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Abstract: The search for new antimicrobial compounds has gained added momentum in 

recent years, paralleled by the exponential rise in resistance to most known classes of current 

antibiotics. While modifications of existing drugs have brought some limited clinical success, 

there remains a critical need for new classes of antimicrobial compound to which key clinical 

pathogens will be naive. This has provided the context and impetus to marine biodiscovery 

programmes that seek to isolate and characterize new activities from the aquatic ecosystem. 
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One new antibiotic to emerge from these initiatives is the antibacterial compound tropodithietic 

acid (TDA). The aim of this study was to provide insight into the bioactivity of and the 

factors governing the production of TDA in marine Pseudovibrio isolates from a collection 

of marine sponges. The TDA produced by these Pseudovibrio isolates exhibited potent 

antimicrobial activity against a broad spectrum of clinical pathogens, while TDA tolerance was 

frequent in non-TDA producing marine isolates. Comparative genomics analysis suggested a 

high degree of conservation among the tda biosynthetic clusters while expression studies 

revealed coordinated regulation of TDA synthesis upon transition from log to stationary 

phase growth, which was not induced by TDA itself or by the presence of the C10-acyl 

homoserine lactone quorum sensing signal molecule. 
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1. Introduction 

Due to the misuse and overuse of antibiotics, the emergence of pathogens that are resistant to virtually 

all of the currently available antibiotics has reached a critical stage. For this reason, there has been an 

urgent drive towards the discovery of new antimicrobial compounds. The marine environment provides a 

relatively untapped source of these unique natural products. In particular, marine sponges are emerging 

as a goldmine of antimicrobial activity, with many potential bioactive compounds produced by symbiotic 

bacteria associated with marine sponges [1]. As sessile organisms, sponges rely on an arsenal of 

metabolites, generally produced by their associated microorganisms, to defend against disease and to 

gain a competitive advantage within the marine ecosystem [2]. This symbiotic relationship is essential for 

sponge efficiency and survival [3]. Consequently, more novel bioactive metabolites are retrieved from 

sponges each year than any other marine organism [2], with approximately 3500 novel marine compounds 

isolated from marine sponges since 1985 [4]. Recent evidence suggests that the majority of bioactive 

compounds isolated from sponges are likely to be produced by associated microbiota [5]. 

Pseudovibrio species are ubiquitous in the marine environment, and in particular within marine 

sponges. They were first isolated and described in 2004 from seawater in Taiwan [6] but have since been 

isolated from ascidians [7] tunicates [8], algae [9], coral [10], tube worms [11] and from a plethora  

of marine sponges [12–17]. Pseudovibrio is in fact believed to be one of the few confirmed vertically 

transmitted sponge symbionts, due to its association with sponge larvae [18]. Antimicrobial activity 

within Pseudovibrio sp. has been documented a number of times [12,15–17,19,20]. Moreover, 

Pseudovibrio species produce specific bioactive compounds, such as heptylprodigiosin [20] and 

biosurfactant compounds [11]. More recently, the antibacterial compound tropodithietic acid (TDA) 

was recovered from Pseudovibrio sp. D323, isolated from the red alga Delisea pulchra [9], which 

correlated with the previous prediction of TDA production by Pseudovibrio sp. strain JEO62 based on 

the presence of the tdaA-tdaF biosynthetic cluster in its genome [5,21]. TDA was initially isolated from 

several species within the Roseobacter clade including Phaeobacter inhibens and Ruegeria sp. [21–24]. 

TDA is a suphur containing compound with a unique structure consisting of a dithiet moiety fused to 

tropone-2-carboxylic acid, which is believed to co-exist with its tautomer, thiotorpocin [25], previously 
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identified in Pseudomonas sp. [26,27]. TDA has been shown to have a strong inhibitory activity against a 

range of marine bacteria, such as Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, the fish 

pathogens Vibrio anguillarum and Vibrio splendidus [28] as well as marine algae [21] and a range of 

human pathogenic bacteria [24]. It has been proposed as a potential fish larval probiotic, as it has been 

shown not only to reduce mortality in the larvae of fish such as turbot and cod [29], but also that it has 

no toxic effects against the eukaryotic models C. elegans and Artemia sp. [30]. 

Here, we identify TDA production in Pseudovibrio species isolated from the marine sponges 

Axinella dissimilis, Polymastia boletiformis and Haliclona simulans and investigate phenotypic 

characteristics, bioactivity and molecular mechanisms of its production. 

