Supplementary Information

- A Flash silica gel column (20% stepwise elution from PS \rightarrow DCM \rightarrow EtOAc \rightarrow MeOH)
- B RP HPLC (100% CH_3CN)
- $C RP HPLC (95\% CH_3CN/H_2O)$
- D fractions combined, Sephadex LH-20 column (100% MeOH)
- E RP HPLC (85% CH_3CN/H_2O)
- F RP-HPLC (90% CH₃CN/H₂O)
- PS petroleum spirits (60-80°C)
- DCM dichloromethane

EtOAc -ethyl acetate

MeOH - methanol

Figure S1. Bioassay-guided isolation scheme for S. paradoxum.

Figure S2. Analytical HPLC chromatogram of DCM crude extract of *S. paradoxum*.

Figure S3. Analytical HPLC chromatogram of MeOH crude extract of *S. paradoxum*.

Figure S4. ¹H NMR spectrum (500 MHz, CDCl₃) of DCM crude extract of *S. paradoxum*.

Figure S5. ¹H NMR spectrum (500 MHz, *d*₆-DMSO) of MeOH crude extract of *S. paradoxum*.

Figure S6. [A] HPLC-MS chromatographic trace showing the corresponding high resolution m/z ions of peaks A–J (Negative mode ESI MS with UV detection at 222 nm) and [B] On-flow 2D HPLC-NMR contour plot resulting from the analysis of the dichloromethane crude extract of *Sargassum paradoxum* showing the detection of peaks A–J.

Figure S7. Stop-flow WET1D Proton NMR spectrum of peak A (3.10 min) (compound 1).

Figure S8. gCOSY NMR spectrum (from stop-flow HPLC-NMR) of peak A (3.10 min) (compound 1).

Figure S9. gHSQCAD NMR spectrum (from stop-flow HPLC-NMR) of peak A (3.10 min) (compound 1).

Figure S10. gHMBCAD NMR spectrum (from stop-flow HPLC-NMR) of peak A (3.10 min) (compound 1).

Figure S11. High resolution negative ESI-MS of peak A (3.10 min) (compound 1) from HPLC-MS.

Figure S12. Stop-flow WET1D Proton NMR spectrum of peak B (4.80 min) (compound 2).

Figure S13. gCOSY NMR spectrum (from stop-flow HPLC-NMR) of peak B (4.80 min) (compound 2).

Figure S14. gHSQCAD NMR spectrum (from stop-flow HPLC-NMR) of peak B (4.80 min) (compound 2).

Figure S15. gHMBCAD NMR spectrum (from stop-flow HPLC-NMR) of peak B (4.80 min) (compound 2).

Figure S16. Single irradiation nOe NMR spectrum (from stop-flow HPLC-NMR) of peak B (compound **2**) showing the irradiation of $\delta_{\rm H}$ 6.69 (H-10').

Figure S17. High resolution negative ESI-MS of peak B (4.80 min) (compound 2) from HPLC-MS.

Figure S18. On-flow WET1D Proton NMR spectrum of peak C (5.51 min) (compound 5).

Figure S19. Stop-flow WET1D Proton NMR spectrum of peak C (5.51 min) (compound 5).

Figure S20. gCOSY NMR spectrum (from stop-flow HPLC-NMR) of peak C (5.51 min) (compound 5).

Figure S21. High resolution negative ESI-MS of peak C (5.51 min) (compound 5) from HPLC-MS.

Figure S22. On-flow WET1D Proton NMR spectrum of peak D (5.81 min) (compound 6).

Figure S23. Stop-flow WET1D Proton NMR spectrum of peak D (5.81 min) (compound 6).

Figure S24. gCOSY NMR spectrum (from stop-flow HPLC-NMR) of peak D (5.81 min) (compound 6).

Figure S25. High resolution negative ESI-MS of peak D (5.81 mins) (compound 6) from HPLC-MS.

Figure S26. Stop-flow WET1D Proton NMR spectrum of peak E (6.90 mins) (compound 7).

Figure S27. gCOSY NMR spectrum (from stop-flow HPLC-NMR) of peak E (6.90 min) (compound 7).

