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Abstract: Fucoidan is an L-fucose-enriched sulfated polysaccharide isolated from brown 

algae and marine invertebrates. In this study, we investigated the protective effect of 
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fucoidan from Fucus vesiculosus on alcohol-induced murine liver damage. Liver injury 

was induced by oral administration of 25% alcohol with or without fucoidan (30 mg/kg or  

60 mg/kg) for seven days. Alcohol administration increased serum aspartate 

aminotransferase and alanine aminotransferase levels, but these increases were suppressed 

by the treatment of fucoidan. Transforming growth factor beta 1 (TGF-β1), a liver  

fibrosis-inducing factor, was highly expressed in the alcohol-fed group and human 

hepatoma HepG2 cell; however, the increase in TGF-β1 expression was reduced following 

fucoidan administration. Treatment with fucoidan was also found to significantly reduce the 

production of inflammation-promoting cyclooygenase-2 and nitric oxide, while markedly 

increasing the expression of the hepatoprotective enzyme, hemeoxygenase-1, on murine 

liver and HepG2 cells. Taken together, the antifibrotic and anti-inflammatory effects of 

fucoidan on alcohol-induced liver damage may provide valuable insights into developing 

new therapeutics or interventions. 

Keywords: fucoidan; transforming growth factor beta 1; cyclooxygenase-2; alcohol; liver 

 

1. Introduction 

Alcohol consumption is the world’s third largest risk factor for disease and disability, since alcohol 

consumption can serve as a causal factor in 60 types of diseases [1]. Alcoholic liver disease (ALD) has 

been becoming an important public health issue widely around the world, including Korea, due to the 

increasing consumption of alcoholic beverages [2]. Excessive and consistent alcohol exposure leads to 

hepatic steatosis, hepatitis, cirrhosis and progressive fibrosis. Chronic liver diseases, such as hepatic 

fibrosis and cirrhosis, are considered as major health problems worldwide [3,4]. 

Alcohol is mainly metabolized in the liver, and toxic metabolites, such as acetaldehyde, excessive 

homocysteine and toxic lipid species, are formed during alcohol metabolism [3,5]. The liver is highly 

susceptible to fibrotic remodeling from ethanol detoxification [4]. Therefore, chronic and excessive 

ethanol consumption leads to fatty liver in more than 90% of chronic alcohol abusers [5]. In some 

populations, more severe forms of alcoholic liver diseases, including alcoholic fibrosis and cirrhosis,  

are observed [5,6]. 

It has been suggested that inflammation-mediated fibrosis is largely attributable to fibrogenic 

cytokines released by infiltrating immune cells, as well as paracrine and autocrine stimulation of 

hepatic cells [3,4]. Among various inflammatory mediators, transforming growth factor-β1 (TGF-β1) 

is one of the most powerful profibrotic cytokines [7,8], and thus, blocking TGF-β1 activity by natural 

inhibitors represents a valid and logical strategy to combat hepatic fibrosis [8,9]. Cyclooxygenase-2 

(COX-2), which catalyzes prostaglandin production from arachidonic acid, is induced by 

lipopolysaccharides (LPS), peptidoglycans and alcohol [10]. The upregulation of inducible COX-2 

expression is an important aspect of inflammatory responses and participates in the augmentation of 

allyl alcohol-induced liver injury by LPS [11] and the progression of hepatic fibrosis [12]. Augmented 

production of nitric oxide (NO) is also attributed to the development of hepatic injury [6,13]. Alcohol 

consumption induces a significant increase in hepatic NO generation, which can be achieved by nitric 
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oxide synthase (NOS), especially through inducible NOS (iNOS). Increases in NO generation may 

therefore be an early indicator of ethanol-induced liver damage [6]. Hemeoxygenase-1 (HO-1) is an 

inducible form of the rate-limiting enzyme involved in heme catabolism. In preclinical models of 

tissue injury, HO-1 has been shown to confer cellular protection through inhibition of apoptosis, 

inflammation and cell proliferation [14,15]. To combat alcohol-induced liver damage, strategies to 

strengthen the protective effects of molecules, such as HO-1, and the development of new ways to 

reduce liver-damaging signals may be favorable treatment options. 