2. Results and Discussion 

2.1. Culture Conditions Enhance the Production of Bioactive Compounds by Pseudovibrio Species 

A collection of 72 Pseudovibrio isolates from the marine sponges Axinella dissimilis,  

Polymastia boletiformis and Haliclona simulans, which were previously classified into 33 groups 

based on their RAPD profiles [31], was further investigated for antimicrobial activity. A representative 

strain from each RAPD group was tested for bioactivity via a spot-plate overlay assay on both SYP-SW 

and marine (MA) agar, against the indicator strain S. aureus NCDO 949. Zones of inhibition were 

produced by 26 of the 33 representatives of the RAPD groups on SYP-SW. Interestingly, all these strains 

displayed higher levels of inhibition when grown on MA than on SYP-SW (Figure 1), while 5 strains 

displayed antimicrobial bioactivity only when grown on MA. Two strains displayed no bioactivity 

against S. aureus NCDO 949 on either media (Supplementary Table S1). 

Figure 1. Overlay assay with tropodithietic acid (TDA) producing Pseudovibrio isolate 

WC22—representative of most Pseudovibrio isolates. S. aureus NCDO949 was used as an 

indicator strain and was strongly inhibited when the Pseudovibrio colony had turned brown. 

(a) Marine agar; and (b) starch-yeast extract-peptone–sea water (SYP-SW)_agar.  

 

In order to establish the spectrum of bioactivity produced by the marine isolates, each individual 

isolate was tested against a range of clinical and fish pathogens, as well as a number of laboratory strains 

(Supplementary Table S2). High levels of inhibition were seen in 31 of the 33 strains against both 

clinical and fish pathogens (Table 1). The vast majority of the isolates displayed antibacterial activity 

against V. anguillarum (88%), E. tarda (88%), Y. ruckerri (94%), E. coli MUH (82%), E. coli NCIMB 

(85%), M. morganii (88%), S. Typhimurium LT2 (52%), S. Typhimurium C5369 (76%), P. sputonum 

(64%), S. arizonae (67%) and S. aureus NCDO 949 (94%). Interestingly, each of the 31 isolates showing 

antimicrobial bioactivity produced a characteristic brown pigment when grown on MA. This brown 

pigment was not produced by the two strains which showed no inhibitory activity. This strongly suggested 
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a direct association between pigment production and the antimicrobial bioactivity. Four  

Pseudovibrio isolates which produced the brown pigment and displayed particularly potent levels of 

bioactivity—namely W64, W69, W74 and W89—were selected for further analysis. 

Table 1. Antimicrobial activity of the 33 RAPD group representatives against a range of 

human and fish pathogens. 
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JIC5 +++ +++ +++ ++ + +++ - ++ * + * + * ++ 

