,NMe	NMePhe-3b,5,5',6,6',NMe
3 ab	$34.3, CH_2$	2.80, m	NMePhe-2,5,NMe	<i>N</i> MePhe-2,3a,5,5',6,6', <i>N</i> Me
4	137.7, qC	-		
5,5'	129.8, CH	7.23, d (7.5)	NMePhe-3,7	<i>N</i> MePhe-2,3a,3b,6,6', <i>N</i> Me; ⁶ Val-2,5
6,6′	128.9, CH	7.27, t (7.5)	<i>N</i> MePhe-4,5,5′	<i>N</i> MePhe-2,3a,3b,5,5',7, <i>N</i> Me; ⁶ Val-5
7	127.0, CH	7.19, t (7.5)	NMePhe-5,5'	NMePhe-6,6'
NMe	30.4, CH ₃	2.75, s	⁶ Val-1; <i>N</i> MePhe-2	<i>N</i> MePhe-2,3a,3b,5,5',6,6'; ⁸ Val-4,5, <i>N</i> H

 Table S10. Cont.

Table S10. Cont.					
⁸ Val 1	172.5, qC	-			
2	56.7, CH	4.60, m	⁸ Val-1,3,4	⁸ Val-3,4,5, <i>N</i> H	
3	31.2, CH	2.00, m	⁸ Val-4	⁸ Val-2,4,5, <i>N</i> H	
4	19.4, CH ₃	0.89, d (7.0)	⁸ Val-2,3,5	⁸ Val-2,3, <i>N</i> H; Amp- <i>O</i> Me; <i>N</i> MePhe- <i>N</i> Me	
5	18.1, CH ₃	0.83, d (6.5)	⁸ Val-2,3,4	⁸ Val-2,3, <i>N</i> H; Amp- <i>O</i> Me; <i>N</i> MePhe- <i>N</i> Me	
NH	-	6.97, d (9.5)	<i>N</i> MePhe-1; ⁸ Val-1	⁸ Val-2,3,4,5; Amp- <i>O</i> Me; <i>N</i> MePhe-2, <i>N</i> Me	

^a 125 MHz for carbons and 500 MHz for protons; ^b Multiplicity and assignment from HSQC experiment; ^c Determined from HMBC experiment, ⁿ $J_{CH} = 8$ Hz, recycle time 1 s; ^d Selected NOE's from ROESY experiment.

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 58 formula(e) evaluated with 6 results within limits (up to 4 best isotopic matches for each mass) Elements Used:

Figure S72. HR ESI MS data of Micropeptin KB970C (10).

Figure S73. ¹H NMR Spectrum (500 MHz) of Micropeptin KB1048 (11) in DMSO-*d*₆.

Figure S74. ¹³C NMR Spectrum (125 MHz) of Micropeptin KB1048 (11) in DMSO-*d*₆.

Figure S75. HSQC Spectrum of Micropeptin KB1048 (11) in DMSO-*d*₆ (Red: CH, CH₃; Blue: CH₂).

Figure S76. HMBC Spectrum of Micropeptin KB1048 (11) in DMSO-*d*₆.

Figure S77. COSY Spectrum of Micropeptin KB1048 (11) in DMSO-*d*₆.

Figure S78. ROESY Spectrum of Micropeptin KB1048 (11) in DMSO-*d*₆ (Blue: NOE correlation).

