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Abstract: Marine invertebrate-associated symbiotic bacteria produce a plethora of novel 

secondary metabolites which may be structurally unique with interesting pharmacological 

properties. Selection of strains usually relies on literature searching, genetic screening and 

bioactivity results, often without considering the chemical novelty and abundance of 

secondary metabolites being produced by the microorganism until the time-consuming 

bioassay-guided isolation stages. To fast track the selection process, metabolomic tools 

were used to aid strain selection by investigating differences in the chemical profiles of  

77 bacterial extracts isolated from cold water marine invertebrates from Orkney, Scotland 

using liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear 

magnetic resonance (NMR) spectroscopy. Following mass spectrometric analysis and 

dereplication using an Excel macro developed in-house, principal component analysis 

(PCA) was employed to differentiate the bacterial strains based on their chemical profiles. 
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NMR 
1
H and correlation spectroscopy (COSY) were also employed to obtain a chemical 

fingerprint of each bacterial strain and to confirm the presence of functional groups and 

spin systems. These results were then combined with taxonomic identification and bioassay 

screening data to identify three bacterial strains, namely Bacillus sp. 4117, Rhodococcus sp. 

ZS402 and Vibrio splendidus strain LGP32, to prioritize for scale-up based on their 

chemically interesting secondary metabolomes, established through dereplication and 

interesting bioactivities, determined from bioassay screening. 

Keywords: metabolomics; dereplication; symbiotic bacteria; mass spectrometry; NMR; 

multivariate analysis; metabolic profiling 

 

1. Introduction 

Marine invertebrates such as sponges are a rich source of novel metabolites that are of medicinal 

interest due to their anti-cancer, anti-tumor, anti-viral and antibacterial properties [1–4]. However, 

there is a bottleneck when developing drugs from marine invertebrates. They are largely uncultivable 

and it is unsustainable to collect large quantities from marine habitats to facilitate the extraction of 

enough novel marine natural products for the supply chain, making pharmacological development 

difficult. Sponge-associated endosymbiotic bacteria are highly concentrated within the sponge matrix 

making up to 50%–60% of the dry weight of the sponge [5]. They are hypothesized to stabilize the 

sponge skeleton, process metabolic waste and provide chemical defense against environmental stresses 

such as predators and overgrowth of fouling organisms, by producing a plethora of novel secondary 

metabolites that may be structurally unique with interesting pharmacological properties [5–7], e.g., as 

antimicrobials [8] or anti-cancer drugs [9]. 

There is evidence to suggest that these microbes, which live symbiotically with the host  

organism, are the true source of many bioactive compounds discovered from associated marine 

invertebrates [5,10–15]. Some of these compounds can be produced in large quantities on a 

biotechnological scale using bacterial fermentation processes without the need to harvest the host 

organism and are therefore an economically viable and sustainable source of commercial quantities of 

metabolites of interest [16]. For example, the anti-tumor drug bryostatin 1, isolated from the marine 

bryozoan Bugula neritina and synthesized by the symbiotic bacterium Candidatus Endobugula sertula [9], 

is now produced using a large-scale fermentation process to ensure supply [17]. 

Key to the exploitation of marine bacteria as sources of novel marine natural products has been the 

implementation of 16S rRNA-based phylogenetic analysis which has been used extensively to provide 

an insight into sponge-specific microbial communities [18,19]. The development of new analytical 

technologies and instrumentation has made it possible to rapidly obtain a chemical fingerprint of 

bacterial extracts to potentially discover new natural products from only a few milligrams of material. 

Historically, selection of bacterial strains has relied on literature searching, genetic screening and 

bioactivity results [20]. However, cultivated bacterial strains from the same genus may appear 

morphologically identical, but may produce different, structurally diverse secondary metabolites [21,22]. 

In contrast, strains that appear different by morphology and 16S rRNA sequencing often produce the 
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same secondary metabolites, making it difficult to pinpoint interesting bacterial strains before the  

time-consuming bioassay-guided fractionation and purification stages. 

Dereplication is the rapid identification of known metabolites in a sample mixture [23–25]. 

Dereplication uses chromatographic and spectroscopic methods and database searching, for example 

using the MarinLit [26] and AntiBase [27] databases, to screen samples for known natural products, 

which saves time and reduces the possibility of redundancy during natural product discovery programs. 

Common dereplication methods involve using liquid chromatography coupled to a photo diode array 

(LC-PDA) system or LC-PDA with mass spectrometry (MS) using electrospray ionization (ESI) [28,29] 

or atmospheric pressure chemical ionization (APCI) as soft-ionization sources. Liquid chromatography 

mass spectrometry (LC-MS) high resolution instruments such as Quadrupole Time-of-Flight (QTOF) 

or Orbitrap provide accurate mass data (0.5–5 ppm) with elemental composition output for a given  

ion [30]. This enables natural products databases to be queried in a high throughput manner, with 

fewer candidate metabolite IDs being observed for each feature. With a Quadrupole or an ion trap, 

data-dependent MS/MS and MS
n
 can also be carried out to provide additional structural information 

(e.g., using a Q-TOF or LTQ-Orbitrap). TOF-based mass spectrometers enable a higher degree of 

certainty for identification of elemental compositions on the basis of both mass accuracy and isotope 

fit [28,31–33]. These instruments offer high sensitivity and accuracy in the ng or pg range and, on 

several newer-generation instruments, spectra can be obtained in positive and negative ionization modes 

during a single experiment. 

Metabolomics is defined as the comprehensive analysis of the small molecules (MW < 1000) in a 

biological system under a given set of conditions [34]. At the biochemical level, the metabolome  

is most closely related to the phenotype, providing insight into biological function [35]. Mass 

spectrometry and nuclear magnetic resonance (NMR)-based metabolomics are readily applicable to 

natural products research, offering the ability to deal with complex mixtures in a highly efficient 

manner [36–39]. Metabolomics methods are combined with chemoinformatics approaches,  

e.g., unsupervised multivariate analysis methods, to uncover interesting variation amongst groups of 

samples (e.g., in terms of their m/z values for mass spectrometry data or chemical shifts for NMR  

data) [40]. Microbial metabolomics is readily applicable to investigate the physical state of cells [41], 

to investigate intracellular metabolites [40,41] and for the optimization of experimental conditions for 

the production of pharmacologically active compounds [23,25]. 

The aims of the study were to utilize metabolomics tools to investigate differences in secondary 

metabolite production in marine symbiotic bacteria to fast track the strain selection and dereplication 

processes for natural product drug discovery. LC-HRMS and principal component analysis (PCA) 

were used to pinpoint strains that were chemically diverse in a high throughput and untargeted manner. 

LC-HRMS results were then correlated with bioassay screening results to prioritize strains for drug 

discovery efforts. The study was designed to monitor secondary metabolite production, using 

extraction methodology optimized for the recovery of secondary metabolites. In comparison with other 

studies that compared strains from the same species [22,42], we were able to compare chemically 

diverse, non-related strains from four different phyla, cultured on a variety of growth media. 

Additionally, an Excel macro, developed in-house, was used to sort and remove features (pairs of m/z 

ratios and retention times) associated with the different culture media used. This reduced the 
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difficulties in spectral interpretation that are often encountered when comparing bacterial strains grown 

on different culture media. 

It was predicted that bacterial extracts containing the same secondary metabolites would cluster 

together whilst those extracts with chemically distinct metabolites would be observed as outliers using 

unsupervised multivariate analysis [23,39], providing a means to focus on chemically diverse extracts 

during dereplication. Therefore we used a combinatorial approach for strain selection, utilizing a data 

analysis workflow that encompassed features of dereplication and metabolomics to establish the 

chemical profiles of bacterial extracts in a high throughput manner. By incorporating metabolomics 

approaches, dereplication could be focused on chemically diverse bacterial extracts. 