JIC6 + ++ + - + * + * - - + * - ++ 

JIC17 +++ ++ + - + * ++ + * - + * + * + 

W10 +++ ++ - + - + * - +* + * - + 

W19 - - - - - - - - - - - 

W62 +++ ++ ++ + + * +++ - + * ++ * - ++ 

W63 +++ +++ - - - - - ++ * +++ * + * ++ 

W64 +++ +++ +++ + + +++ ++ * ++ * ++ ++ ++ 

W65 +++ ++ +++ ++ + +++ + * ++ * + * + ++ 

W69 +++ +++ ++ + + ++ ++ * ++ * ++ * ++ * ++ 

W71 +++ ++ ++ + + +++ + * ++ * + * + + 

W89 +++ +++ +++ + ++ ++ ++* ++ * ++ * + ++ 

W99 +++ +++ +++ ++ + +++ + * ++ * + * + ++ 

WC43 ++ - ++ + * + + * + * + * + * + ++ 

W74 +++ ++ + + ++ +++ + * ++ * + * ++ * + 

W85 +++ ++ +++ ++ + * + + * + * + * - ++ 

W78 ++ + ++ + * + * +++ +* + * + * - + 

W94 ++ + ++ + * + * ++ + * + * + * + * ++ 

W96 +++ ++ ++ + * + * ++ + * ++ * - ++ * + 

WM31 +++ ++ +++ + * + * + + * + * - - ++ 

WM33 ++ + + + * + * - + - - - + 

WM34 +++ ++ +++ + * + * +++ + * + * + * + * ++ 

WM40 +++ ++ ++ + + ++ - ++ ++ * ++ * ++ 

WM50 - - - - - - - - - - - 

WC13 +++ ++ ++ + + * ++ - + * - + * ++ 

WC15 + - + * - - + * - - - - + 

WC21 ++ + * ++ + + * ++ - + * - + * ++ 

WC22 +++ + + + + * + - - - + * ++ 

WC30 +++ + ++ + + * + - + * - + * + 

WC32 +++ ++ ++ ++ + * ++ - ++ * + * + * ++ 

WC41 +++ ++ ++ + + * ++ - ++ * - ++ * ++ 

HC6 +++ ++ +++ ++ * + +++ + * ++ * + * + * ++ 

HMMA3 ++ + ++ + * + * + * + * - - - + 

Diameter of growth inhibition (mm): + ≥1 mm; ++ ≥2 mm; +++ ≥4 mm. * partial inhibition. Blue: fish 

pathogen, yellow: laboratory strain, red: human pathogen. 
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2.2. Pseudovibrio Species Derived from Marine Sponge Produce Tropodithietic Acid (TDA) 

Previously the production of a brown pigment associated with antimicrobial activity by 

Tropodithietic Acid (TDA) producing marine isolates on MA has been reported [28,32], and high levels 

of activity of TDA against fish pathogens has been documented a number of times [23,30,33] as has 

activity against human pathogens [24]. While chemical analysis of the pigment has yet to be reported, 

it has been shown to rely on the same biosynthetic genes as TDA itself, suggesting a direct link to the 

antimicrobial compound [34]. Thus, the pigmented antimicrobial activity of the Pseudovibrio isolates may 

be due at least in part to TDA. To establish that the Pseudovibrio isolates were indeed producing TDA,  

a method adapted from Porsby et al. [24] for the isolation of TDA was employed to extract compounds 

from the four Pseudovibrio isolates with high levels of antimicrobial activity. TLC was performed on the 

Pseudovibrio extracts and plates were overlaid with S. aureus NCDO 949 and tetrazolium salt. A large 

zone of inhibition was observed at the position correlating to an Rf value of 0.71, the same as the TDA 

control, suggesting that the compound produced by the Pseudovibrio isolates W64, W69, W74 and W89 

was the secondary metabolite TDA (Figure 2a). 

To further confirm the production of TDA by these isolates, the bioactive compounds extracted from 

the Pseudovibrio isolates were analysed via UHPLC-DAD-qTOFMS. This analysis confirmed the 

presence of TDA in the extract based on an identical retention time as an authentic reference standard, 

and the unique accurate mass of the [M + H]+ ion (212.9674 ± 0.005) as well as correct isotopic pattern 

of C8H4O3S2 (Figure 2b), unambiguously identifying TDA. 

Figure 2. (a) TLC-overlay assay of extracts from Pseudovibrio isolates. S. aureus NCD0 949 

was used as an indicator strain. The concentration of the TDA control was 0.01 mg/mL;  

(b) UHPLC-DAD-qTOFMS data, showing the extracted ion chromatograms (212.9674 ± 

0.005) of the [M + H]+ ion of TDA. Analysis demonstrated that the bioactive compound 

produced by 4 Pseudovibrio isolates was tropodithietic acid.  

 

2.3. TDA-Producing Isolate W74 has Limited Activity against Marine Isolates 

Having established that the TDA-producing isolates were active against a range of clinical and fish 

pathogens, we sought to investigate if TDA had an inhibitory effect against bacteria isolated from a 
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similar environment or whether these bacteria would have some level of resistance against TDA, due 

to their close association. Therefore, the antimicrobial activity of W74 was tested against a range of 

marine bacteria isolated from 2 deep sea sponges, namely Hexactinellida and Poecillastra species. W74 

was spot-plated and overlaid with 136 different marine isolates to screen for tolerance against TDA.  

Of the 136 isolates, 126 (93%) displayed tolerance to TDA. Tolerant species included Psychrobacter, 

Alteromonas, Salinibacter, Alcanivorax, Flavobacterium and Micrococcus species. Strains displaying 

sensitivity towards TDA included Staphlococcus species, as well as species of the genera Idiomarina 

and Rhodococcus. 

The tolerant strains were subsequently tested for TDA production. No brown pigment production was 

observed in the TDA resistant marine isolates grown for 72 h from a starting OD600 of 0.01, suggesting 

that the isolates tested were not TDA producers. For confirmation of this, 12 resistant isolates were 

selected for compound extraction and tested for the presence of TDA using TLC spot-plate assays 

(Supplementary Table S3). All isolates tested negative for TDA production. These findings were 

interesting, as resistance to TDA has previously only been observed in TDA-producers alone [9,22,35]. 