Fucoidan, which can be found in brown seaweed extracts (e.g., Ascophyllum nodosum and Fucus 

vesiculosus), is a polyanionic macromolecule composed predominantly of sulfated fucose moieties and 

possesses highly branched polysaccharides [16,17]. Fucoidans derived from almost all species appear 

to lack toxicity in vitro and in vivo [18]. However, the means of fucoidan uptake, tissue distribution 

and final metabolic fate are not well understood. A pivotal study has suggested that fucoidan could  

be distributed in the rat liver following its oral uptake [19]. Recently, numerous biological activities  

of fucoidan, including anticoagulant, antithrombotic, antitumor, antiviral, anticomplement and  

anti-inflammatory effects, have been extensively studied [17,18,20,21]. However, the biological 

effects of fucoidans can have high variation due to the source of purification, molecular weight, 

sulfation of fucoidan [16] and delivery route [18]. These known biological activities of fucoidan have 

been investigated for therapeutic uses against injury, infection, chronic inflammation, fibrosis and  

neuronal damage [18]. 

Alcoholic liver disease in humans is difficult to treat, since relatively little is known about the 

molecular mechanisms involved in its development. In addition, the habit of alcohol consumption is an 

addictive and self-inflicting condition [5]. Abstinence from alcohol is the first line treatment for 

alcohol liver disease, but in many cases, it becomes difficult for individuals to remain abstinent [5]. In 

severe conditions, corticosteroids, pentoxifylline or anti-tumor necrosis factor (TNF) agents are the 

choice of treatment, but sometimes, these therapeutic agents may cause severe side effects. Thus, there 

is an urgent need to develop novel therapeutics or preventative interventions against alcoholic  

liver damage. 

Several recent publications suggest that orally-delivered fucoidan has a protective potential against 

nonalcoholic liver damage by attenuating fibrosis [18,22–24], but the mechanisms of antifibrotic 

action of fucoidan from Fucus vesiculosus on alcohol-induced liver damage are not well studied. In 

line with this concept, the protective role of fucoidan against alcohol-related liver damage was 

investigated through measurement of the protein expression of TGF-β1, COX-2, HO-1 and iNOS in 

the livers of alcohol-fed mice and in vitro in HepG2 cells. 

2. Results and Discussion 

2.1. Changes in Organ Weight in the Presence or Absence of Fucoidan for Alcohol-Fed Mice 

Chronic ethanol feeding studies in rodents using either ad libitum feeding or intragastric infusion 

models have significantly enhanced our understanding of the pathogenesis of alcoholic liver disease [2]. 

Here, we used the intragastric feeding model to induce liver damage. Alcoholic liver disease results 

from the dose- and time-dependent consumption of alcohol, and thus, the amount of ingested alcohol 
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and its intensity could be carefully controlled through an intragastric feeding model. In addition, the 

major route of ethanol delivery in humans is clearly oral, and thus, this model is more reliable for 

understanding alcohol-induced liver pathophysiology. 

In this study, alcohol was used as an insult for induced hepatic dysfunction [6]. Mice intragastrically 

received 25% alcohol (w/v) daily (5 g/kg body weight) with fucoidan (0~60 mg/kg) for one week 

(Figure 1). At the end of the experiment, the liver, spleen and thymus weights were taken and 

summarized as relative weight in Table 1. All animals had survived. In the alcohol-treated group, the 

liver was more enlarged with a slightly brighter color than that of the control. Alcohol-fed mice 

showed increased liver weight, but thymus weight was significantly decreased (vehicle 0.24% ± 0.01% 

vs. alcohol group 0.21% ± 0.01%, p < 0.05). It has been suggested that alcohol causes thymus atrophy, 

possibly through enhancing thymocyte death [25,26]. As shown in Table 1, the alcohol-mediated 

decrease in thymus weight was inhibited by fucoidan administration. Administration of fucoidan alone 

augmented the organ weights of liver, spleen and thymus (Table 1). It is unclear why fucoidan 

administration alone led to increases in the organ weights; however, this effect may be related to the 

nutritional support or cell protective effects observed in mice. 