Position	$\delta_{\rm C}$ mult. ^b	$\delta_{\rm H}$ mult. ^b J in Hz	HMBC Correlations ^c	NOE Correlations ^d
¹ Ha 1	173.0, qC	-		
2	35.3, CH ₂	2.17, t (7.0)	Ha-1,3,4	Ha-3,4; Asp- <i>N</i> H
3	$25.1, CH_2$	1.51, qi (7.0)	Ha-1,2,4	Ha-2,4,5
4	31.0, CH ₂	1.22, m	Ha-2,3,5	Ha-3,5,6
5	$22.1, CH_2$	1.24, m	Ha-4,6	Ha-3,4,6
6	14.8, CH ₃	0.85, t (7.3)	Ha-4,5	Ha-4,5
² Asp 1	171.5, qC	-		
2	49.5, CH	4.70, ddd (8.0,7.5,6.0)	Ha-1; Asp-1,3,4	Asp-3a,3b,NH; Thr-NH
2 1		2.81, dd (16.5,6.0)	Asp-2,4	Asp-2,3b,NH; Thr-NH
3 ab	35.5, CH ₂	2.59, dd (16.5,8.0)	Asp-2,4	Asp-2,3a,NH
4	170.9, qC	-	_	-
NH	-	8.28, d (7.5)	Ha-1	Asp-2,3a,3b; Ha-2; Thr- <i>N</i> H
<i>O</i> Me	51.7, CH ₃	3.57, s	Asp-4	
³ Thr 1	169.1, qC	-		
2	55.0, CH	4.59, d (9.5)	Asp-1; Thr-1,2	Thr-3,4,NH; Arg-NH
3	72.3, CH	5.47, q (6.5)	Thr-4; ⁸ Ile-1	Thr-2,4,NH; Arg-NH; Amp-NH
4	17.8, CH ₃	1.17, d (6.5)	Thr-2,3	Thr-2,3, <i>N</i> H
NH	-	7.71, d (9.5)	Asp-1	Thr-2,3,4; Asp-2,3a, <i>N</i> H
⁴ Arg 1	170.3, qC	-		
2	52.1, CH	4.29, m	Arg-1	Arg-3a,3b,4,5, <i>N</i> H; Amp- <i>N</i> H
2 -1		2.00, m	A	Arg-2,3b,4,5,5- <i>N</i> H
3 ab	$27.7, CH_2$	1.45, m	Arg-4	Arg-2,3a,5, <i>N</i> H,5- <i>N</i> H
4	25.4, CH ₂	1.45, m		Arg-2,3a,5, <i>N</i> H,5- <i>N</i> H
5	40.1, CH ₂	3.08, m	Arg-4,6	Arg-2,3a,3b,4,5- <i>N</i> H
NH	-	8.56, d (8.5)	Thr-1; Arg-2	Arg-2,3b,4; Thr-2,3; Amp-NH

Table S11. NMR Data of Micropeptin KB1048 (11) in DMSO- d_6 .