A selection of 4 TDA sensitive isolates was also compound extracted and tested for TDA production,  

3 of the 4 isolates tested negative for TDA production (Supplementary Table S3). 

Interestingly, the Pseudovibrio strain W19, isolated from Axinella dissimilis and previously shown to 

have limited antimicrobial activity was found not to produce TDA using TLC analysis and was resistant 

to TDA extracted from W74. The resistance of non-producing W19 to TDA further suggests that the 

prevalence of TDA resistance mechanisms may be more widespread within marine communities than 

previously thought. 

2.4. TDA Extracted from Pseudovibrio Displays Bioactivity against Cystic Fibrosis (CF)  

Clinical Isolates 

Following the observed high levels of antimicrobial activity Pseudovibrio isolates displayed against 

a range of human pathogens, both previously [24] and this study, as well as the inhibitory effect displayed 

against the CF isolate P. sputorum, the effect of TDA extracted from the Pseudovibrio strain W74  

was tested against a range of clinical isolates collected from the sputum of paediatric patients with CF 

from Cork University Hospital. TDA displayed antimicrobial activity against a number of CF isolates, 

namely Bacillus cereus, Staphylococcus aureus, Staphylococcus epidermidis, Micrococcus luteus and 

Streptococcus haemolyticus. Preventing chronic infection is essential in the maintenance of health in 

CF patients; hence it is of the outmost importance that suitable antibiotics are used to treat infection 

successfully. S. aureus has been shown to be the most common Gram positive organism found in  

the lungs of patients with cystic fibrosis, as well as being the second most persistent pathogen after  

P. aeruginosa [36]. Its sensitivity to TDA is all the more significant due to the fact that the above study 

revealed that S. aureus was not eliminated completely by oral antibiotics. The sensitivity of CF isolates 

to TDA was particularly interesting, as very little is known about the effect of TDA against clinical 

isolates. However, while a recent study by Neu et al. revealed that TDA has no toxicity when tested on 

the eukaryotic models Artemia sp. and Caenorhabditis elegans [30], further tests on animal models 

would be required before TDA could be considered as a suitable antibiotic for clinical use. 
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2.5. Genomic Pathway 

The TDA biosynthetic cluster was found in the draft genome sequences from the three marine isolates 

W64, W74 and WM33 after a NCBI BLAST+ 2.2.29 homology search using the TDA genes from 

Ruegeria sp. TM1040 [37] as query. The gene sequence identifier for each tdaA-F homolog found in the 

draft genome sequences is reported in Table 2. All-vs-all homology comparison of the 6 genes involved 

in the TDA pathway for the different species [18,33,38,39] (Table 2) and the graphical representation 

was conducted by Circoletto [40] (Figure 3). The results from the all-vs-all comparative analysis indicate 

that the tda genes show a high degree of homology in all five marine Pseudovibrio isolates (>94%  

of similarity). Interestingly, of the 3 isolates tested in this study, we observed that W74 consistently 

produced higher levels of TDA when compared with other isolates under the same extraction conditions 

that cannot be fully explained by the sequence similarity. This higher level of TDA production was 

independent of any growth effects and may be due to differences in the regulation or production of 

TDA among marine isolates. 

Figure 3. Comparative analysis of the TDA genes from Pseudovibrio compared to 

Ruegeria sp. TM1040. As expected, Pseudovibrio isolates exhibited the highest degree of 

sequence similarity to each other. Ribons represent the degree of sequence similarity with 

red being most similar and green signifying least similarity. Outer rings represent the coverage 

of sequence similarity in each gene as indicated by each coloured connecting line. See 

Supplementary Tables S4–S9 for the detailed similarity values between each pair of genes. 

 

As the synthesis of TDA in Pseudovibrio isolates has not been characterised, we undertook to 

investigate the factors governing production of this important antimicrobial compound. Given that 

W74 produced the highest amounts of TDA under culture conditions, this isolate was selected for 

further analysis. 
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Table 2. Accession number for the six genes involved in the TDA pathway from the different 

species used in the comparative genomic analyses. 