 

Figure 1. Experimental design. 

Table 1. Effect of fucoidan on tissue weights in alcohol-fed mice. Mice were administered 

alcohol with or without fucoidan daily for 1 week. At the end of the experiment, isolated 

liver, spleen and thymus were weighed and expressed as a percentage of animal weight 

(BW; body weight). Each group contains 6 mice. # p < 0.05 vs. vehicle group; * p < 0.05 vs. 

alcohol-fed group. 

 

Vehicle 

25% (w/v) Alcohol 
Fucoidan 

30 mg/kg 

Fucoidan 

60 mg/kg - 
Fucoidan 

30 mg/kg 

Fucoidan 

60 mg/kg 

(n = 6) (n = 6) (n = 6) (n = 6) (n = 6) (n = 6) 

BW (g) 32.7 5 ± 0.92 34.15 ± 0.73 33.60 ± 0.70 33.85 ± 1.20 34.01 ± 1.00 34.45 ± 0.67 

Liver (%) 5.13 ± 0.16 5.24 ± 0.11 # 5.65 ± 0.23 * 5.52 ± 0.12 * 5.59 ± 0.05 # 5.31 ± 0.03 # 

Spleen (%) 0.27 ± 0.02 0.27 ± 0.09 0.27 ± 0.01 0.32 ± 0.02 * 0.35 ± 0.06 # 0.32 ± 0.01 # 

Thymus (%) 0.24 ± 0.01 0.21 ± 0.01 # 0.23 ± 0.09 * 0.23 ± 0.03 * 0.24 ± 0.08 # 0.25 ± 0.13 # 
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2.2. Protective Effects of Fucoidan on Serum Aspartate Aminotransferase and Alanine 

Aminotransferase in Alcohol-Induced Murine Liver Damage 

To determine the alcohol-induced liver damage, serum aspartate aminotransferase (AST/GOT) and 

alanine aminotransferase (ALT/GPT) were determined by the colorimetric method. ALT/GPT is 

almost exclusively found in the liver. When the liver tissue is diseased or damaged, additional AST 

and ALT are released into the bloodstream, which increases their activities. Thus, measuring serum 

levels of AST or ALT is a valuable tool in the diagnosis of liver damage [27]. As shown in Figure 2, 

the group treated with fucoidan alone did not show any differences in serum levels of AST (vehicle 

40.0 ± 2.56 U/L vs. alcohol group 58.68 ± 11.12 U/L, p < 0.05) and ALT (vehicle 50.0 ± 3.56 U/L vs. 

alcohol group 71.16 ± 4.71 U/L, p < 0.05). Alcohol-fed mice showed marked increases in both AST 

and ALT, which reflect liver damage, but these increases were highly suppressed in the presence of 

fucoidan. Based on these results, the increased liver weight in the group treated with fucoidan alone 

may not be derived from liver damage (Table 1), but related to a beneficial effect of fucoidan on liver. 

  

(a) (b) 

Figure 2. Effect of fucoidan on alcohol-induced liver damage. (A) Serum aspartate 

aminotransferase (AST); (B) serum alanine aminotransferase (ALT). ## p < 0.01 vs. vehicle 

(n = 6); ** p < 0.01 vs. alcohol-fed group (n = 6). 

2.3. Fucoidan Suppresses the Alcohol-Induced Expression of TGF-β1 in the Murine Liver and  

HepG2 Cells 

TGF-β1 plays a pivotal role in the induction and maintenance of matrix overproduction, which can 

be characterized in fibrogenesis [7,8,28], and blocking TGF-β1 activity has proven effective against 

the fibrotic response to injury in various organs [29]. In line with a previous report [30], alcohol caused 

a marked increase in the expression of TGF-β1, but fucoidan treatment on alcohol-fed-mice attenuated 

the expression of TGF-β1 (Figure 3). This inhibitory effect of fucoidan on alcohol-induced TGF-β1 