2. Results and Discussion 

2.1. Diversity of Invertebrate-Associated Bacteria 

Several species of cold water marine invertebrates found in Scottish coastal waters (Orkney Islands, 

Scotland, UK) were swabbed for microbial symbionts. Specimens were then inoculated onto various 

types of agar media, which yielded a total of 77 isolates (Figure 1 and Table S1 in Supplementary 

Information). Suberites ficus (sponge) yielded the highest number of isolates (22) followed by sponges 

Mycale (Carmia) similaris (14), Grantia compressa (12) and an unidentified hydroid (12), followed by 

sponges Leucosolenia sp. (8) and Sycon ciliatum (4), the soft coral Alcyonium digitatum (4) and sea 

urchin Diadema (1) (Figure 1a). A variety of isolation media were utilized in this study to maximize 

the diversity of the isolates obtained. M1 obtained the highest recovery (36 isolates) whilst marine  

agar recovered only one isolate (Figure 1b). In terms of the diversity of isolates, M1 produced isolates 

belonging to 15 different genera followed by ISP2 and Luria (seven genera, respectively). Oligo 

(oligotrophic) media produced isolates from four genera, R2A yielded two genera and marine agar 

only one genus (Table S1 in Supplementary Information). This variation is consistent with the results 

of previous studies [43,44]. By 16S rRNA sequencing, the phylogenetic affiliations of 75 of the 

isolates were determined whilst a further two isolates remained unidentified (Figure 1c). The isolates 

were grouped to four different phyla representing 23 different identified genera (Figure 1c,d). The 

most abundant phylum was the Proteobacteria of which 42 were Gammaproteobacteria whilst four 

were Alpha proteobacteria, followed by the Actinobacteria (23), Bacteriodetes (4) and Firmicutes (2). 

This is consistent with the observation that it is more successful to culture Gammaproteobacteria than 

Alphaproteobacteria [45]. The highest numbers of isolates were affiliated to the genus Vibrio (21) 

followed by uncultured Gammaproteobacteria (12), Psychrobacter (6), Micrococcus (6) and 

Microbacterium (4) (Figure 1d). High numbers of Vibrio sp. are consistent with previous studies,  

as they are ubiquitous in the marine environment and are associated with various algae and animals 

such as sponges and corals [46]. 

2.2. Data Processing and Data Clean-Up 

Following culturing and chemical extraction, the crude extracts from the 77 bacterial isolates were 

subjected to metabolomic analysis according to our pre-defined metabolomics workflow pathway 

(Figure 2). To maximize secondary metabolite detection in this diverse bacterial population (with a 
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range of phylogenetic affiliations and culture media), an Exactive benchtop Orbitrap mass 

spectrometer (Thermo Scientific, Bremen, Germany) that permitted fast polarity switching was used 

for untargeted dereplication. The Exactive allows positive and negative mode switching with a 

maximum scan time of 0.25 s and the instrument always gives good mass accuracy of <3 ppm. The 

average chromatographic base peak width is about 30 s; therefore, there is adequate time to acquire 

sufficient scans through the peak in switching mode. 

Figure 1. Classification of the isolates by (a) source invertebrate species; (b) cultivation 

media; (c) phyla and (d) by genera (if known). 

 

Figure 2. Metabolomics and dereplication workflow to aid strain selection. 

 

Key features of the metabolomics workflow include data processing in MZmine 2.10 for  

peak detection, deconvolution, deisotoping, filtering (to narrow the retention time search window to  

5–40 min), alignment and gap filling to make multiple data files comparable (Experimental Section 3.5 

and Supplementary Information). In order to differentiate between structural isomers that eluted at  

the same retention time, chromatographic deconvolution using the local minimum search algorithm 
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was applied in MZmine. The isomers were separated into individual LC-HRMS features if their 

chromatographic 3D resolution was sufficient. However, it is a real challenge to get a perfect setting 

for this function that would work correctly every time. The raw data were manually validated to 

confirm the output for outlier and bioactive strains only. The adduct and complex search tools were 

used for the identification of non-proton adducts and complexes, respectively. This minimized  

mis-assignment of features such as solvent or salt adducts and complexes such as dimers. The formula 

prediction tool enabled the possible molecular formulae for each feature to be predicted. The elemental 

composition output was supported by the heuristic isotopic pattern filter in MZmine [47]. The isotope 

fit scores were calculated for each isotope ion then combined with the individual fit scores which were 

weighed by their expected intensities. For each ion peak, the m/z and intensity differences between  

the expected and the measured patterns were obtained. Those differences were then normalized 

(normalized deviation values) to the maximum allowed mass and intensity deviation of 0.01%. The 

relative intensities for the expected and measured values were derived from the isotopic pattern 

spectra. Each value is a percentage of the isotope’s intensity relative to that of A0. The normalized 

differences were summed by vector addition of intensity (I) and mass (M) deviations for m/z ions  

A0 [X], to A1 [X + 1], A2 [X + 2], and A3 [X + 3] [48]. 

Positive and negative data were then exported as a CSV file for further clean-up. One limitation of 

MZmine 2.10 is that data obtained in positive and negative ionization modes cannot be combined; 

therefore, it is not possible to assign the ionization mode for each feature. Thus, a macro was written in 

Excel that enabled positive and negative ionization mode data files to be processed together. This 

enabled the features that were observed in either or both positive and negative modes to be merged for 

further statistical analysis. Hence, this minimized the risk of missing poorly ionizing compounds only 

detectable in one mode. For example, phenolic and anthraquinone compounds poorly ionize in positive 

mode but ionize very well in negative mode [25], therefore such compounds were not deleted from the 

surveyed peaks. 

Another complication when analyzing bacterial extracts is that they are cultured on complex growth 

media which generates multiple peaks in mass spectrometry and NMR datasets. The culture medium is 

a complex mixture of constituents and unutilized components that could cause interference in the 

detection of true bacterial secondary metabolites during dereplication. Therefore, a medium blank  

was analyzed together with the bacterial extracts in LC-HRMS and NMR experiments during data 

processing. The obtained features from the blank were regarded as interference and subtracted.  

A threshold intensity ratio of 1/20 was used if ion peaks (MS) were found in both the medium blank 

and the sample. The Excel macro was then utilized to extract and remove peaks originating from the 

culture medium by applying an algorithm to calculate the intensity of each m/z in both bacterial and 

medium extracts. This removed features thought to originate from the medium by only keeping those 

features with peak intensities 20 times greater in the bacterial samples than in the medium. Bacterial 

extracts were grouped according to their culture medium and this data clean-up step was carried out for 

each of the six types of culture medium used. 

Using the Excel macro, the data were then recombined into CSV files that were utilized for 

statistical analysis in SIMCA-P V13.0 (Umetrics, Umeå, Sweden) as well as for dendrogram and heat 

map generation in the R program (version ×64 2.15.2) (R Foundation for Statistical Computing, 

Vienna, Austria). The Excel macro was also utilized to dereplicate the samples, matching each m/z 
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found in each bacterial extract with compounds in the AntiMarin database (using a m/z threshold of  

+ or −3 ppm) to provide details on the putative identities of all metabolites and to calculate the number 

of remaining unidentified features for each extract. This macro contains a function to identify the top 

20 features (ranked by peak intensity) and corresponding putative identities in each sample by creating 

individual CSV files for each extract. Hits from the database were accessed using ChemBioFinder 

version 13 (PerkinElmer Informatics, Cambridge, UK) and structures were confirmed by tandem mass 

spectrometry (MS/MS) and two-dimensional 
1
H-

1
H correlation NMR spectroscopy (

1
H-

1
H COSY). For 

COSY analysis, spectra from the bacterial extracts were overlaid with spectra from the culture medium 

to determine signals and cross peaks originating from the culture medium. Three outlier strains  

were chosen for detailed discussion in this paper to demonstrate the application of different 

methodologies in dealing with a chemically diverse set of samples showing variation in terms of 

secondary metabolite production. 

2.3. Multivariate Analysis for Strain Selection 

Processed data was analyzed using SIMCA-P V 13.0 (Umetrics, Umeå, Sweden) using the 

unsupervised statistical analysis method, principal component analysis (PCA). PCA was used to 

identify differing features found in the outlying bacterial strains to aid prioritization of the strains with 

interesting secondary metabolomes. Four predominant outliers, Bacillus sp. 4117, Rhodococcus sp. 