Strain Accession Numbers of tda Genes 

 tdaA tdaB tdaC tdaD tdaE tdaF 

W64 W64_g2177 W64_g2176 W64_g2175 W64_g2174 W64_g2173 W64_g2160 

W74 W74_g3196 W74_g3195 W74_g3194 W74_g3193 W74_g3192 W74_g3180 

WM33 WM33_g4179 WM33_g4178 WM33_g4176 WM33_g4175 WM33_g4174 WM33_g4161 

FO-BEG1 [38] PSE_2264 PSE_2263 PSE_2261 PSE_2260 PSE_2259 PSE_2247 

JE062 [18] JE062_g1641 JE062_g1639 JE062_g1638 JE062_g1637 JE062_g1636 JE062_g1624 

TM1040 [37] EF139200 EF139201 EF139202 EF139203 EF139204 EF139205 

Phaeobacter 

gallaeciensis DSM 

17395 [33] 

PGA1_262p00980 PGA1_262p00970 PGA1_262p00960 PGA1_262p00950 PGA1_262p00940 PGA1_262p00810 

Phaeobacter 

gallaeciensis 2.10 [33] 
PGA2_239p0970 PGA2_239p0960 PGA2_239p0950 PGA2_239p0940 PGA2_239p0930 PGA2_239p0800 

Phaeobacter 

gallaeciensis 2.10 [39] 
Pden_1600 Pden_1599 Pden_1615 Pden_1614 Pden_1613 Pden_1605 

2.6. TDA Expression Occurs during Logarithmic Growth 

In order to determine at what point in the life cycle of Pseudovibrio TDA production occurs, W74 

was grown under shaking conditions over a period of 48h. The growth was measured and production 

of the brown pigment was noted at 0, 6, 12, 24, 30, 36, and 48 h (Figure 4A,B). An aliquot of culture 

was collected for compound extraction at each time point, and bioactivity was tested by spotting 

extracted TDA on a TLC plate overlaid with the indicator strain S. aureus NCDO 949. 

The colour change of W74 from opaque to brown occurred between 12 and 24 h, during the logarithmic 

stage of growth. From this point until the assay was completed at 48 h—i.e., from logarithmic stage until 

late stationary phase—strong bioactivity was seen in the extract. Clear zones of inhibition of S. aureus 

NCDO 949 occurred where extracts were spotted (Figure 4C). This demonstrates that TDA production 

is initiated during the logarithmic growth phase. Microscopy of samples demonstrated that after 6 h 

(before colour change) cells were rod-shaped and existed in a planktonic form. However, subsequent  

to colour change (after 24 h), cells aggregated together in a rosette formation. This cell aggregation has 

previously been shown to be associated with the production of TDA in the Silicibacter strain TM1040 [37] 

and strains of Ruegeria and Phaeobacter [22,23,28] (Supplementary Figure S1). It is interesting to note 

that, although production of TDA occurred in both shaking and static cultures of W64 and W74, the 

amount of pigment production was much larger in the shaking cultures compared to those grown under 

static conditions. Furthermore, bacterial density was over 2-fold higher for isolates grown in shaking 

rather than static conditions. This is inconsistent with the findings of Bruhn and co-workers [35], who 

found that while cell density was up to 10-fold higher in shaking cultures, pigment production was only 

present in static cultures. It also contrasts markedly with the observations of Belas and colleagues [21,41] 

who demonstrated than TDA production was minimal in shaking cultures, and that of D’Alvise et al. [29] 

who showed that TDA expression in the Roseobacter clade species Ruegeria mobilis was only associated 
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with attached or biofilm associated cells. This provides further evidence suggesting that differences 

exist in the regulation of TDA production in marine isolates. 

Figure 4. Timecourse experiment (0–48 h) for the production of TDA by Pseudovibrio 

strain W74. (A) Growth curve assay; (B) Pigment production; and (C) TLC-overlay assay 

of ethyl-acetate extracts obtained from W74 at the respective timepoints. TDA is included 

at a concentration of 0.02 μg/mL. 

 

2.7. Induction of TDA Genes in Pseudovibrio is Linked to Bioactivity 

Gene expression profiles were generated by Real Time RT-PCR on samples of Pseudovibrio isolate 

W74 at 0, 6, 12, 24, 30, 36, and 48 h time points in order to examine the kinetics of expression governing 

TDA production. The expression of 6 genes involved in the TDA pathway—namely tdaA, -B, -C, -D, -E 

and -F, normalized to gyrB, was investigated. All genes were expressed by 24 h, with induction occurring 

almost simultaneously, demonstrating that the expression levels of genes involved in the TDA pathway 

was directly correlated to brown pigment formation and bioactivity. In all cases, expression levels dropped 

by 48 h—i.e., late stationary phase (Figure 5). Induction and subsequent decline in expression of the genes 

encoding TDA strongly suggests that production of TDA is tightly controlled in Pseudovibrio isolates,  

as would be expected for an energy expensive process. A previous study has shown TDA production in 