upregulation was further tested in HepG2 cells, which is a suitable cell line for the study of polarized 

human hepatocytes [30]. As shown in Figure 4, the expression level of TGF-β1 in HepG2 cells was 

markedly increased following exposure to alcohol, and this increase was also inhibited in the presence 

of fucoidan. Based on Figures 3 and 4, fucoidan may have a general inhibiting activity on TGF-β1 

expression, since fucoidan alone also reduced TGF-β1 expression in murine liver and HepG2 cells. 
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Figure 3. Effect of fucoidan on alcohol-induced protein levels of transforming growth 

factor (TGF)-β1 in mice livers. (A) Representative immunoblot images of TGF-β1 and the 

loading control β-actin; (B) densitometry quantification of TGF-β1 expression normalized 

to β-actin. ## p < 0.05 vs. vehicle (n = 6); ** p < 0.5 vs. alcohol-fed group (n = 6). 

 

Figure 4. Effect of fucoidan on alcohol-induced protein levels of TGF-β1 in HepG2 cells. 

(A) Representative immunoblot images of TGF-β1 and the loading control β-actin;  

(B) densitometry quantification of TGF-β1 expression normalized to β-actin. ## p < 0.05 vs. 

vehicle (n = 6); ** p < 0.5 vs. alcohol-treated group (n = 6). 
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2.4. Fucoidan Suppresses NO Production Following Exposure to Alcohol 

NO can act like a double-edged sword. It can either mediate beneficial responses or act 

deleteriously as an inflammatory mediator [31]. Previously, it had been reported that alcohol 

consumption increases NO production in the rat liver [13]. Thus, the modulatory effect of fucoidan on 

the ethanol-mediated production of NO was evaluated in HepG2 cells. As shown in Figure 5A, NO 

was significantly increased in HepG2 cells following exposure to alcohol, and this increase in NO 

production was strongly attenuated in the presence of fucoidan. NO production following exposure to 

alcohol can be augmented by increasing enzyme activity or protein expression levels of iNOS [13]. 

When protein expression levels of iNOS were measured in mouse liver and HepG2 cells, there were no 

significant changes in iNOS expression (Figure 5B,C). It is unclear why the expression level of iNOS 

was unchanged, even though NO production was increased after exposure to alcohol. It can therefore 

be speculated that the production of NO was not mediated by increased iNOS expression. However, 

augmentation of iNOS activity without changes in protein level is possible [13]. In the present study, 

fucoidan suppressed the alcohol-induced NO production in hepatocytes, indicating that fucoidan may 

provide another beneficial activity against alcohol-induced liver inflammatory responses. 

  

 

Figure 5. Effect of fucoidan on nitric oxide production and protein expression levels of 

inducible nitric oxide synthase (iNOS) following alcohol exposure. (A) Nitric oxide (NO) 

production in HepG2 cells. Representative immunoblots and densitometry quantification of 

iNOS expression in HepG2 (B) and murine liver (C), both normalized to β-actin 

expression. # p < 0.05 vs. vehicle (n = 6); * p < 0.05 vs. alcohol-treated group (n = 6). 
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2.5. Fucoidan Suppresses the Expression Level of COX-2 

COX is a key enzyme in the biosynthetic pathway for prostaglandin. Unlike constitutively-expressed 

COX-1, COX-2 can be upregulated in liver inflammation, and the subsequent production of 

eicosanoids is an important contributor to liver injury [32]. Additionally, COX-2 may play a role in the 

progression of hepatic fibrosis, and higher levels of COX-2 expression were observed in a more 

advanced stage of fibrosis [12]. The inflammatory response is triggered not only by ethanol itself, but 

also by Gram-negative bacteria through increased intestinal permeability caused by alcohol in the gut [33]. 