ZS402 Vibrio splendidus strain LGP32, and Psychrobacter sp. were observed, indicating that there 

was variance in the secondary metabolites produced by these bacterial extracts as they lay furthest 

from the main group of samples in the score plot (Figure 3a). From the primary general screen, the 

extracts from these isolates were also found to have interesting bioactivities against Trypanosoma 

brucei brucei and Enterococcus faecalis, as well as in target-based functional assays which includes 

TRPV1, TRPA1 and TRPM8 (pain and cancer) as well as PTPI1 and PPARα (inflammation, diabetes, 

metabolic disorders and atherosclerosis) (data not shown). Rhodococcus sp. ZS402 was also identified 

as NRPS positive from genetic screening, containing the non-ribosomal peptide genes. The PCA 

loading plot (Figure 3b) illustrates the features (m/z ratios, displayed as green dots) that are responsible 

for the separation shown in the score plot (Figure 3a), indicating the production of unique secondary 

metabolites particularly by two bacterial strains, Rhodococcus sp. ZS402 and Vibrio splendidus strain 

LGP32. Using SIMCA-P it is possible to select any point in the loadings plot to highlight the putative 

identity of any metabolite and to investigate the peak intensity of this metabolite across the sample set 

(Figure 3c). Two metabolites (m/z 265.1476 and 279.1631) were found to be abundant in the 

Rhodococcus sp. compared to the other extracts (Figure 3c); however, they were also observed in the 

Psychrobacter sp. (which was also an outlier in the PCA scoring plot lying adjacent to the 

Rhodococcus sp.) with lower peak intensities, suggesting they both produce some similar metabolites 

not found in the other extracts. However, further study with Psychrobacter sp. was halted due to 

observed instability in the production of the secondary metabolites leading to disappearance of 

bioactivity after freezing and thawing of the bacterial isolate. It is also worth mentioning that the 

outlier strains were repeatedly subjected to MS and NMR analysis every three months prior to scale-up 

work to evaluate their stability. Heat map analysis was utilized to look at the secondary metabolomes 

in the 77 bacterial extracts (Figure 4a,b) which is a visual representation of the metabolite diversity in 
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the extracts. Multiple blue bands indicate a rich secondary metabolome with a high diversity of 

metabolites whilst fewer blue bands indicate that a more limited set of secondary metabolites are being 

produced. Heat maps were overlaid with dendrograms to relate the chemical profiles to the results of 

the multivariate analysis (Figure 4a). The heat maps were also arranged by species (Figure 4b) to 

investigate the chemical diversity amongst strains from the same species, exemplified by the 21 strains 

of Vibrio sp. that have very different heat map profiles (Figure 4b). It can be seen that several species 

from different genera have rich chemical profiles whereas other strains do not (Figure 4a,b). Heat map 

analysis can also be used to gain an overview of the molecular weight range of metabolites as the 

features were sorted by m/z ratios (Figure 4a,b). 

Figure 3. (a) Principal component score plot analysis of 77 strains clustered according to 

features (m/z ratios) from mass spectral data (R2 = 0.4). Bioactivities of outliers are 

represented using symbols; (*) Anti-trypanosomal activity against Trypanosoma brucei 

brucei, (•) PTP1B, (Δ) TRPV1, (◊) TRPA1, (□) TRPM8, (○) PPARα, and (▪) Enterococcus 

faecalis. Rhodococcus sp. ZS402 was also found to be NRPS positive (+);  

(b) Accompanying PCA loading plot of the 77 strains investigated in this study;  

(c) Variable intensity plot illustrating two metabolites observed as outliers in (b)  

(m/z 265.1476 and m/z in 279.1631) in Rhodococcus sp. ZS402.  

 

2.4. Chemical Diversity of Natural Products in Outlying Bacterial Extracts 

The limitation of a dereplication study for secondary metabolites, particularly from marine sources, 

is the difficulty to attain a reference standard for every ―hit‖ from the database. To ensure the correctness 

of the identification of the basic structure of the identified peaks, UV, MS/MS data and NMR spectral 

data were used to support the results. However, dereplication through the UV data set was limited only 

to analyzing chromophore-containing metabolites. 
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Figure 4. Heat map based on mass spectrometry data displaying distinct metabolic profiles 

amongst the 77 bacterial species: (a) dendrogram from multivariate analysis overlaid with 

heat map; and (b) heat map organized according to species showing differences in the 

chemical profiles of strains and species. Species observed as outliers from PCA are 

highlighted and labelled using an asterisk *. (Abbreviations; UBC = uncultured bacterial clone, 

UGP clone = uncultured gamma proteobacterium, UMB = uncultured marine bacterium). 

 

In this study, the mass resolution was 50,000 (at m/z 400), which is high enough to distinguish 

isobaric compounds with medium molecular weights (<800 Da). The total number of features 

identified in three of the outlying bacterial extracts by LC-HRMS is documented in Table 1. The 

highest number of features was detected in the Rhodococcus sp. ZS402, where 1198 features were 

detected in positive ionization mode and 2361 features were detected in negative ionization mode. By 

removing features from the ISP2 culture medium, 45% of these features were removed in positive 

ionization mode, whilst in negative ionization mode 27.4% of these features were removed, leaving 

659 in positive mode and 1715 in negative mode. Following dereplication, 28% of features were 

putatively identified (positive and negative modes combined) whilst 72% were unidentified indicating 

that this isolate may contain novel compounds (Table 1). The second highest number of features was 
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detected in the Vibrio splendidus strain LGP32, where 2767 were detected in positive ionization mode 

and 654 features were detected in negative ionization mode. By removing features from the M1 

medium, 61.2% of these features were removed in positive ionization mode, whereas in negative 

ionization mode 5.7% of these features were removed, leaving 1102 in positive mode and 617 in 

negative mode. Following dereplication, 40.7% of features were putatively identified (positive and 

negative modes combined), whilst 59.3% were unidentified (Table 1). In the Bacillus sp. 4115,  

1220 features were detected in positive ionization mode and 1037 features were detected in negative 

ionization mode. By removing features from the M1 medium, 71.6% of these features were removed in 

positive ionization mode, whilst in negative ionization mode 57.8% of these features were removed, 

leaving 359 in positive mode and 438 in negative mode. Following dereplication, 51.3% of features 

were putatively identified (positive and negative modes combined), whilst 48.7% were unidentified 

(Table 1). Base peak chromatograms and tables listing selected interesting secondary metabolites  

from three of the outlying bacterial species are shown below (Figures 5–12 and Tables 1–4). The 

putative identities of metabolites, based on hits from the AntiMarin database, are only given if these 

metabolites have previously been identified from marine bacteria or sponges. 

2.4.1. Dereplication of Bacillus sp. 4115 

The crude ethyl acetate extract of the Bacillus sp. 4115 isolate was active on the initial screen in the 

target-based functional assay on TRPV1 against pain. Metabolites from the Bacillus sp. 4115 extract 

were putatively assigned as peptides through dereplication (Table 2). They were eluted within the 

retention time range of 16–38 mins, when the percentage of organic mobile phase (acetonitrile) was 

greater than 50% (Figures 5–7), and could be detected in both positive and negative ionization modes. 

Several of these were dereplicated using the AntiMarin 2013 natural products database as pumilacidin 

peptides (surfactins) which have already been described from the marine bacterium Bacillus pumilus. 

Pumilacidins have been described to exhibit antiviral activity [49]. Other plausible congeners that 

could not be found in AntiMarin were structural analogs of pumilacidins with varying numbers/length 

of alkyl or peptide side chains that could be targeted for isolation work. It has previously been reported 

that members of the Bacillus genus produce antibiotic peptides as part of their defence mechanism [50]. 

The fragmentation data reveals the presence of the cyclic and linear moities in the peptides compatible 

with those of the pumilacidins. The presence of peptides can be further observed by 2D-COSY 

correlation (Figure 8) of NH signals between 8 and 9 ppm with the alpha protons resonating between  

3 and 5 ppm which gave additional cross peaks upfield from 1 to 2 ppm, representing the beta proton 

in amino acid units. 
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Table 1. Summary of the number of features detected in the outlying bacterial extracts: (a) total number of features in positive and negative 

ionization modes (after the removal of features from solvent with intensity >1 × 10
5
); (b) total number of features after removal of features 

from medium; and (c) total number of features putatively identified by dereplication (from AntiMarin database) and number of unknowns. 