5- <i>N</i> H	-	7.50, t (5.2)	Arg-5,6	Arg-2,3b,4,5
6	156.9, qC	-		
		7.30, brm		
о-луп,луп <u>2</u>	-	6.90, brm		
⁵ Amp 2	169.3, qC	-		
3	49.4, CH	4.46 m	Amp-2,4	Amp-4b,5b, <i>N</i> H
4 -1	21.0 CH	2.40, brq (12.8)		Amp-4b,5a, <i>N</i> H
4 ab	$21.9, CH_2$	1.75, m		Amp-3,4a,6
5 .1	22.0. CU	2.06, brd (13.4)		Amp-4a,5b,6,0Me
5 ab	$23.9, CH_2$	1.70, m		Amp-3,5a,6,0Me
6	83.3, CH	4.46, brs		Amp-4b,5a,5b,OMe,NH; ⁶ Ile-3,4a
NH	-	7.26, d (9.6)	Arg-1	Amp-3,4a,6; Thr-3; Arg-2,NH
<i>O</i> Me	55.7, CH ₃	3.02, s	Amp-6	Amp-5a,5b,6; ⁸ Ile-4a,4b,5,6, <i>N</i> H
⁶ Ile 1	169.9, qC	-		
2	54.1, CH	4.46, m	Amp-2,6; ⁶ Ile -1,3,6	⁶ Ile-3,4a,4b,5,6; Cl- <i>N</i> MeTyr-2,5,9
3	33.1, CH	1.86, m		⁶ Ile-2,3,4b,5; Amp-6
4 1	23.9, CH ₂	1.10, m	611 2 4 5	⁶ Ile-2,3,5; Amp-6
4 ab		0.63, m	TIE-3,4,5	⁶ Ile-2,3,6; Cl- <i>N</i> MeTyr-2,5
5	10.4, CH ₃	0.63, m	⁶ Ile-3,4	⁶ Ile-2,3,6; Cl- <i>N</i> MeTyr-2,5
6	13.7, CH ₃	-0.13, d (6.5)	⁶ Ile-2,3,4	⁶ Ile-2,3,4a,4b,5; Cl- <i>N</i> MeTyr-2,5,8,9, <i>N</i> Me
Cl-NMeTyr 1	169.3, qC	-		
2	61.0, CH	5.08, brd (11.0)	Cl-NMeTyr-1,3,NMe	Cl- <i>N</i> MeTyr-3a,5,9, <i>N</i> Me; ⁶ Ile-2,4b,5,6; ⁸ Ile- <i>N</i> H
2 .1	22.0. CU	3.20, brd (14.4)	Cl-NMeTyr-4,5,NMe	Cl- <i>N</i> MeTyr-2,3b,5,9, <i>N</i> Me; ⁶ Ile-2
3 ab	$32.9, CH_2$	2.71, m	Cl-NMeTyr-2,4,5,NMe	Cl- <i>N</i> MeTyr-3a,5,8,9, <i>N</i> Me; ⁶ Ile-2
4	129.3, qC	-	-	-
5	130.7, CH	7.13, s	Cl- <i>N</i> MeTyr -3,6,7,9	Cl- <i>N</i> MeTyr-2,3a,3b, <i>N</i> Me; ⁶ Ile-2,4b,5,6

 Table S11. Cont.

6	120.1, qC			
7	152.3, qC			
8	117.0, CH	6.84 d, (8.2)	Cl-NMeTyr-4,6,7	Cl-NMeTyr-3b,9,NMe; ⁶ Ile-6
9	129.6, CH	6.96, d (8.2)	Cl- <i>N</i> MeTyr-3,5,7,8	Cl- <i>N</i> MeTyr-2,3a,3b,8, <i>N</i> Me; ⁶ Ile-2,6
NMe	30.4, CH ₃	2.71, s	⁶ Val-1; Cl- <i>N</i> MeTyr-2	Cl- <i>N</i> MeTyr-2,3a,5,9; ⁸ Ile-4a,4b,5,6, <i>N</i> H
ОН		9.96, s	Cl-NMeTyr-6,7,8	
⁸ Ile 1	172.6, qC	-		
2	58.4, CH	4.79, dd (9.5,4.5)	⁸ Ile-1,3,4,6	⁸ Ile-3,4a,4b,5,6, <i>N</i> H
3	37.6, CH	1.80, m	⁸ Ile-4,5,6	⁸ Ile-2,4b,5,6, <i>N</i> H
1 ab	26.0, CH ₂	1.32, m	⁸ Ile-3,5,6	⁸ Ile-2,4b,5, <i>N</i> H; Amp- <i>O</i> Me; Cl- <i>N</i> MeTyr- <i>N</i> Me
4 ab		1.10, m	⁸ Ile-3,5,6	⁸ Ile-2,3,4a, <i>N</i> H; Amp- <i>O</i> Me; Cl- <i>N</i> MeTyr- <i>N</i> Me
5	11.6, CH ₃	0.91, t (7.3)	⁸ Ile-2,3,4	⁸ Ile-2,3,4a; Amp-OMe; Cl-NMeTyr-NMe
6	14.1, CH ₃	0.77, d (7.0)	⁸ Ile-2,3,4	⁸ Ile-2,3, <i>N</i> H; Amp- <i>O</i> Me; Cl- <i>N</i> MeTyr- <i>N</i> Me
NH	-	6.80, d (9.5)	Cl-NMeTyr-1	⁸ Ile-2,3,4a,4b,6; Amp- <i>O</i> Me; Cl- <i>N</i> MeTyr-2,3b, <i>N</i> Me

Table S11. Cont.