In lipopolysaccharide (LPS)-challenged rats, selective inhibition of COX-2 protected against  

LPS-induced enhancement of allyl alcohol hepatotoxicity [11]. In our experimental setting, expression 

levels of COX-2 were markedly higher in the alcohol-treated group (Figure 6). Alcohol-induced 

upregulation of COX-2 was strongly attenuated in the presence of fucoidan. The inhibitory effect of 

fucoidan on increased COX-2 was more apparent in alcohol-treated HepG2 cells (Figure 7). The 

decreased COX-2 expression effects of fucoidan against alcohol insult may also be favorable towards 

treating alcohol-induced inflammatory liver damage. 

 

Figure 6. Effect of fucoidan on alcohol-induced expression levels of cyclooxygenase 

(COX)-2 in murine liver. (A) Representative immunoblot images of COX-2 and β-actin;  

(B) quantification of COX-2 expression normalized to β-actin. ## p < 0.01 vs. vehicle  

(n = 6); ** p < 0.01 vs. alcohol-fed group (n = 6). 
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Figure 7. Effect of fucoidan on alcohol-induced expression levels of COX-2 in HepG2  

cells. (A) Representative immunoblot images of COX-2 and the loading control β-actin;  

(B) quantification of COX-2 expression normalized to β-actin. ## p < 0.01 vs. vehicle (n = 6);  

* p < 0.05 and ** p < 0.01 vs. alcohol-treated group (n = 6). 

2.6. Fucoidan Increases the Expression Levels of HO-1 

Some investigators have provided the anti-oxidative properties of fucoidan. Kang et al. (2008) 

reported that fucoidan exerts anti-oxidative effects by increasing anti-oxidative enzymes, such as 

superoxide dismutase (SOD) and glutathione peroxidase (GPx), against CCl4-induced liver injury [34]. 

Hong et al. (2011) also reported that fucoidan increased SOD and GPx in the  

dimethylnitrosamine-induced liver fibrosis model [35]. Moreover, they suggested that the  

anti-oxidative effect of fucoidan might be mediated by an increase of Nrf2 and its subsequent  

pathway mediators. 

Recently, several studies have suggested that the HO-1/nuclear respiratory factor-2 (Nrf-2) pathway 

confers protective effects against ethanol-, carbon tetrachloride (CCl4)- and/or diallyl disulfide-induced 

oxidative stresses [36–38]. HO-1 participates in the rate-limiting step in the heme degradation pathway 

and maintenance of iron homeostasis. HO-1 acts as a low-molecular-weight stress protein that confers 

cytoprotection against cell death in various models of lung and vascular injury by inhibiting apoptosis, 

inflammation and cell proliferation [14]. Induction of HO-1 contributes to inhibiting liver inflammatory 

mediators, including iNOS and COX-2 through the regulation of JAK-2/STAT-1 signals [39]. Recent 

studies suggested that the induction of HO-1 prevents ethanol-induced inflammation in the liver via 

increasing its downstream mediator, carbon monoxide [40]. Carbon monoxide is one of the important 

regulators of signal pathways that regulate hepatic inflammatory responses, such as MAPKs and  

Egr-1 [41]. As shown in Figure 8, the expression level of HO-1 was not changed by alcohol exposure, 
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but fucoidan supplementation increased the expression levels of HO-1 in the presence or absence of 

alcohol in mice liver. The effect of fucoidan on increased expression of HO-1 was also shown in 

HepG2 cells (Figure 9). However, unlike the alcohol-exposed murine liver, HepG2 cells treated with 

alcohol alone showed increased HO-1 expression when compared to the control. This discrepancy may 

be related to different physiological conditions between the in vivo and in vitro model systems. 

Although the present study did not directly address the mechanisms of HO-1 induction by fucoidan, 

these molecular mechanisms might be involved in the process. 

 

Figure 8. Effect of fucoidan on alcohol-induced expression levels of heme oxygenase  

(HO)-1 in murine liver. (A) Representative immunoblot images of HO-1 and the loading 

control β-actin; (B) quantification of HO-1 expression normalized to β-actin. ## p < 0.05 vs. 

vehicle (n = 6). 

 

Figure 9. Effect of fucoidan on alcohol-induced expression levels of HO-1 in HepG2 cells. 