425.2	2694			
	1			
	461.245	4		
	l			
 	طهيرا متصح والمتعار والمتعال والمعالية والمتعال وال	يتريقه والمستحد والمتنا والمتعاقب	<u>վերունութին առանականներ</u>	المتقامية والمتعالية

Figure S28. High resolution negative ESI-MS of peak E (6.90 min) (compound 7) from HPLC-MS.

Figure S29. Stop-flow WET1D Proton NMR spectrum of peak F (7.79 min) (compound 9).

Figure S30. gCOSY NMR spectrum (from stop-flow HPLC-NMR) of peak F (7.79 min) (compound 9).

Figure S31. High resolution negative ESI-MS of peak F (7.79 min) (compound 9) from HPLC-MS.

Figure S32. Stop-flow WET1D Proton NMR spectrum of peak G (9.81 min) (compound 10).

Figure S33. High resolution negative ESI-MS of peak G (9.81 min) (compound 10) from HPLC-MS.

Figure S34. Stop-flow WET1D Proton NMR spectrum of peak I (14.70 min) (compound 11).

Figure S35. gCOSY NMR spectrum (from stop-flow HPLC-NMR) of peak I (14.70 min) (compound 11).

Figure S36. gHSQCAD NMR spectrum (from stop-flow HPLC-NMR) of peak I (14.70 min) (compound 11).

Figure S37. gHMBCAD NMR spectrum (from stop-flow HPLC-NMR) of peak I (14.70 min) (compound 11).

Figure S38. Single irradiation nOe NMR spectrum (from stop-flow HPLC-NMR) of peak I (compound 11) showing the irradiation of $\delta_{\rm H}$ 6.69 (H-10').

Figure S39. High resolution negative ESI-MS of peak I (14.70 min) (compound 11) from HPLC-MS.

Figure S40. Stop-flow WET1D Proton NMR spectrum of peak J (18.36 min) (compound 12).

Figure S41. gCOSY NMR spectrum (from stop-flow HPLC-NMR) of peak J (18.36 min) (compound 12).

Figure S42. High resolution negative ESI-MS of peak J (18.36 min) (compound 12) from HPLC-MS.

Figure S43. ¹H NMR spectrum (500 MHz, CDCl₃) of paradoxhydroquinone (**5**) and 2-[11-(hydroxymethyl)-3,7,15-trimethyl-2,6,10,14-hexadecatetraen-1-yl]-6-methyl-1,4-benzenediol (**6**) mixture.

Figure S44. gCOSY NMR spectrum (500 MHz, CDCl₃) of paradoxhydroquinone (**5**) and 2-[11-(hydroxymethyl)-3,7,15-trimethyl-2,6,10,14-hexadecatetraen-1-yl]-6-methyl-1,4-benzenediol (**6**) mixture.

Figure S45. gHSQCAD NMR spectrum (500 MHz, CDCl₃) of paradoxhydroquinone (**5**) and 2-[11-(hydroxymethyl)-3,7,15-trimethyl-2,6,10,14-hexadecatetraen-1-yl]-6-methyl-1,4-benzenediol (**6**) mixture.

Figure S46. gHMBCAD NMR spectrum (500 MHz, CDCl₃) of paradoxhydroquinone (**5**) and 2-[11-(hydroxymethyl)-3,7,15-trimethyl-2,6,10,14-hexadecatetraen-1-yl]-6-methyl-1,4-benzenediol (**6**) mixture.

Figure S47. High resolution negative ESI-MS of paradoxhydroquinone (**5**) and 2-[11-(hydroxymethyl)-3,7,15-trimethyl-2,6,10,14-hexadecatetraen-1-yl]-6-methyl-1,4-benzenediol (**6**) mixture.

Figure S48. ¹H NMR spectrum (500 MHz, CDCl₃) of sargaquinal (8).

Figure S49. gCOSY NMR spectrum (500 MHz, CDCl₃) of sargaquinal (8).

Figure S50. gHSQCAD NMR spectrum (500 MHz, CDCl₃) of sargaquinal (8).