^a 125 MHz for carbons and 500 MHz for protons; ^b Multiplicity and assignment from HSQC experiment; ^c Determined from HMBC experiment, ⁿ $J_{CH} = 8$ Hz, recycle time

1 s; ^d Selected NOE's from ROESY experiment.

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 935 formula(e) evaluated with 21 results within limits (up to 5 best isotopic matches for each mass)

Elements Used: C: 40-55 H: 65-90 N: 5-15 O: 5-15 CI: 0-4

Figure S79. HR ESI MS data of Micropeptin KB1048 (11).

Figure S80. ¹H NMR Spectrum (500 MHz) of Micropeptin KB992 (12) in DMSO-*d*₆.

Figure S81. ¹³C NMR Spectrum (125 MHz) of Micropeptin KB992 (12) in DMSO-*d*₆.

Figure S82. HSQC Spectrum of Micropeptin KB992 (12) in DMSO-*d*₆ (Red: CH, CH₃; Blue: CH₂).

Figure S83. HMBC Spectrum of Micropeptin KB992 (12) in DMSO-*d*₆.

Figure S84. COSY Spectrum of Micropeptin KB992 (12) in DMSO-*d*₆.

Figure S85. ROESY Spectrum of Micropeptin KB992 (12) in DMSO-d₆ (Blue: NOE correlation).

Position	$\delta_{\rm C}$ mult. ^b	δ_{H} mult. ^b <i>J</i> in Hz	HMBC Correlations ^c	NOE Correlations ^d
¹ Hpla 1	174.2, qC	-		
2	73.0, CH	3.99, ddd (8.7,5.8,3.1)	Hpla-3,4	Hpla-3a,3b,5,5',2-OH; Asn-2
2 .h	41.0. CU	2.93, dd (13.5,3.1)	Hpla-4,5,5'	Hpla-2,5,5',6,6',2- <i>O</i> H
3 ab	$41.0, CH_2$	2.54, m	Hpla-1,2,4,5,5'	Hpla-2,5,5',2-OH; Asn-NH
4	129.1, qC			
5,5'	130.5, CH	7.02, d (8.5)	Hpla-3,4,7	Hpla-2,3a,3b,6,6′
6,6′	115.0, CH	6.64, d (8.5)	Hpla-4,5,5',7	Hpla-3a,5,5′
7	155.8, qC	-		
2- <i>O</i> H	-	5.60, d (5.8)	Hpla-2,3	Hpla-2,3a,3b; Asn-NH
7- <i>O</i> H	-	9.11, s		
² Asn 1	171.8, qC	-		
2	49.3, CH	4.70, dt (8.0,7.5)	Hpla-1; Asn-1,3,4	Asn-3,NH; Thr-NH
3	36.9, CH ₂	2.54, m	Asn-1,2,4	Asn-2,NH,NH ₂ (a); Thr-NH
4	172.2, qC	-		
NH		8.23, d (8.0)	Hpla-1; Asn-2	Asn-2,3; Hpla-2,3b,2- <i>O</i> H
MIL ob		7.39, s	A an 2 4	Asn- <i>N</i> H ₂ (b)
MH2 ab	-	6.89, s	A\$11-5,4	Asn- $NH_2(a)$
³ Thr 1	169.2, qC	-		
2	55.1, CH	4.60, d (9.0)	Asn-1; Thr-1	Thr-3,4, <i>N</i> H; Arg- <i>N</i> H
3	72.2, CH	5.50, q (6.3)	Thr-4; ⁸ Val-1	Thr-2,4,NH; Arg-NH; Ahp-NH
4	17.9, CH ₃	1.22, d (6.3)	Thr-2,3	Thr-2,3
NH		7.74, δ (9.0)	Asn-1	Thr-2,3; Asp-2,3a, <i>N</i> H
⁴ Leu 1	171.0, qC	-		
2	51.0, CH	4.28, ddd (9.0,8.5,3.2)		Leu-3a,3b,4,6, <i>N</i> H; Amp- <i>N</i> H
2 ah	20.0. CU	1.80, m		Leu-2,3b,4,5
3 ad	39.0, CH ₂	1.39, m		Leu-2,3a,5, <i>N</i> H

Table S12. NMR Data of Micropeptin KB992 (12) in DMSO-*d*6.