(A) Representative immunoblot images of HO-1 and β-actin; (B) quantification of HO-1 

expression normalized to β-actin. ## p < 0.05 vs. vehicle (n = 6).  
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3. Experimental Section 

3.1. Animals 

Male, 5-week-old BALB/c mice were purchased from Korea Laboratory Animal Co. (Daejeon, 

Korea) and were allowed to acclimatize for 7 days prior to experiments. The animals were maintained 

under standard laboratory conditions: temperature of 21 ± 2 °C, relative humidity of 50% ± 5% and a 

normal photoperiod (12 h dark, 12 h light). The procedures for the experiments and animal care 

protocol were approved by the Animal Care and Use Committee of Kangwon National University and 

conformed to the Guide for the Care and Use of Laboratory Animals by the National Institutes of 

Health (NIH Publication No. 85–23). 

3.2. Reagents 

Extra-pure ethanol (EtOH) was purchased from Sigma (St. Louis, MO, USA). Unless indicated 

otherwise, chemicals were purchased from Sigma. Antibodies were purchased from Cell Signaling 

Technology (Beverly, MA, USA). 

3.3. Fucoidan Preparation 

Fucoidan (purity; >95%) extracted from Fucus vesiculosus [42] was purchased from Sigma-Aldrich 

(St. Louis, MO, USA) and dissolved in distilled water. This commercial fucoidan was comprised of a 

wide spectrum of fucans, ranging from typical fucoidans (major components) containing mainly 

fucose, sulfate and no uronic acid, to low sulfate-containing heteropolysaccharide-like fucans (minor 

components). When the QCL-1000 Chromogenic Limulus Amebocyte Lysate End-Point Assay 

(Lonza, Walkersville, MD, USA) was conducted as described in a previous report [43], the endotoxin 

level of 10 mg/mL fucoidan preparation was less than 0.1 EU/mL. 

3.4. Treatment with Alcohol and Fucoidan on Mice and Measurement of Serum ALT, AST and  

Organ Weight 

Alcohol-mediated liver damage was performed based on a previous report [44]. After acclimation, 

mice were randomly divided into 6 groups with 6 mice in each group, as follows: (1) mice that 

received an equal volume of saline orally through gavage; (2) mice treated with 5 g/kg body weight of  

25% EtOH w/v; (3) mice treated with EtOH plus 30 mg/kg body weight of fucoidan; (4) mice treated 

with EtOH plus 60 mg/kg body weight of fucoidan; (5) mice treated with 30 mg/kg body weight of 

fucoidan; and (6) mice treated with 60 mg/kg body weight of fucoidan via oral gavage for 7 days  

(Figure 1). An appropriate dosing volume 0.5 mL of EtOH and fucoidan was determined after weighing 

the animal daily. Gavage was performed with 18–20 gauge feeding tubes about 1.5 inches in length 

with a rounded tip. Intragastric delivery of EtOH or fucoidan was carefully performed by well-trained 

researcher to minimize animal stress. If both fucoidan and EtOH were to be administered at the same 

time, there was a more than 30-minute dosing interval. To reduce the daily variation of treatment, the 

same person performed the intragastric delivery of EtOH or fucoidan. After the designed treatment, 

animal weight was determined. Mice were euthanized by cervical dislocation. Blood samples were 
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collected by penetrating the retro-orbital sinus with a glass capillary tube (0.5 mm in diameter), and 

serum was obtained after centrifugation (2500× g, 30 min). 

Serum ALT and AST activities were measured with ALT Enzymatic Assay Kits and AST 

Enzymatic Assay Kits (Asan Pharm. Co., Korea) following the manufacture’s procedures. Liver, 

spleen and thymus were carefully removed, and each tissue was weighed after removing as much 

blood as possible with paper towel. 