Figure S51. gHMBCAD NMR spectrum (500 MHz, CDCl₃) of sargaquinal (8).

Figure S52. Band selective NOESY NMR spectrum (500 MHz, CDCl₃) of sargaquinal (8) showing the irradiation between $\delta_{\rm H}$ 4.15-6.40.

Figure S53. ¹H NMR spectrum (500 MHz, CDCl₃) of paradoxquinone (10).

Figure S54. gCOSY NMR spectrum (500 MHz, CDCl₃) of paradoxquinone (10).

Figure S55. gHSQCAD NMR spectrum (500 MHz, CDCl₃) of paradoxquinone (10).

Mar. Drugs 2015, 13

Figure S56. gHMBCAD NMR spectrum (500 MHz, CDCl₃) of paradoxquinone (10).

Figure S57. Single irradiation nOe NMR spectrum (500 MHz, CDCl₃) of paradoxquinone (10) showing the irradiation of $\delta_{\rm H}$ 5.53 (H-10').

Figure S58. High resolution negative ESI-MS of paradoxquinone (10).

Figure S59. ¹H NMR spectrum (500 MHz, CDCl₃) of (2-[11-(hydroxymethyl)-3,7,15-trimethyl-2,6,10,14-hexadecatetraen-1-yl]-6-methyl-1,4-benzoquinone (**12**) and paradoxquinone (**15**) mixture.

Figure S60. gCOSY NMR spectrum (500 MHz, CDCl₃) of (2-[11-(hydroxymethyl)-3,7,15-trimethyl-2,6,10,14-hexadecatetraen-1-yl]-6-methyl-1,4-benzoquinone (**12**) and paradoxquinone (**15**) mixture.

Figure S61. gHSQCAD NMR spectrum (500 MHz, CDCl₃) of (2-[11-(hydroxymethyl)-3,7,15-trimethyl-2,6,10,14-hexadecatetraen-1-yl]-6-methyl-1,4-benzoquinone (**12**) and paradoxquinone (**15**) mixture.

Figure S62. gHMBCAD NMR spectrum (500 MHz, CDCl₃) of (2-[11-(hydroxymethyl)-3,7,15-trimethyl-2,6,10,14-hexadecatetraen-1-yl]-6-methyl-1,4-benzoquinone (**12**) and paradoxquinone (**15**) mixture.

Figure S63. Band selective NOESY NMR spectrum (500 MHz, CDCl₃) of (2-[11-(hydroxymethyl)-3,7,15-trimethyl-2,6,10,14-hexadecatetraen-1-yl]-6-methyl-1,4-benzoquinone (**12**) and paradoxquinone (**15**) mixture showing the irradiation between $\delta_{\rm H}$ 4.30–7.30.

105	-ESI Scan (0.3822-0.3983 min, 2 scans) Frag=180.0V rb61r.d Subtract (2)
1 45-	409.2755
35	
12	
25	
12	
1.27	
.10-	
1.1-1	
-00-	
<u>-</u> 1	
.95-	
0.9-	
.85-	
0.8-	
1.75-	
0.7-	
.65-	
0.6-	
1.55-	
0.5-	
.45-	
0.4-	
.35-	
0.3-	
.25-	441,2977
0.2-	400,0040
1.15-	
0.1-	455.2785
.05-	
0-	
	370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 5

Figure S64. High resolution negative ESI-MS of (2-[11-(hydroxymethyl)-3,7,15-trimethyl-2,6,10,14-hexadecatetraen-1-yl]-6-methyl-1,4-benzoquinone (**12**) and paradoxquinone (**15**) mixture.