Bacterial Strain 

(a) Total number of 

features(m/z) 

(b) Total number of features (m/z) after 

removal of features (m/z) from medium 

(c) Total number of features identified by 

dereplication with AntiMarin 

Positive ion 

mode 

Negative ion 

mode 
Positive ion mode Negative ion mode 

Putatively identified (positive 

and negative modes) 

Unidentified (positive 

and negative modes) 

Bacillus sp. 4115 1220 1037 
359 

(29.4% remaining) 

438 

(42.2% remaining) 
270 (51.3%) 526 (48.7%) 

Vibrio splendidus 

strain LGP32 
2767 654 

1102 

(39.8% remaining) 

617 

(94.3% remaining) 
699 (40.7%) 1019 (59.3%) 

Rhodococcus sp. 

ZS402 
1198 2361 

659 

(55% remaining) 

1715 

(72.6% remaining) 
519 (28%) 1855 (72%) 

Table 2. Selected metabolites found in Bacillus sp. 4115. NB: All of these metabolites were also detected in negative ionization mode. 

Peak 

ID 

ESI 

Mode 
m/z Rt (min) 

Molecular Formula 

(Isotope Fit Score 

A0 to A3) 

RDB Hits 

Fragmentation Data 

Fragment 

ions 

MS
2
 +Ve 

Chemical 

Formula 
RDB 

Fragment 

ions 

MS
3
 +Ve 

Molecular 

Formula 
RDB 

1 Pos 445.29092 17.5 
C22H40O7N2 

(99.49%) 
4 No hits 

427.27921 

399.28485 

314.19589 

232.15408 

214.14343 

186.14862 

C22H39O6N2

C21H39O5N2 

C16H28O5N 

C11H22O4N 

C11H20O3N 

C10H20O2N 

5 

4 

4 

2 

3 

2 

168.13794 

72.08067 

C10H18ON 

C4H10N 

3 

1 

2 Pos 459.30646 18.6 
C23H42O7N2 

(71.70%) 
4 No hits 

441.29553 

413.30063 

328.21176 

228.15930 

200.16431 

C23H41O6N2 

C22H41O5N2 

C17H30O5N 

C12H22O3N 

C11H22O2N 

5 

4 

4 

3 

2 

146.11752 

86.09630 

C7H16O2N 

C5H12N 

1 

1 
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Table 2. Cont. 

Peak 

ID 

ESI 

Mode 
m/z Rt (min) 

Molecular Formula 

(Isotope Fit Score 

A0 to A3) 

RDB Hits 

Fragmentation Data 

Fragment 

ions 

MS
2
 +Ve 

Chemical 

Formula 
RDB 

Fragment 

ions 

MS
3
 +Ve 

Molecular 

Formula 
RDB 

3 Pos 1036.69141 30.5 
C53H93O13N7 

(99.82%) 
11 

Pumilacidin B// 

(surfactin-1) or 

other cyclic 

peptide 

1018.67596 

937.61896 

685.44714 

667.43732 

455.28571 

C53H92O12N7 

C48H85O12N6 

C33H61O9N6 

C33H59O8N6 

C22H39O6N4 

12 

10 

7 

8 

6 

568.36853 

342.20117 

C28H50O7N5 

C16H28O5N3 

7 

5 

4 Pos 1050.70771 31.4 
C54H95O13N7 

(99.79%) 
11 

Pumilacidin A// 

or other cyclic 

peptide 

1032.69104 

937.61823 

699.46234 

681.45282 

455.28555 

C54H94O12N7 

C48H85O12N6 

C34H63O9N6 

C34H61O8N6 

C22H39O6N4 

12 

10 

7 

8 

6 

568.36816 

342.20087 

C28H50O7N5 

C16H28O5N3 

7 

5 

5 Pos 875.53519 33.5 
C43H77O15N3 

(98.53%) 
7 No hits 

710.38348 

685.41257 

659.46952 

654.51534 

647.45954 

615.44423 

610.48905 

C32H58O15N2 

C31H61O14N2 

C31H67O12N2 

C34H72O10N 

C34H65O10N 

C29H63O11N2 

C32H68O9N 

5 

3 

1 

1 

3 

1 

1 

   

6 Pos  1078.73917 34.5 
C56H99O13N7 

(99.80%) 
11 

Pumilacidin C// 

or other cyclic 

peptide 

1061.72498 

966.65216 

699.46283 

681.45337 

455.28549 

C55H99O13N6 

C49H88O12N7 

C34H63O9N6 

C34H61O8N6 

C22H39O6N4 

10 

10 

7 

8 

6 

568.36859 

342.20135 

C28H50O7N5 

C16H28O5N3 

7 

5 
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Table 2. Cont. 

Peak 

ID 

ESI 

Mode 
m/z Rt (min) 

Molecular Formula 

(Isotope Fit Score 

A0 to A3) 

RDB Hits 

Fragmentation Data 

Fragment 

ions 

MS
2
 +Ve 

Chemical 

Formula 
RDB 

Fragment 

ions 

MS
3
 +Ve 

Molecular 

Formula 
RDB 

7 Pos 889.55163 34.5 
C42H76O14N6 

(84.86%) 
8 No hits 

861.55371 

817.49072 

803.47546 

790.47894 

776.46429 

757.47034 

690.39093 

676.41254 

662.39655 

590.33954 

563.32874 

C41H77O13N6 

C38H69O13N6 

C37H67O13N6 

C37H68O13N5 

C36H66O13N5 

C36H65O11N6 

C31H56O12N5 

C31H58O11N5 

C30H56O11N5 

C26H48O10N5 

C25H47O10N4 

7 

8 

8 

7 

7 

8 

7 

6 

6 

6 

5 

449.26096 

463.27667 

577.34413 

477.25619 

C19H37O8N4 

C20H39O8N4 

C26H49O10N4 

C20H37O9N4 

4 

4 

5 

5 

8 Pos 903.56635 35.6 
C43H78O14N6 

(99.76%) 
8 No hits 

817.49097 

804.49593 

790.47988 

718.42297 

704.40740 

690.42803 

676.41285 

604.35589 

590.34010 

577.34508 

491.27243 

463.27740 

C38H69O13N6 

C38H70O13N5 

C37H68O13N5 

C33H60O13N5 

C32H58O12N5 

C32H60O11N5 

C31H58O11N5 

C27H50O10N5 

C26H48O10N5 

C26H49O10N4 

C21H39O9N4 

C20H39O8N4 

8 

7 

7 

7 

7 

6 

6 

6 

6 

5 

5 

4 

364.20825 C15H30O7N3 3 
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Figure 5. Positive and negative mode base peak chromatograms from outlying bacterial 

sample, Bacillus sp. 4115, annotated to indicate metabolites identified in Table 2. NB: 

several of the metabolites were detected in both positive and negative modes. Positive and 

negative mode base peak chromatograms from M1 agar medium are shown to indicate that 

the annotated metabolites are being produced by the bacteria and are not from the medium. 

 

Figure 6. Mass spectrum for Bacillus sp. 4115 in the positive ionization mode showing the 

presence of a cluster of features within the RT range of 30–39 min. Those annotated with 

an asterisk * are sodium ion adducts, [M + Na]
+
. 
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Figure 7. Deconvoluted chromatogram for Bacillus sp. 4115 in the positive ionization 

mode for extracted ions within the m/z range of 1000–1200 Da. 

 

Figure 8. 2D-NMR COSY spectrum of Bacillus sp. 4115, overlaid with spectrum from M1 

medium. Signals in orange are from the sample and signals in grey are from the medium. 
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2.4.2. Dereplication of Vibrio splendidus Strain LGP32 

The ethyl acetate extract of the Vibrio splendidus strain LGP32 exhibited biological activity against 

Trypanosoma brucei brucei (marker assay system for trypanosomiasis) and PTP1B. Protein-tyrosine 

phosphatase 1B (PTP1B) is a novel therapeutic target for type 2 diabetes mellitus, obesity and related 

states of insulin resistance [51]. Vibrio splendidus strain LGP32 contains many semi-polar metabolites 

indicated by the retention times of the major peaks which ranged from 8 to 25 min (Figure 9). Its  

LC-HRMS and MS/MS data (Table 3) depicted a highly oxygenated set of metabolites, with the 

number of oxygen atoms varying from 4 to 13. The ratio of RDBs (ring-plus-double-bond equivalents) 

to the number of oxygen atoms ranged from 1:2 to 3:5, thus indicating the aromatic nature of the 

metabolites. COSY correlations between 3 to 5 ppm and 6 to 8 ppm shown in Figure 10 indicate the 

presence of a glycosidic-like moiety and an aromatic ring system, respectively. The aromatic signals 

between 6 and 7 ppm signify a phenolic or aniline system. The specified substructures can be found in 

oxyplicacetin, first detected in the mass spectral dereplication analysis of the isolate (Table 3). 