Phaeobacter gallaeciensis (inhibens) to be under the control of quorum sensing 3OHC(10)-HSL (QS) [34], 

thus, the induction of TDA production in logarithmic growth, coupled with the reduction in gene 

expression in late stationary phase, suggested that quorum sensing may be involved in controlling TDA 

production in Pseudovibrio and warranted further investigation. Furthermore, studies have shown TDA 

to be auto induced, whereby TDA induced its own synthesis, in Silicibacter (Ruegeria) sp. and has been 
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suggested to act as a QS signal [21]. Therefore, both auto-induction and QS-regulation of TDA were 

investigated in Pseudovibrio W74. 

Figure 5. RT-PCR Data. TdaA and tdaB genes involved in the production of TDA were 

expressed at 24 h—directly correlating to both bioactivity and brown pigment production 

in cultures. 
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2.8. TDA is Not Autoinduced, or Induced by C10-AHL 

In order to determine if TDA is auto-induced or induced by the QS molecule 3-OH-C10-HSL, W74 was 

grown in the presence or absence of TDA (1 μM), or 3-OH-C10-HSL (100 nM) respectively. Growth 

dynamics were identical in control and test cultures over 36 h (Figure 6A). In all cases brown pigment 

was produced at the same time interval (between 24 and 36 h) (Figure 6B). Previously, we had shown 

induction at 24 h, and the delay observed here is likely due to the presence of MeOH and DMSO in the 

media, resulting in delayed entry into logarithmic stage of growth. Cultures were compound extracted 

at each time point. All extracts—including a control of W74 grown in MB—showed TDA production 

at 36 h, suggesting that TDA production is not autoinduced or induced by 3-OH-C10-HSL. 

Research by Geng and co-workers [37] revealed that TDA produced by Silicibacter (Rugeria) and 

Pseudovibrio species induced the transcription of tdaC in a TDA-producing Ruegeria sp. Autoinduction 

was not observed in our marine isolates, further evidence that production of this secondary metabolite 

is not uniform among marine isolates. However, further analysis and functional genomics studies will 

be required to determine the factors underlying this divergence. 
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Figure 6. No evidence for autoinduction by TDA or early induction by QS compounds.  

(a) Growth curve of Pseudovibrio strain W74 grown in the presence of C10-HSL and TDA, 

along with the relative controls DMSO and MeOH; (b) Brown pigment production between 

24 and 36 h. Up to 24 h, cultures remained a light beige colour. No difference is seen in  

the growth or colour of W74, indicating that TDA is not auto-induced, nor is it induced  

by C10-HSL. 
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3. Materials and Methods  

3.1. Growth Conditions 

All Pseudovibrio strains were isolated from the sponges Axinella dissimilis Polymastia boletiformis and 

Haliclona simulans as previously described [16]. A selection of marine isolates from the UCC marine 

culture collection, previously isolated from the deep sea sponges of Hexactinellida and Poecillastra 

species, were used as indicator strains for TDA sensitivity assays. All marine sponge isolates were grown 

in the dark at 23 °C shaking at 200 rpm. Strains were grown on marine agar (MA) (Difco, Difco 

laboratories, Surray, KT8 2SE, UK), or SYP-SW agar (1% starch, 0.4% yeast extract, 0.2% peptone, 

3.3% sea salt, 1.5% agar). Other bacterial isolates (indicator strains) were grown shaking at 200 rpm at 

37 °C in LB (1% tryptone, 0.5% yeast extract, 0.5% salt). 

3.2. Antimicrobial Spot-Plate Overlay Assay 

Fifty microliters of Pseudovibrio strains grown overnight on Difco marine broth (MB, Difco 

laboratories, Surray, KT8 2SE, UK) were spotted at an OD600 of 0.2 onto MA or SYP-SW agar and 

incubated at 23 °C for 72 h. Bacterial indicator strains were grown overnight in LB and overlaid in 

0.5% LB agar at an OD600 of 0.1. Zones of inhibition were measured after 24 h of incubation at 37 °C. 
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3.3. Compound Extraction 

Compounds were extracted following a protocol adapted from Porsby et al., [24]. Briefly, Pseudovibrio 

strains were inoculated from an overnight culture into 10ml MB at an OD600 of 0.01 and incubated shaking 

at 150 rpm at 23 °C for >72 h (or until brown colour change occurred). The culture was then centrifuged 

(4472× g @ RT) and filtered through a 0.2 micron filter (514-0061 VWR, VWR International Ltd., 

Dublin, Ireland). Equal volume ethyl acetate (10 mL) plus 100 μL formic acid were added to the  

cell-free supernatant and incubated shaking at 23 °C at 200 rpm for 10 min. Samples were centrifuged 

at 4472× g for 10 min. Subsequently, the upper layer was removed and vacuum concentrated at 50 °C 

until dry. The dried compound was then resuspended in relevant mobile phase, i.e., 100 μL of MeOH for 

TLC and 200 μL of 85% acetonitrile/15% MilliQ water for UHPLC analysis.  