			Table S12. Cont.	
4	24.4, CH	1.50, m		Leu-3a,5,NH
5	23.9, CH ₃	0.87, d (6.6)	Leu-3,4,6	Leu-2,5
6	21.2, CH ₃	0.78, d (7.0)	Leu-3,4,5	Leu-2,3b,4; Thr-2,3; Amp-NH
NH		8.45, d (8.5)	Thr-1	Arg-2,3b,4,5
⁵ Amp 2	169.3, qC	-		
3	49.4, CH	4.47 m	Amp-2	Amp-4b,5b, <i>N</i> H
1 ab	21.0. CH	2.40, q (12.6)		Amp-4b,5a, <i>N</i> H
4 ab	$21.9, CH_2$	1.70, m		Amp-3,4a
5 ah	22.0 CH	2.05, brd (14.4)		Amp-4a,5b,6,0Me
5 ab	$23.9, CH_2$	1.75 m		Amp-3,5a,6
6	83.3, CH	4.43, brs		Amp-5a,5b,0Me
NH	-	7.21, m	Leu-1; Amp-OMe	Amp-3,4a; Thr-3; Leu-2, <i>N</i> H; ⁶ Ile-5,6
<i>O</i> Me	55.5, CH ₃	3.01, s	Amp-6	Amp-5a,6; ⁸ Val-5, <i>N</i> H
⁶ Ile 1	169.8, qC	-		
2	54.1, CH	4.43, m	Amp-2,6; ⁶ Ile-1,3,4,6	⁶ Ile-3,4,5; <i>N</i> MePhe-2,5,5'
3	32.9, CH	1.78, m	⁶ Ile-5	⁶ Ile-2,4,5; Amp-6
4	23.5, CH ₂	1.05, m 0.59, m	⁶ Ile-2,3,5	⁶ Ile-2,3,5; Amp-3,6
5	10.5, CH ₃	0.59, m	⁶ Ile-2,3,4	⁶ Ile-2,3,4; <i>N</i> MePhe-5,5',6,6'
6	13.7, CH ₃	-0.30, d (6.5)	⁶ Ile-2,3,4,5	
⁷ <i>N</i> MePhe 1	169.3, qC	-		
2	60.9, CH	5.17, dd (11.0,2.1)	NMePhe-1,NMe	<i>N</i> MePhe-3a,3b,5,5', <i>N</i> Me; ⁶ Ile-2; ⁸ Val- <i>N</i> H
<u> </u>		3.30, m	NMePhe-4,5	<i>N</i> MePhe-2,3b,5,5', <i>N</i> Me
3 ab	34.4, CH ₂	2.80, dd (14.3,11.0)	NMePhe-2,4,5,NMe	<i>N</i> MePhe-2,3a,5,5', <i>N</i> Me
4	137.8, qC	-		
5,5'	129.8, CH	7.21, d (7.5)	NMePhe-3,7	<i>N</i> MePhe-2,3a,3b,6,6', <i>N</i> Me; ⁶ Ile-2,5,6