Oxyplicacetin, an anti-coccidal agent, was previously isolated from Streptomyces ramulosus [52,53]. 

Figure 9. Positive and negative mode base peak chromatograms from outlying bacterial 

sample, Vibrio splendidus strain LGP32 annotated to indicate metabolites identified in 

Table 3. Positive and negative mode base peak chromatograms from M1 agar medium are 

shown to indicate that the annotated metabolites are being produced by the bacteria and are 

not from the medium. 
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Figure 10. 2D-NMR COSY spectrum from sample Vibrio splendidus strain LGP32 overlaid 

with media. Cross signals in orange are from the sample and signals in grey are from the 

media. Higlighted correlations indicate substructures from oxyplicacetin. 

 

2.4.3. Dereplication of Rhodococcus sp. ZS402 

The ethyl acetate extract from Rhodococcus sp. ZS402 isolate was found to be active in several of 

the target-based functional assays, which included TRPA1 and TRPM8 against pain, PPARα in 

inflammation, diabetes, or other metabolic disorders, as well as against Enterococcus faecalis. The 

chromatographic trace from Rhodococcus sp. ZS402, indicated that several interesting features were 

observed in both positive and negative ionization modes within the retention time range of 16–23 min 

(Figure 11). Only one of these features was identified using the AntiMarin natural products database 

during dereplication as xestoaminol C, an unsaturated acyl compound previously described from the 

sponge Xestospongia sp. Several others could not be dereplicated using AntiMarin but were indicated 

to be structural derivatives with additional C2H4 on their side chains. Undereplicated features observed 

in the negative ionization mode specified the presence of sulfated metabolites from the molecular 

formula identification searches in Xcalibur and MZmine [30], as well as the occurrence of the sulfate 

fragment ion [HSO4]
−
 at m/z 96.9590 in the MS/MS data (Table 4). 

The 2D-COSY spectrum (Figure 12) illustrates that this extract has a rich secondary metabolome. 

Signals can be seen which correspond to aromatic compounds (6–9 ppm), sugars (4–6 ppm) and 

sulfated aliphatics (0–4 ppm) and/or olefinics (2–5 ppm). The presence of peptides was also observed 

by cross peaks exhibited from the NH to the alpha and beta proton, typical for an amino acid. Table 5, 

summarizes the peptide metabolites that were detected in the positive ionization mode. This supports 

the presence of NRPS genes in the Rhodococcus sp. ZS402 bacterium. However, MS/MS data was 

 

 



Mar. Drugs 2014, 12 3433 

 

 

only achieved for one detected metabolite. In Table 5, the presence of peptides can be determined 

within a range of double-bond equivalences [47] or alternatively calculated where the RDB is equivalent 

to [(#O − #N)/2 + #N] IF linear; (−1) IF linear: (+1) IF cyclic; (+4) for additional Phe/Tyr; (+6) for 

additional Trp but account for extra Nitrogen(s) when [(#O − #N)/2 + #N] is less than the found RDB 

which is also encountered with Arg. Besides following the Nitrogen Rule, approximately every 100 Da 

represents one amino acid with 1 RDB except for Phe, Tyr, and Trp. However, it was not possible to 

obtain the fragmentation data for most of the detected ion peaks due to the low intensities of parent ion 

peaks and/or the conceivable cyclic nature of some of the peptides. Devoid of a chain moiety,  

in comparison with the pumilacidins found in the Bacillus sp. 4115 isolate, cyclic peptides would need 

a hydrolysis step to cleave the ring prior to further fragmentation. 

Figure 11. Positive and negative mode base peak chromatograms from outlying bacterial 

sample, Rhodococcus sp. ZS402, annotated to indicate metabolites identified in Table 4. 

Positive and negative mode base peak chromatograms from ISP2 agar medium are shown 

to indicate that the annotated metabolites are being produced by the bacteria and are not 

from the ISP2 agar medium. 
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Figure 12. 2D-NMR COSY spectrum of Rhodococcus sp. ZS402 overlaid with medium. 

Signals in orange are from the sample and signals in grey are from the medium. 

 

3. Experimental Section 

3.1. Sample Collection and Bacterial Isolation 

Several species of cold water marine invertebrates found in Scottish coastal waters (Orkney Islands, 

Scotland, UK) were swabbed for microbial symbionts. Six different media were utilized for the 

isolation of bacteria: M1 [54], ISP2 medium 2 [55], oligotrophic medium (OLIGO) [56], Luria agar 

(LA), marine agar (MA) [57], and R2A agar [58]. For medium preparation, starch and glucose 

monohydrate (Alfa Aesar, Heysham, England), yeast extract and malt extract (Oxoid Limited, 

Hampshire, England), peptone and tryptone (Fisher Scientific, Hemel Hempstead, UK) and  

glycerol–phosphate, and R2A isolation agar (Sigma Aldrich, Steinheim, Germany) were purchased. 

All media contained nutrient agar (Oxoid Limited, Hampshire, England) and were prepared using 

artificial seawater, prepared using Advanced Pro Formula sea salt mix (23 g/L) (Royal Nature,  

Nesher, Israel). 

Plates were incubated at 12 °C which led to the growth of visually diverse colonies of bacteria after 

1–4 weeks. Distinct colony morphotypes were picked and bacterial streaking was utilized until pure 

bacterial colonies were isolated. Bacteria were then maintained on agar plates for short-term storage or 

archived for long-term storage. To archive the isolates, 3 mL of sterile artificial seawater was added to 

each plate and mixed before 400 μL of bacteria and artificial seawater solution was transferred into  

a 2 mL cryovial that contained 400 μL of 30% glycerol (Fisher Scientific, Hemel Hempstead, UK) 

using a pipette with sterile filter tips. 
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Table 3. Selected metabolites found in positive and negative ionization modes in Vibrio splendidus strain LGP32. (P = positive mode;  

N = negative mode). 

Peak 

ID 

ESI 

Mode 
m/z 

Rt 

(min) 

Molecular Formula 

(Isotope Fit Score A0 to A3) 
RDB Hits 

Fragment 

Ions MS
2
 

Molecular 

Formula 
RDB 

Fragment 

ions MS
3
 

Molecular 

Formula 
RDB 

1 P 219.12266 9.8 
C10H18O5 

(99.97%) 
2 

(4E)-6,7,9-

Trihydroxydec-4-

enoic acid 

173.08047 

133.08556 

115.07513 

87.04388 

73.06467 

C8H13O4 

C6H13O3 

C6H11O2 

C4H7O2 

C4H9O 

3 

1 

2 

2 

1 

   

2 P 305.1590 12.9 
C14H24O7 

(99.99%) 
3 No hits 

259.11685 

219.12209 

173.08040 

155.06985 

133.08549 

115.07516 

87.04391 

C12H19O6 

C10H19O5 

C8H13O4 

C8H11O3 

C6H13O3 

C6H11O2 

C4H7O2 

4 

2 

3 

4 

1 

3 

2 

   

3 P 408.22407 15.2 

C18H33O9N 

(Ammonium adduct of 

C18H31O9) 

(60.57%) 

3 No hits 

392.19974 

305.15979 

259.11786 

219.12292 

undetermined 

C14H25O7 

C12H19O6 

C10H19O5 

 

3 

4 

2 

   

3 P 408.22407 15.2 
C19H29O5N5 

(99.50%) 
8 No hits 

392.19969  

305.15978  

259.11783  

219.12292 

undetermined 

C15H21O3N4 

C13H15O2N4 

C10H1905 

 

8 

9 

2 

173.08086 

155.07023 

133.08593 

115.07541 

C8H13O4 

C8H11O3 

C6H1303 

C6H11O2 

3 

4 

1 

2 

4 P 494.25967 17.0 

C22H39O11N 

(Ammonium adduct of 

C22H37O11) 

(99.97%) 

4 No hits 477.23270 C22H37O11 5 

459.22238 

431.19101 

373.18582 

345.15396 

305.15924 

259.11740 

219.12263 

155.07021 

C22H35O10 

C20H31O10 

C18H29O8 

C16H25O8 

C14H25O7 

C12H19O6 

C10H19O5 

C8H11O3 

6 

6 

5 

5 

3 

4 

2 

3 
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Table 3. Cont. 