3.4. Thin Layer Chromotography (TLC) 

Two microliters of extracts were spotted on a Silica gel TLC plate (60 F254, MERCK Millipore, 

Cork, Ireland). 2 μL of 10 μg/mL TDA (BVT-0152, BioViotica, Dransfeld, Germany), redissolved in 

MeOH was used as a control. The solvents used were dichloromethane and methanol at a ratio of 

92.5:7.5, plus 0.15% acetic acid. When the front approached the top of the TLC plate, the plate was 

removed, dried and overlaid with 25 mL 0.5% LB agar containing bacterial indicator strains at an 

OD600 of 0.1, plus 5 mM 2,3,5-Triphenyltetrazolium Chloride (T8877, Sigma, St Louis, MO, USA) as 

a redox indicator of bacterial metabolism [42]. Plates were incubated for 24 h at 37 °C for pathogenic 

and laboratory indicator strains, and at 23 °C for marine isolates. 

3.5. TDA Identification 

Pseudovibrio extracts were redissolved in 200 μL 85% acetonitrile/15% MilliQ water. TDA standard 

solutions were diluted in 85% acetonitrile/15% MilliQ from a 1 mM TDA (BioViotica, Dransfeld, 

Germany) solution in dimethyl sulfoxide. UHPLC-DAD-qTOFMS analysis was conducted on an Agilent 

1290 UHPLC coupled to an Agilent 6550 qTOF (Santa Clara, CA, USA) equipped with a dual electrospray 

source [43]. 

Separation was performed at 40 °C on a 2.1 mm ID, 50 mm, 1.8 μm Agilent Eclipse Plus C18 

column [44] using a water-acetonitrile gradient solvent system, with both water and acetonitrile 

containing 20 mM formic acid. Using a flow of 0.8 mL/min, the gradient was started at 15% acetonitrile 

and increased to 60% acetonitrile within 1.8 min, then to 100% in 0.2 min, keeping this for 0.8 min, 

returning to 15% acetonitrile in 0.2 min, and equilibrating for the next sample in 1.5 min (total runtime 

4.5 min). TDA was determined in ESI+ mode and quantified from its [M + H]+ ion 212.9674 ± 0.005 

with the same retention time as the authentic standard (1.05 min). The TDA standard had a concentration 

of 0.01 mg/mL. Quantification was done using regression based on the peaks area in the Agilent 

MassHunter Quant 6.0 software (Agilent Technologies, Santa Clare, CA, USA). 

3.6. Antimicrobial Spot-Plate Overlay Assay for Marine Sponge Isolates 

The Pseudovibrio isolate W74 was spot-plated (5 μL) on MA at a starting OD600 of 0.2, and incubated 

at 23 °C for 72 h. Deep sea marine sponge isolates were grown overnight and inoculated into soft 0.5% 
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marine agar at an OD600 nm of 0.1. This was overlaid onto W74 spot-plates and incubated at 23 °C. 

Zones of inhibition were measured after 24 h. 

3.7. Pseudovibrio Induction Assay 

Pseudovibrio strain W74 was inoculated from an overnight culture into 3 × 200 mL MB in 1 L flasks, 

at OD600 nm of 0.01 in the presence of 100 nM 3-OH-C10-HSL (University of Nottingham, 

Nottingham, UK), or 1 μM TDA, to test for the induction and autoinduction of TDA, respectively. 

W74 was also grown in the presence of 100 μL of both DMSO and MeOH, as C10-HSL and TDA 

were suspended in these respectively. W74 was also grown in marine broth as a control. Cultures were 

incubated at 200 rpm at 23 °C, and the OD600 of the cultures was measured at 12 h, 18 h, 24 h and  

36 h. The colour of the cultures was also observed and noted at the above time points, at which times 

TDA was also extracted from the samples and analysed via TLC overlayed with S. aureus NCD0 949 

as indicator strain. 