3.5. HepG2 Cell Culture and Treatment with Alcohol and Fucoidan 

HepG2 cells (human hepatoma cell line, ATCC HB-8065) were cultured in Dulbecco’s Modified 

Eagle’s Medium (DMEM) with high glucose supplemented with 10% fetal bovine serum (FBS) and 

1% penicillin/streptomycin (100 units/mL penicillin and 100 μg/mL streptomycin; Gibco, Carlsbad, 

CA, USA) until confluence. Cells were seeded in a 100-mm cell culture dish and pretreated with 

fucoidan (30 and 60 μg/mL) for 2 h and then stimulated with EtOH (100 mM) for 24 h. 

3.6. Measurement of Nitric Oxide Production 

After treatment with 100 mM EtOH and fucoidan, nitric oxide was measured as nitrite released 

from HepG2 cells, as previously described [43]. Briefly, 100 µL of supernatant was combined with an 

equal volume of Griess reagent (1% sulfanilamide, 0.1% naphthalenediamine dihydrochloride, 2.5% 

phosphoric acid) and incubated at room temperature for 10 min. The absorbance at 540 nm was 

determined with an E MAX precise microplate reader (Molecular Devices, Eugene, OR, USA), and 

nitrite concentrations were calculated from a nitrite standard curve. 

3.7. Protein Extraction and Immunoblot 

Protein extraction and immunoblot were performed as previously described [45]. Briefly, the cells 

or isolated liver tissue were washed twice with cold Dulbecco’s Phosphate-Buffered Saline (D-PBS) 

and then homogenized in the presence of radio immunoprecipitation assay (RIPA) buffer (25 mM  

Tris-HCl pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate 

(SDS), including protease/phosphatase inhibitor cocktails; Sigma). Equal amounts of protein (50 μg) 

were electrophoresed on 10% or 12% SDS-polyacrylamide gels and transferred to an Immobilon®-P 

polyvinylidene difluoride membrane, and binding of each specific antibody was visualized using the 

enhanced chemiluminescence method (Amersham Biosciences, Pittsburgh, PA, USA). Equal loading 

of samples was confirmed by re-probing the membranes with anti-β-actin antibody. The band density 

from immunoblots was analyzed using Multi Gauge Ver. 3.0 software (Fujifilm, Tokyo, Japan). 

3.8. Statistics 

All values are expressed as the mean ± SD of at least three independent experiments. Significance 

was determined using one-way ANOVA followed by Dunnett’s method (Systat Software Inc., San 

Jose, CA, USA), and p < 0.05 was considered significant. 
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4. Conclusions 

In this study, the beneficial effects of fucoidan on alcohol-induced liver damage in mice were 

evaluated. Following alcohol feeding to mice, there were significant increases in liver enzyme 

aspartate (AST) and alanine (ALT) transaminases. However, fucoidan administration prevented the 

alcohol-induced increase of these liver enzymes. The critical fibrogenic mediator, TGF-β1, was highly 

expressed in both the liver of alcohol-fed mice and in vitro in HepG2 cells. In both cases, this 

upregulation of TGF-β1 was strongly suppressed by fucoidan supplementation. The augmented 

expression of pro-inflammatory COX-2 and NO production by alcohol exposure was also markedly 

suppressed by fucoidan treatment in mice and HepG2 cells. In addition to reducing proinflammatory 

mediators, fucoidan enhanced the expression of hepatoprotective HO-1 in both mice and HepG2 cells. 

HO-1 acts as an antioxidant and contributes to inhibiting liver inflammatory mediators, including 

iNOS and COX-2. TGF-β1 and COX-2, which have been widely considered to be the most important 

inflammatory and fibrogenic cytokines in alcohol-induced liver injury. Our results showed that 

fucoidan supplementation protects against ethanol-induced liver injury, possibly through suppressing 

hepatic production of the inflammatory cytokines, such as TGF-β1, COX-2 and NO, and enhancing the 

oxidant defense systems via the activation of the HO-1 pathway. It is unclear whether these determined 

effects of fucoidan are working separately or together to protect liver cells. Therefore, the protective 

role of fucoidan on alcohol-induced liver damage and its underlying mechanisms should be  

further investigated. 

Collectively, our findings suggest that fucoidan from Fucus vesiculosus is a potential candidate for 

attenuating alcohol-induced liver damage. 
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