			Table S12. Cont.	
6,6′	128.9, CH	7.25, t (7.5)	<i>N</i> MePhe-4,5,5′	<i>N</i> MePhe-3b,5,5',7, <i>N</i> Me
7	126.9, CH	7.19, t (7.5)	NMePhe-5,5'	NMePhe-6,6'
NMe	30.5, CH ₃	2.74, s	NMePhe-2,4	<i>N</i> MePhe-2,3a,5,5',6,6'; ⁸ Val- <i>N</i> H
⁸ Val 1	172.5, qC	-		
2	56.5, CH	4.64, dd (9.5,6.0)	⁸ Val-1,3	⁸ Val-3,4,5, <i>N</i> H
3	31.4, CH	1.97, m	⁸ Val-4,5	⁸ Val-2,4,5, <i>N</i> H
4	19.5, CH ₃	0.83, d (6.5)	⁸ Val-2,3,5	⁸ Val-2,3,5, <i>N</i> H,
5	18.0, CH ₃	0.77, d (6.5)	⁸ Val-2,3,4	⁸ Val-2,3, <i>N</i> H; Amp- <i>O</i> Me,
NH	-	6.90, d (9.5)	<i>N</i> MePhe-1: ⁸ Val-1	⁸ Val-2.3.4.5; Amp-OMe: NMePhe-2.NMe

^a 125 MHz for carbons and 500 MHz for protons; ^b Multiplicity and assignment from HSQC experiment; ^c Determined from HMBC experiment, ⁿ $J_{CH} = 8$ Hz, recycle time 1 s; ^d Selected NOE's from ROESY experiment.

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 342 formula(e) evaluated with 10 results within limits (up to 4 best isotopic matches for each mass) Elements Used: C: 45-55 H: 60-80 N: 5-15 O: 5-20 Na: 0-1 SP171/3

Figure S86. HR ESI MS data of Micropeptin KB992 (12).

Figure S87. ¹H NMR Spectrum (400 MHz) of Micropeptin KB1046 (13) in DMSO-*d*₆.

Figure S88. ¹³C NMR Spectrum (100 MHz) of Micropeptin KB1046 (13) in DMSO-*d*₆.

Figure S89. HSQC Spectrum of Micropeptin KB1046 (13) in DMSO-d₆ (Red: CH, CH₃; Blue: CH₂).

Figure S90. HMBC Spectrum of Micropeptin KB1046 (13) in DMSO-*d*₆.

Figure S91. COSY Spectrum of Micropeptin KB1046 (13) in DMSO-*d*₆.

Figure S92. ROESY Spectrum of Micropeptin KB1046 (13) in DMSO-*d*₆ (Blue: NOE correlation).

Position	$\delta_{\rm C}$ mult. ^b	$\delta_{\rm H}$ mult. ^b J in Hz	HMBC Correlations ^c	NOE Correlations ^d
¹ Hpla 1	173.6, qC	-		
2	72.7, CH	4.01, ddd (8.7,5.6,2.4)	Hpla-1,4	Hpla-3a,3b,5,5'; Gln- <i>N</i> H, Thr-2
2 .h	20.9 CH	2.87, dd (13.6,2.4)	Hpla-4,5,5'	Hpla-2,3b,6,6'; Gln-NH
3 ab	39.8, CH ₂	2.55, m	Hpla-1,2,4,5,5'	Hpla-2,3a,5,5'; Gln-3b
4	128.8, qC			
5,5'	130.4, CH	7.00, d (7.6)	Hpla-3,6,6',7	Hpla-2,3b,6,6'; Gln-4
6,6′	115.0, CH	6.62, d (7.6)	Hpla-4,7	Hpla-3a,3b,5,5',7-OH
7	155.8, qC	-		
2- <i>O</i> H	-	5.52, d (5.6)	Hpla-1,2,3	
7- <i>O</i> H	-	9.06, s	Hpla-6,6'	Hpla-6,6′
² Gln 1	172.4, qC	-		
2	51.4, CH	4.51, dt (8.4,74.8)	Gln-1,3,4	Gln -3a,3b,4, <i>N</i> H; Thr- <i>N</i> H
2 .1	29.0 CH	1.82, m	Gln-5	Gln-2,4, <i>N</i> H
5 ab	28.9, CH ₂	1.75, m	Gln-2	Gln-2,4, <i>N</i> H; Hpla-3b; Thr-4
4	31.6, CH ₂	2.10, t (5.6)	Gln-2,5	Gln-2,3a,3b, <i>N</i> H, <i>N</i> H ₂ (a); Hpla-5,5'
5	174.0, qC	-		
NH		7.78, d (8.4)	Hpla-1	Gln-2,3a,3b,4; Hpla-2,3a
MIL ob		7.18, s	Clm 4	$Gln-4, NH_2(b)$
NH ₂ ab	-	6.70, s	GIn-4	Gln- <i>N</i> H ₂ (a)
³ Thr 1	169.1, qC	-		
2	55.0, CH	4.58, d (9.5)	Thr-1,4	Thr-4, HcAla- <i>N</i> H; ⁸ Ile-4a,4b,5
3	72.2, CH	5.50, q (6.5)	Thr-4; ⁸ Ile-1	Thr-4, <i>N</i> H; HcAla- <i>N</i> H; Ahp- <i>N</i> H; ⁸ Ile-5
4	17.9, CH3	1.18, d (6.5)	Thr-2,3	Thr-3, <i>N</i> H; Hpla-6,6'
NH	-	7.68, d (9.5)	Gln-1	Thr-2,3,4; Gln-2,3a,3b,4