Peak 

ID 

ESI 

Mode 
m/z 

Rt 

(min) 

Molecular Formula 

(Isotope Fit Score A0 to A3) 
RDB Hits 

Fragment 

Ions MS2 

Molecular 

Formula 
RDB 

Fragment 

ions MS3 

Molecular 

Formula 
RDB 

5 P 580.2965 18.5 

C26H45O13N 

(Ammonium adduct of 

C26H43O13) 

(99.96%) 

5 No hits 

563.26880 

477.23288 

431.19122 

345.15424 

305.15945 

C26H43O13 

C22H37O11 

C20H31O10 

C16H25O8 

C14H25O7 

6 

5 

6 

5 

3 

259.11752 

219.12265 

155.07025 

C12H19O6 

C10H19O5 

C8H11O3 

4 

2 

4 

6 P 448.2180 18.8 

C20H33O10N 

(Ammonium adduct of 

C20H30O10) 

(91.50%) 

5 No hits 

431.18991 

345.15372 

259.11725 

241.10663 

155.07002 

C20H31O10 

C16H25O8 

C12H19O6 

C12H17O5 

C8H11O3 

6 

5 

4 

5 

4 

   

7 P 534.2550 19.4 

C24H39O12N 

(Ammonium adduct of 

C24H37O12) 

(99.13%) 

6 No hits 

517.22723 

431.19070 

345.15402 

259.11737 

241.10681 

155.07013 

C24H37O12 

C20H31O10 

C16H25O8 

C12H19O6 

C12H17O5 

C8H11O 

7 

6 

5 

4 

5 

4 

   

7 P 534.2550 19.4 
C25H35O8N5 

(71.66%) 
11 

Oxyplicacetin;  

3′-Hydroxy-

plicacetin 

517.22723 

431.19070 

345.15402 

259.11737 

241.10681 

C25H33O8N4 

C21H27O6N4 

C17H21O4N4 

C10H17O5N3 

C10H15O4N3 

12 

11 

10 

4 

5 

   

8 N 269.13940 12.3 
C14H22O5 

(99.99%) 
5 No hits 

251.12892 

225.14969 

C14H19O4 

C13H21O3 

6 

4 
   

9 N 405.24944 19.3 
C20H38O8 

(99.92%) 
3 No hits 

359.24274 

267.19690 

C19H35O6 

C16H27O3 

3 

4 
   

10 N 285.20719 21.5 
C16H30O4 

(88.36%) 
3 

Hexadecanedioic 

acid/ethyl plakortide 

Z/ethyl didehydro-

seco-plakortide Z 

267.19641 C16H27O3 4 

125.09721 

141.12836 

185.11803 

223.20638 

C8H13O 

C9H17O 

C10H17O3 

C15H27O 

3 

2 

3 

3 
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Table 4. Selected metabolites found in Rhodococcus sp. ZS402 in positive and negative ionization modes. (P = positive mode;  

N = negative mode). 

Peak 

ID 

ESI 

Mode 
m/z 

Rt 

(min) 

Molecular 

Formula 

(Isotope Fit Score 

A0 to A3) 

Hits RDB 
Fragment 

Ions MS
2
 

Molecular 

Formula 
RDB 

Fragment 

Ions MS
3
 

Molecular 

Formula 
RDB 

1 P 230.2481 17.3 
C14H31ON 

(99.77%) 
Xestoaminol C 1 212.23662 C14H30N 1    

2 P 258.2793 19.4 
C16H35ON 

(99.95%) 
No hits 1 240.26793 C16H34N 1    

3 P 597.5208 30.1 
C35H68O5N2 

(99.01%) 
No hits 3 

337.28409 

355.29462 

351.29974 

369.31042 

C20H37O2N2 

C20H39O3N2 

C21H39O2N2 

C21H41O3N2 

4 

3 

4 

3 

319.27350 

295.27368 

C20H35ON2 

C18H35ON2 

5 

3 

4 N 265.1476 17.6 
C12H26O4S 

(99.25%) 
No hits 1 96.9590 [HSO4]

− 1    

5 N 760.54162 17.6 
C42H75O5N5S 

(90.86%) 
No hits 9 531.30280 C30H45O5NS 9 96.9590 [HSO4]

−  

6 N 279.1631 19.1 
C13H28O4S 

(98.04%) 
No hits 1 96.9590 [HSO4]

− 1 96.9590   

7 N 816.60400 19.1 
C46H83O5N5S 

(87.43%) 
No hits 9 279.16318 

C32H49O5NS 

C13H27O4S 

9 

1 
96.9590 [HSO4]

−  

8 N 309.17358 19.7 
C14H30O5S 

(98.04%) 
No hits 1 96.9590 [HSO4]

− 1    

9 N 293.1790 21.6 
C14H30O4S 

(99.86%) 
No hits 1 96.9590 [HSO4]

− 1    
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Table 5. Probable peptide metabolites detected in Rhodococcus sp. ZS402 isolate in the 

positive ionization mode. Calculated RDB = [(#O − #N)/2 + #N] IF linear; (−1) IF linear: 

(+1) IF cyclic; (+4) for additional Phe/Tyr; (+6) for additional Trp but account for extra N 

when [(#O − #N)/2 + #N] < found RDB especially with Arg. Approximately 100 Da 

represents one amino acid with 1 RDB except for Phe, Tyr, and Trp. 

Rt (min) m/z [M + H]
+
 

Molecular 

Formula 

Isotope Fit Score 

A0 to A3 (%) 
RDB 

Predictions to 

Calculated RDB 

19.23 462.1727 C19H23O7N7 87.66 12 Cyclic with Phe/Tyr 

21.43 499.1871 C18H26O9N8 87.64 10 Cyclic 

22.15 587.2399 C22H34O11N8 82.51 10 Linear 

28.14 569.4893 C33H64O5N2 99.99 3 Linear 

29.46 583.5048 C34H66O5N2 99.95 3 Linear 

33.77 1078.7151 C59H95O11N7 99.86 16 Cyclic with Trp 

35.30 1118.7461 C62H99O11N7 98.83 17 Cyclic with Trp/Arg 

35.64 1092.7308 
C60H97O11N7 

C55H97O13N9 

99.91 

85.21 

16 

12 

Cyclic with Trp 

Cyclic 

36.80 1106.7460 
C61H99O11N7 

C56H99O13N9 

99.50 

99.05 

16 

12 

Cyclic with Trp 

Cyclic 

37.55 849.6953 
C51H88O4N6 

C56H88O2N4 

99.92 

58.43 

11 

15 

Cyclic with Trp/Arg 

Cyclic with Trp/Arg 

3.2. Bacterial Culture and Extraction 

Seventy-seven fast-growing bacteria were selected from the archive. When required, bacteria in 

glycerol from archived cryovials were reinoculated onto agar plates and cultured for seven days in a 

dark incubator at 12 °C. Bacteria were then reinoculated to fresh agar plates by streaking, using 

disposable sterile loops and cultured as described above for seven days. This step was carried out to 

get rid of the glycerol in which the bacteria had been stored. Bacteria and agar from three replica plates 

were then collected into conical flasks using a sterile scalpel to cut the agar into small pieces. Culture 

growth was terminated with 200 mL HPLC grade ethyl acetate (Sigma Aldrich, Dorset, UK). After 

24 h, samples were individually homogenized with an Ultra-turrax T 18 basic homogenizer (IKA, 

Staufen, Germany), filtered using a Buchner funnel with 110 mm Fisherbrand filters (Fisher Scientific, 

Hemel Hempstead, UK), transferred to a 500 mL separating funnel and subjected to liquid–liquid 

extraction and separation. This procedure involved initially separating the aqueous and ethyl acetate 

phases and washing the aqueous phase twice more with ethyl acetate. Ethyl acetate fractions were  

then collected, concentrated, weighed and reconstituted for mass spectrometry (1 mg/mL), NMR  

(5 mg/600 μL solvent) and bioassay screening (10 mg/mL), respectively. The mentioned fixed 

concentrations were strictly followed for MS and NMR analysis to normalize the weight of biomass 

used for each of the individual strains. 