	OH ↓1 1	18'	CH ₂ OH	
	OH	(b)		
Position	δ _C ^a , mult	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	gCOSY	gHMBC
1	146.4, s			
2	127.6, s			
3	114.0, d	6.46, d (2.5)	5, 1'	1, 4, 5, 1'
4	149.0, s			
5	115.5, d	6.50, d (2.5)	3, 7	1, 3, 4, 7
6	125.5, s			
7	16.1, q	2.18, s	5	1, 5, 6
1'	30.0, t	3.28, d (7.0)	3, 2', 4' ^w , 18' ^w	1, 2, 3, 2', 3'
2'	122.0, d	5.26, t (7.0)	1', 4', 18'	1', 4', 18'
3'	138.1, s			
4'	39.5, t	2.08, m	1′ ^w	5', 18'
5'	26.1, t	2.13, m		4', 7'
6'	124.4, d	5.09, m		4', 5', 19'
7'	135.1, s			
8'	39.8, t	2.00, m	9'	7', 9', 10' 19'
9′	26.1, t	2.13, m	8'	7', 10'
10'	128.9, d	5.30, t (7.5)	9', 20'	8', 9', 12', 20'
11'	138.2, s			
12'	35.2, t	2.12, m		11', 13', 14'
13'	27.1, t	2.11, m		11', 12', 14', 15'
14'	124.4, d	5.09, m	13', 16', 17'	
15'	131.8, s			
16'	17.7, q	1.60, s	13'	14', 15', 17'
17'	25.7, q	1.68, s	13', 14'	14', 15', 16'
18'	16.2, q	1.75, s	1', 2'	2', 3', 4'
19′	16.1, q	1.59, s	5', 6'	7′, 8′
20'	60.4, t	4.11, s	10'	10', 11', 12'
1-OH		ND ^b		
4-OH		ND ^b		
20'-OH		ND ^b		

Table S1. NMR data (500 MHz, CDCl₃) of 2-[11-(hydroxymethyl)-3,7,15-trimethyl-2,6,10,14-hexadecatetraen-1-yl]-6-methyl-1,4-benzenediol (6).

^a Carbon assignments made on the basis of gHSQCAD and gHMBCAD experiments. ^b indicates signal not detected. ^w Indicates weak or long range correlation.

Table S2. NMR data (500 MHz, CDCl₃) of 2-[11-(hydroxymethyl)-3,7,15-trimethyl-2,6,10,14-hexadecatetraen-1-yl]-6-methyl-1,4-benzoquinone (**12**).

		0 1 1 1'	8'	CH ₂ OH	
		"3			
		он	(12)		
Position	δ _C ^a , mult	$\delta_{\rm H}$ (<i>J</i> in Hz)	gCOSY	gHMBCAD	bsNOESY
1	188.0, s		0	0	
2	148.5, s				
3	132.3, d	6.46, bs	5, 1'	1, 4, 5	
4	188.0, s				
5	133.2, d	6.54, bs	3, 7	1, 3, 4	
6	145.9, s				
7	16.0, q	2.05, s	5	1, 5, 6	
1′	27.5, t	3.13, d (7.5)	3, 2', 18'	1, 2, 3, 2', 3'	
2'	118.1, d	5.15, t (7.5)	1', 18'	1', 4', 18'	5, 1', 4'
3'	139.8, s				
4′	39.6, t	2.07, m		2', 3', 5', 18'	
5'	26.2, t	2.11, m	6', 18' ^w , 19' ^w	3', 4', 6'	
6′	124.2, d	5.10, m	5'	4', 5', 19'	5', 8'
7'	135.1, s				
8′	39.8, t	2.01, m		6', 10'	
9′	26.2, t	2.16, m	10′	8', 10', 11'	
10'	128.5, d	5.30, t (7.0)	9', 20'	8', 9', 12', 20'	12'
11'	138.4, s				
12'	35.2, t	2.12, m		11', 13', 14', 15'	
13'	27.1, t	2.12, m	14′, 17′ ^w	11', 12', 14', 15'	
14'	124.2, d	5.10, m	13', 16'		17'
15'	131.7, s				
16′	17.7, q	1.60, s		14', 15'	
17′	25.7, q	1.68, s	13′ ^w	14', 15', 16'	
18′	16.1, q	1.61, s		2', 3'	
19′	16.1, q	1.61, s			
20'	60.3, t	4.11, s		10', 11', 12'	
20'-OH		ND ^b			

^a Carbon assignments made on the basis of gHSQCAD and gHMBCAD experiments. ^b indicates signal not detected. ^c bs stands for band selective (Selective NOESY experiment). ^w Indicates weak or long range correlation.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).