Table S13. NMR Data of Micropeptin KB1046 (13) in DMSO-*d*6.

Table S13. Cont.

⁴ HcAla 1	170.7. aC	_		
2	50.0, CH	4.33, m		HcAla-3b,4,NH; Ahp- <i>N</i> H
2 1		1.89, m		HcAla-3b,5,6
3 ab	36.6, CH ₂	1.49, m		HcAla-2,3a,4,5,6, <i>N</i> H
4	32.0, CH ₂	1.99, m		HcAla-2,3b,5,6,8pax,9peq,NH
5	132.2, CH	5.42, brd (10.4)	HcAla-3,4,7,9	HcAla-3a,3b,4,6,7
6	133.0, CH	5.58, brd (10.4)	HcAla-4,5,8	HcAla-3a,3b,4,5,7, <i>O</i> H
7	65.5 CH	3.97, m		HcAla-5,6,8peq,9pax, <i>O</i> H
9 mag may	21 6 CH2	1.80, m		HcAla-7,8pax,9pax
8 peq pax	51.0 CH2	1.20, m		HcAla-4,8peq,9peq,OH
0 pag pay	26.2 CH2	1.70, m		HcAla-4,8pax,9pax
9 peq pax	20.2 CH2	0.96, m		HcAla-7,8peq,9peq
NH		8.47, d (8.4)	Thr-1	HcAla-2,3b,4; Thr-3; Ahp-NH
OH		4.63, d (5.6)	HcAla-6,7,8	HcAla-6,7,8pax
⁵ Ahp 2	169.6, qC	-		
3	48.9, CH	4.45 m	Ahp-2	Ahp-5,NH
1 ab	22.0 CH2	2.55, m		Ahp-4b,NH,OH
4 80	22.0, CH2	1.72, m		Ahp-4a,6
5	29.9, CH ₂	1.71, m		Ahp-3,6
6	74.2, CH	4.92, brs		Ahp-4b,5, <i>O</i> H; ⁶ Val-3,4
NH	-	7.37, d (9.2)	HcAla-1	Ahp-3,4a; Thr-3; HcAla-2, <i>N</i> H
ОН	55.6, CH3	6.07, brs	Ahp-6	Ahp-4a,5
⁶ Val 1	169.9, qC	-		
2	56.0, CH	4.32, d (10.4)	Ahp-2,6; ⁶ Val-1,3,4,5	⁶ Val-3,4,5; <i>N</i> MePhe-2,5,5'
3	27.7, CH	1.90, m	6 _{Val-2,5}	⁶ Val-2,4,5; Ahp-3,6
4	18.3, CH ₃	0.46, d (6.0)	6 _{Val-2,3,5}	⁶ Val-2,3,5; Ahp-3,6; <i>N</i> MePhe-2
5	18.2, CH ₃	-0.21, d (6.0)	6 _{Val-2,3,4}	⁶ Val-2,3,4; <i>N</i> MePhe-2,5,5'

Table S13. Cont.