3.3. Mass Spectrometry 

Methanol (MeOH), dichloromethane (DCM), acetonitrile (MeCN) and formic acid were purchased 

(Fisher Scientific, Hemel Hempstead, UK). All reagents were of analytical grade. HPLC grade water 
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was obtained in-house from a direct Q-3 water purification system (Millipore, Watford, UK). Samples 

and medium control samples were prepared at a concentration of 1 mg/mL in 80:20 MeOH: DCM.  

A solvent blank was also included. Experiments were carried out using an Exactive mass spectrometer 

with an electrospray ionization source attached to an Accela 600 HPLC pump with Accela autosampler 

and UV/Vis detector (Thermo Scientific, Bremen, Germany). The mass accuracy was set to less than 

3.0 ppm. The Orbitrap mass analyzer is able to limit the mass error within ±3.0 ppm. The instrument 

was calibrated to maintain a mass accuracy of ±1.0 ppm by applying the lock mass function. The 

instrument was externally calibrated according to the manufacturer’s instructions before the run and 

was internally calibrated during the run using lock masses. In positive ion mode, lock masses were  

m/z 83.06037 (acetonitrile dimer) and m/z 195.08625 (caffeine) and in negative ion mode the lock 

mass was m/z 91.00368 (formic acid dimer). Mass spectrometry was carried out over a mass range of 

100–2000 m/z in positive and negative ionization modes with spray voltage of 4.5 kV and capillary 

temperature at 270 °C. Ten μL was injected from each vial, at a flow rate of 300 μL/min. The column 

used was an ACE5 C18 column (5 μm × 75 mm × 3 mm) (Hichrom Limited, Reading, UK). A binary 

gradient method was utilized. The two solvents were A (water and 0.1% formic acid) and B (MeCN 

and 0.1% formic acid). The gradient was carried out for 45 minutes and the program followed; at zero 

minutes A = 90% and B = 10%, at 30 min A = 0% and B = 100% at 36 min A = 90% and B = 10% 

until end at 45 min. The UV absorption wavelength was set at 254 nm, the sample tray temperature 

was maintained at 4 °C and the column maintained at 20 °C. The samples were run sequentially, with 

solvent and media blanks analyzed first. LC-MS data was acquired using Xcalibur version 2.2 

(Thermo Scientific, Bremen, Germany). 

Data-dependent MS
2
 and MS

3
 experiments were carried out using a Finnigan LTQ Orbitrap coupled 

to a Surveyor Plus HPLC pump (Thermo Scientific, Bremen, Germany) and autosampler (Thermo 

Fisher, Bremen, Germany) in positive and negative ionization modes using a mass range of  

m/z 100–2000 and 30,000 resolution. The capillary temperature was 270 °C, the ion spray voltage was 

4.5 kV, the capillary voltage 35 V, the tube lens voltage 110 V and the sheath and auxiliary gas flow 

rates were 50 and 15, respectively (units not specified by manufacturer). Multi-fragmentation (MS
n
) 

experiments were accomplished on an Orbitrap analyzer, CID (collision-induced dissociation) was 

utilized with a normalized collision energy of 35%, activation Q of 0.250 ms and activation time of 

30,000 ms applied on ions of most intense, 2nd most intense, and 3rd most intense peaks for MS
2
 and 

MS
3
, respectively, at an isolation width of 3 microns with 5 microscans. Resolution was at  

15,000 m/Δm50%, while the minimum ion signal threshold was set to 500. Fragment mass tolerance 

for molecular formula detection was set at ±5 ppm. 

3.4. NMR Spectroscopy 

Samples were prepared by dissolving 5 mg of bacterial extract (or culture medium extracts  

as controls) in 600 μL DMSO-d6 (Sigma-Aldrich, Dorset, UK). These were transferred to 5 mm 7″  

NMR tubes (Sigma-Aldrich, Dorset, UK). NMR was carried out on a 400 MHz Jeol-LA400 FT-NMR 

spectrometer system equipped with a 40TH5AT/FG probe (JEOL, Tokyo, Japan). A presaturation 

sequence was included to suppress the DMSO solvent signal. For presaturation and proton 

experiments, sixteen scans were recorded while eight scans were recorded for 2D-
1
H-

1
H Correlation 
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Spectroscopy (COSY) analysis. Presaturation and COSY spectra were processed using MestReNova 

(Mnova 8.1.0) software (Mestrelab Research, Santiago de Compostela, Spain). Normalization, baseline 

correction with Whittaker Smoother, apodization with Gaussian 1 and smoothing with Savitzy-Golay 

were carried out in MestReNova. For COSY analysis, spectra from the bacterial extracts were overlaid 

with the corresponding medium spectrum (control) to differentiate correlations from metabolites 

produced by the bacteria from those of the culture medium. 

3.5. Data Analysis Tools for Mass Spectrometry Data 

Raw data were initially sliced into two data sets based on the ionization mode (positive and 

negative modes) using the MassConvert tool from ProteoWizard [59]. The sliced data sets were 

imported and processed in MZmine 2.10 [30] using predefined settings to extract features from the  

raw data. The following data processing steps were carried out using MZmine: peak detection,  

(mass detection and chromatographic builder), deconvolution, deisotoping, filtering, alignment and 

gap filling. Identification of adducts and complexes and formula prediction steps were carried out to 

predict possible molecular formulae for each feature and to minimize mis-assignment of features by 

eliminating adducts and complexes (see Supplementary Information for full details of all settings  

and procedures utilized to process data in MZmine). Data was then exported as a CSV file for  

further clean-up. 

An algorithm was employed to use the molecular formula data set from Antibase
®

 (February 2013) 

and Marinlit
®

 (September 2013). These versions are manually curated databases and the given 

molecular weights do not differentiate between monoisotopic, average, and most abundant masses.  

The monoisotopic exact masses for each metabolite were then calculated to be used for the customized 

library. The processed data from MZmine was incorporated into the customized library through the 

built-in Excel macro for peak identification and dereplication. ―Hits‖ and unidentified peaks were 

double checked against the MS raw data in Xcalibur 2.2. 

Excel macros were written to enable the subtraction of background peaks and to combine positive 

and negative ionization mode data files generated by MZmine. Peaks originating from the culture 

medium were extracted. By applying an algorithm to calculate the intensity of each m/z in both 

bacterial extracts and medium extracts, ion peaks originating from the medium were subtracted while 

features with peak intensity 20 times greater in the samples than in the medium were retained. 

Bacterial extracts were grouped according to their culture media and this data clean-up step was 

carried out for each culture medium used. The positive and negative ionization mode data sets from 

each of the respective bacterial extracts were combined by the macro enabling ion peaks that were 

observed in either or both positive and negative modes to be overlaid for further statistical analysis. 

The Excel macro was used to dereplicate each m/z ion peak with compounds in the customized 

database (using RT and m/z threshold of ±3 ppm) which provided details on the putative identities of 

all metabolites in each bacterial extract and sequentially sorted the number of remaining unknowns for 

each extract. The macro was then utilized to identify the top 20 features (ranked by peak intensity) and 

corresponding putative identities in each sample by creating a list for each extract. Hits from the 

database were accessed using ChemBioFinder version 13 (PerkinElmer Informatics, Cambridge, UK). 