3.8. RNA Isolation and cDNA Synthesis 

Pseudovibrio strain W74 was grown shaking in 20 mL MB in a 100 mL flask at 23 °C for 48 h. 

Growth was measured at 6, 12, 24, 30, 36 and 48 h and a growth curve was plotted. At the above time 

points, 500 μL culture was collected and stored in 1 mL RNA protect. RNA was isolated as per the 

RNeasy RNA Extraction Kit protocol (Qiagen GmbH, Hilden, Germany). Isolated RNA was 

subsequently treated with DNase (0.1 volume 10× Turbo DNase) and incubated at 37 °C for 30 min to 

remove any potentially contaminating DNA. DNase was then inactivated using 0.1 volume DNase 

inactivation reagent. A 16S targeted PCR using 63F and 1387R primers was performed on the isolated 

RNA to test whether the DNase treatment had been successful [45]. RNA was converted to cDNA 

using AMV Reverse Transcriptase (Promega, Madison, WI, USA), RNasin (100 U/μL) (Promega, 

Madison, WI, USA), random primers (0.5 μg/μL) (Promega, Madison, WI, USA) and 10 mM dNTPs 

(Promega, Madison, WI, USA). A 16S targeted PCR was also performed using 63F and 1387R 

primers to ensure cDNA integrity. 

3.9. RT-PCR 

Quantitative RT-PCR analysis of six genes (tdaA-F) involved in TDA production was performed on 

W74 cDNA using primers outlined in Supplementary Table S9. Specific RT-PCR primers and probes 

were designed using the Universal ProbeLibrary assay center [46] for each gene based on the W74 

genome sequence. Ten serial dilutions of the gDNA standards from 108 to 104 copies were prepared and  

2 blanks were used as a control. Quantitative real-time PCR analysis of expression was carried out using 

the FastStart TaqMAN probe master kit (12747422, Roche, Basel, Switzerland). cDNA samples were 

diluted 1/10, and 5 μL was added to the following mixture: 12.5 μL Probemaster, 0.2 μL probe, 0.5μL 

forward primer, 0.5 μL reverse primer (Supplementary Table S9), 6.3 μL H2O. The mixture was 

incubated at 95 °C for 5 min, followed by 50 cycles at 95 °C for 40 s, 55 °C for 2 min, and 72 °C for  

1 min. Quantitative real time-PCR signals were normalized to the constitutively expressed housekeeping 
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gene gyrB. This gene was chosen on the basis that it is universally used for normalization of gene 

expression data in a broad spectrum of microbial species [47,48]. 

3.10. Genetic Analysis of Pseudovibrio TDA Genes 

The 6 genes involved in the TDA pathway in Ruegeria sp. TM1040 [37] (Table 2) were used as a 

query to identify their homologs in the draft genomes of the three Pseudovibrio sp marine isolates W64, 

W74 and WM33 using NCBI BLAST+ 2.2.29 [49]. All-vs-all homology comparison of the 6 genes 

involved in the TDA pathway for the different species (Table 2) and the graphical representation was 

conducted by Circoletto [40]. 

4. Conclusions 

In this study, we have characterised the production and spectrum of activity of TDA from marine 

sponge bacterial isolates, while also revealing an apparent lack of auto-induction or of QS induced 

early induction of TDA production in Pseudovibrio. In contrast to previous studies, tolerance to TDA, 

which was prevalent among marine sponge isolates, was not associated with native TDA production in 

these strains. TDA was shown to be active against a broad spectrum of human and fish pathogens, 

including M. morganii and Pandoraeae sputonum, both multidrug resistant opportunistic pathogens 

commonly associated with nosocomial infections [10,50–53]. TDA-producing Pseudovibrio isolates 

also displayed antimicrobial activity against Salmonella enterica ssp. arizonae, a serious albeit 

uncommon multidrug-resistant human pathogen which can cause life-threatening infections, usually  

in immunocompromised hosts [54–56]. S. aureus, one of the top three pathogens of blood stream 

infections [53], also displayed sensitivity to TDA produced by Pseudovibrio isolates. As the search for 

new antibiotics continues, TDA produced by marine sponge isolates has potential as a platform molecule 

for clinical development. Indeed, synthetic modification of the TDA framework resulting in analogues with 

enhanced antimicrobial activity has recently been reported [57], evidence that chemical modification of 

the compound can be achieved. Furthermore, initial toxicity studies have revealed that TDA is  

non-toxic in two eukaryotic models [30]. However, more detailed understanding of the molecular 

mechanisms governing TDA production is needed to underpin the necessary development process. 
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