Supplementary Information

Figure S1. Screening of compounds that activate the p53 pathway. HCT116-p53 FL reporter cells were incubated with natural compounds. After 15 h, firefly luciferase activity was determined. The results represent the average of three experiments.

Figure S2. Pharmaological inhibitors of ATM and AMPK did not abrogate ilimaquinone- and ethylsmenoquinone-mediated p53 activation. (**A**,**B**) RKO-p53 FL reporter cells were treated with IQ (10 μ M) or ESQ (10 μ M) with or without caffeine (2 Mm) (**A**) or compound C (10 μ M) (**B**). After 15 h, firefly luciferase activity was determined. The results represent the average of three experiments. Bars indicate standard deciations.

Figure S3. Representative light field images of GFP-LC3-labeled in HCT-116 cells 24 h after exposure to IQ and ESQ.

Figure S4. ilimaquinone and ethylsmenoquinone did not affect on the intracellular β -catenin level in HCT116 cells. (**A**,**B**) Cytosolic proteins were prepared from HCT116 cells treated with vehicle (DMSO) or the indicated concentrations of IQ and ESQ for 15 h before being subjected to western blotting using anti- β -catenin antibodies. The blots were re-probed with anti-actin antibodies as a loading control.

	Compound
1	3,5-dibromo-1-hydroxy-4,4-dimethoxy-2,5-cyclohexadiene-1-acetamide
2	Aeroplysinin-2
3	Aeroplysinin-1
4	2-(3,5-dibromo-2-hydroxy-4-methoxyphenyl)acetic acid
5	Z-3,5-dibromo-4-ethoxy-1-hydroxy-4-methoxycyclohexa-2,5-dien-1-yl acetic acid
6	2-(3,5-dibromo-4-hydroxyphenyl)acetamide
7	3-(3-bromo-4-hydroxyphenyl)propanoic acid
8	purealidin R
9	2-(3,5-Dibromo-4,4-diethoxy-1-hydroxycyclohexa-2,5-dien-1-yl)acetamide
10	(R,S)-[3.5-dibromo-4-[(2-oxo-5-oxazolidinyl)]methoxyphenyl]-2-oxazolidinone
11	smenospongidine
12	Dactyloquinone B
13	Dactyloquinone D
14	Cyclospongiaquinone-1
15	ilimaquinone

Table S1.	The natural	compounds	used in	this study.

1(er 1.111 1
10	5-epi-ilimaquinone
17	(–)-Nakijinol E
18	(+)-5-epi-nakijinol E
19	Mixture of nakijinone A and 5-epi-nakijinone A
20	Thimine
21	L-thymidine
22	(–)-Dactylospongenone E
23	Mixture of 5-epi-dactylospongenone E and 5-epi-dactylospongenone F
24	Debromoaplysin
25	Debromoisolaurinterol
26	Debromolaurinterol
27	Laurinterol
28	Debromolaurinterol acetate
29	Epoxyvenustin
30	15-bromo-2,16-diacetoxyparguer-9(11)-en-7,16-diol
31	Isodictytriol
32	Aplykurodin A
33	Aplykurodin B
34	(±)-Aplysin 20
35	Desmosterol
36	Cholesterol
37	3β , 5β , 14α -trihydroxy cholest-7-en-6-one
38	5α , 6α -Epoxycholest-8(14)-ene-3 β , 7α -diol
39	Cholest-7-ene-3 β ,5 α ,6 β -triol
40	α-Tocopherolquinol
41	Protopine
42	Nantenine
43	Nornantenine
44	Tetrahydroberberrubine

 Table S1. Cont.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).