The data was then converted into a CSV file and exported to SIMCA-P V 13.0 Umetrics, Umeå, 



Mar. Drugs 2014, 12 3441 

 

 

Sweden), consequentially providing a feature ID number, ionization mode, m/z, retention time, 

possible molecular formulae and peak intensity for each feature in all 77 samples. The CSV file was 

also used to generate a heat map. Heat maps were plotted using the programming software R (version 

×64 2.15.2) (R Foundation for Statistical Computing, Vienna, Austria) using a script utilizing the  

g-plot package. The data set was further analyzed using SIMCA-P V 13.0 using the unsupervised 

statistical analysis method, principal component analysis (PCA). Dendrograms were also created using 

SIMCA-P V 13.0 package (Umetrics, Umeå,Sweden). 

3.6. Molecular Identification 

The whole genome DNA of each strain was extracted by scraping bacterial biomass, suspending in 

100 μL of sterile water and heating at 95 °C for 10 min before cooling down the lysate on ice and 

centrifuging at 13,000 rpm for 10 min. The supernatant containing genome DNA was transferred into a 

new Eppendorf for 16S rRNA gene amplification. For some strains, the genome DNA could not be 

extracted using the method described above. For these strains, the FastDNA spin kit (MP  

Biomedicals, Eschwege, Germany) was used to obtain the whole genome DNA according to the 

manufacturer’s protocol. 

Nearly full-length 16S rRNA genes (1542 nucleotide bases) were amplified by polymerase chain 

reaction (PCR) using primers 27F and 1492R [60]. The reaction mixture consisted of 5 μL of 10× 

FastDigest green buffer including 20 mM MgCl2 (Fermentas, Vilnius, Lithuania ), 1 μL of 10 mM 

dNTPs mixture (Fermentas, Vilnius, Lithuania), 1 μL of 25 mM of each primer (Sigma, München, 

Germany), 0.19 μL of 5 U/μL DreamTaq DNA polymerase (Thermo Scientific, Bremen, Germany),  

1 μL of template DNA and 41.81 μL sterile water to make a final volume of 50 μL. The PCR was 

performed on a thermal cycler (Biometra, Goettingen, Germany) using the following thermal cycling 

protocol: the initial denaturation temperature was 95 °C for 2 min, followed by 34 cyclers of reaction 

starting another denaturation at 95 °C for 0.5 min, then primer annealing at 56 °C for 0.5 min and 

primer extension at 72 °C for 1.5 min, as well as the final primer extension at 72 °C for 10 min. The 

reaction was stopped by chilling at 16 °C to limit the polymerase activity. Five μL of PCR product was 

examined on agarose gel electrophoresis at 300 V for 20 min. An equal volume of 0.5 μg/μL Genen 

Rular 1Kb DNA ladder (Fermentas, Vilnius, Lithuania) was used as the reference object. The 

successfully amplified 16S rRNA genes presenting a clear single band around 1500 bases compared to 

the ladder under a Molecular Imager
®

 Gel Doc™ XR System (Bio-Rad laboratories, Berkeley, CA, 

USA) were purified using NucleoSpin Gel and PCR Clean-up package (MACHEREY-NAGEL, Düren, 

Germany) following the manufacturer’s protocol. The genes amplified with more than one band were 

purified by cutting off the right band and extracting from the agarose gel using NucleoSpin Gel and 

PCR Clean-up package according to the manufacturer’s protocol. The concentration of the purified 

16S rRNA genes was determined using a NanoDrop 2000C Spectrophotometer (Thermo Scientific, 

Bremen, Germany) and adjusted to 30 μg/μL. High quality 16S rRNA genes were sent to LGC 

Genomics GmbH (Berlin, Germany) for initial sequencing using forward primer 27F. Sequences of 

good quality (usually between 150 and 900 bases) were chosen and contrasted in the GenBank 

database [61] using the BLASTn tool to identify the nearest neighbour to the amplified sequence. 98% 
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and 95% were used as the thresholds to discriminate between sequences of the same species and  

genus, respectively. 

3.7. Bioassay Screening 

Extracts were prepared as 10 mg/mL solutions in DMSO in 96-well plate format and delivered for 

bioassays in dry ice. Extracts were stored at −20 °C until use and then appropriately diluted for testing. 

Assay-specific thresholds were set to determine the putative active hits: any samples which met this 

criterion were retested and their activity was assessed over a concentration range of the primary hit. 

When possible, quantitative measurements of activity (e.g., IC50, Ki, MIC) were determined. A full 

description of assays is presented only for bioactivities observed in extracts from outlier strains. 

3.7.1. Anti-Infectives 

Bioassays against Trypanosoma brucei brucei (model assay system for trypanosomiasis) were 

carried out as previously described [62]. Bacterial extracts were dissolved in DMSO to prepare  

10 mg/mL stock solutions. DMSO was used as the negative control at a concentration of 1% to 0.002% 

and suramin was used as the positive control at a concentration range of 1 to 0.008 μM. The results 

were calculated as percentages of control values. 

The in vitro antimicrobial testing against Enterococcus faecalis strain JH212 was carried out using 

the standard disk diffusion assay [63]. Sterile filter disks were impregnated with the bacterial extracts 

and placed on agar plates that had been inoculated with the pathogen. After incubation for 24 h, the 

antimicrobial potential was quantitatively assessed from the diameter of the inhibition zone. 

3.7.2. Metabolic Disease and Inflammation 

In search for potential drugs against metabolic disorders involving regulation of glucose 

metabolism, particularly diabetes mellitus and obesity, samples were tested in a protein–tyrosine 

phosphatase 1B (PTP1B) assay. Samples were tested at 30 μg/mL in duplicate. 

3.7.3. Cell-based Functional Assays 

Samples were tested at 30 μg/mL in quadruplicate in 384 well plate format. A Z factor computation 

value >0.4 was used to establish primary hits on the initial screen. Cell-based functional assays  

were carried out on the ion channels involving TRPA1 and TRPV1 (pain), and TRPM8 (pain, cancer) 

genes, whereas PPARα gene (inflammation, diabetes, metabolic disorders and atherosclerosis) targets 

a nuclear hormone receptor. The fluorescence readouts for TRPA1, TRPV1 and TRPM8 were 

measured on a Ca
2+

 sensitive dye as based on Molecular Devices™ [64], while the activity on PPARα 

was measured against the luminescence on GAL4-UAS luciferase. 

4. Conclusions 

LC-HRMS and multivariate analysis by principal component analysis (PCA) were used to 

successfully compare the secondary metabolite profiles of crude extracts from 77 respective marine 

invertebrate-associated bacterial symbionts. PCA was shown to be an effective tool to differentiate 
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bacterial strains based on their chemical diversity and novelty of metabolites, providing a means to 

select bacterial isolates with diverse chemistry without having to carry out full isolation work on each 

extract. PCA was used to reveal bacterial species producing similar chemical groups of metabolites 

grouped together whilst those producing distinct secondary metabolomes were observed as outliers. By 

using an Exactive mass spectrometer, which enabled fast-polarity switching, it was possible to obtain 

efficient and greater metabolite coverage in a single experiment, greatly speeding up analysis times. 

The development of a comprehensive metabolomics workflow pathway including an in-house 

developed Excel macro embedded with the AntiMarin database made it possible to rapidly dereplicate 

the 77 strains, providing putative identities of known metabolites in each extract. It was also possible 

to calculate the number of unknowns in each extract and to produce data files ranking the ―top 20 

metabolite hits‖ (ranked by peak intensity) from each strain. This Excel macro also removed peaks 

associated with the culture medium, making it possible to compare bacterial strains cultured  

on different types of growth medium and provided data output for statistical analysis. NMR 
1
H and 

2D-COSY data was also utilized to confirm the dereplication results obtained from the LC-HRMS 

data. Additionally, we have shown through PCA and heat map analysis that strains with nearly 

identical 16S rRNA sequences do not necessarily produce the same secondary metabolites. It is also 

shown that the dereplication results can also be correlated with bioassay screening results to support 

drug discovery efforts with the objective of both finding a bacterial isolate that has a unique diverse 

chemistry and is biologically active. Our approach is to use high resolution MS and NMR in parallel to 

efficiently detect and confirm the dereplication results. Overall, this shows that metabolomics 

approaches are worthwhile for the selection of strains for the isolation of novel natural products and 

that this methodology has the potential to reduce redundancy in drug discovery programs. 
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