⁷ <i>N</i> MePhe 1	169.3, qC	-		
2	60.7, CH	5.08, brd (11.2)	NMePhe-1,NMe	NMePhe-3a,3b,5,5',NMe; ⁶ Val-2; ⁸ Ile-NH
2 .h	24 4 CH	3.28, m	NMePhe-4,5,NMe	<i>N</i> MePhe-2,3b,5,5′
5 ab	$34.4, CH_2$	2.80, m	NMePhe-2,4,5,NMe	<i>N</i> MePhe-2,3a,5,5′
4	137.8, qC	-		
5,5'	129.9, CH	7.22, m	NMePhe-3,7	<i>N</i> MePhe-2,3a,3b,6,6', <i>N</i> Me; ⁶ Val-2
6,6′	128.8, CH	7.26, m	NMePhe-4,5,5'	NMePhe-5,5',7,NMe; ⁶ Val-5
7	126.7, CH	7.19, m	NMePhe-5,5'	NMePhe-6,6'; ⁶ Val-5
NMe	30.3, CH ₃	2.73, s	⁶ Val-1, <i>N</i> MePhe-2	NMePhe-2,5,5'; ⁸ Ile-6,NH
⁸ Ile 1	172.9, qC	-		
2	55.7, CH	4.77, dt (9.2,4.8)	⁸ Ile-1,3,4,6	⁸ Ile-3,5,6, <i>N</i> H
3	37.7, CH	1.80, m		⁸ Ile-2,4a,4b,,5, <i>N</i> H
4	24.7, CH	1.26, m	⁸ Ile-2,5,6	⁸ Ile-3; Thr-2
4		1.00, m	⁸ Ile-5,6	⁸ Ile-3,5; Thr-2
5	11.5, CH ₃	0.80, t (7.2)	⁸ Ile-3,4	⁸ Ile-2,3,4a; Thr-2,3
6	16.3 CH ₃	0.83, d (6.8)	⁸ Ile-2,3,4a	⁸ Ile-2; <i>N</i> MePhe- <i>N</i> Me
NH	-	7.67, d (9.2)	NMePhe-1	⁸ Ile-2,3; Thr-2; <i>N</i> MePhe-2, <i>N</i> Me

^a 100 MHz for carbons and 400 MHz for protons; ^b Multiplicity and assignment from HSQC experiment; ^c Determined from HMBC experiment, ⁿ $J_{CH} = 8$ Hz, recycle time 1 s; ^d Selected NOE's from ROESY experiment.

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 437 formula(e) evaluated with 11 results within limits (up to 4 best isotopic matches for each mass) Elements Used: C: 50-60 H: 60-80 N: 0-20 O: 10-20 23Na: 0-1 SP-147/7 Shira Pe'er carmeli 274b 63 (2.788) Cm (59:68) 1: TOF MS ES+ 1.79e+003 1069.5228 100-1070.5289 %-1071.5319 1072.2664 1069.8912 1070.9021 1071.2819 1072.5636 1073.0220 1073.3864 1068.7501 1069.2257 1070.1692 04 ----TH Prest ----- m/z 1068.00 1068.50 1069.00 1069.50 1070.00 1070.50 1071.00 1071.50 1072.00 1072.50 1073.00 1073.50 1074.00 Minimum: -1.5 Maximum: 5.0 10.0 50.0 i-FIT (Norm) Formula Mass Calc. Mass mDa PPM DBE i-FIT 1069.5228 1069.5233 -0.5 -0.5 18.5 153.0 1.3 C54 H77 N4 O18 1069.5236 -0.8 -0.7 25.5 153.1 C54 H70 N12 O10 23Na 1.4 C53 H74 N8 O14 23Na C55 H73 N8 O14 1069.5222 153.1 0.6 0.6 -1.7 20.5 1.4 1069.5246 153.2 -1.8 23.5 1.5

Figure S93. HR ESI MS data of Micropeptin KB1046 (13).

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).