Supplementary Information

Figure S1. High performance liquid chromatography of STX in ACHK-T and ACHK-NT. (A) C1/C2 toxins; (B) GTX1/4 toxins. Y-axis: Fluorescence intensity (LU); X-axis: Retention time (min). Differences of chromatograms peak between ACHK-T and ACHK-NT were consistent with previous result [26].

Figure S2. Cell cycle phase distribution of ACHK-T and ACHK-NT during the light period. Y-axis: Number of cells; X-axis: the relative amount of DNA. The results presented a similar phase distributions between the two strains.

Figure S3. Uniform distribution of all reads from libraries of ACHK-NT and ACHK-T. Homogeneous distribution of reads which covered multiple locations in UTRs and coding regions of transcripts showed an evenly distributed coverage of reads to genes.

Figure S4. KOG classification of A. catenella unigenes. Letters represent the 26 classifications in KOG databases.
KOG Classification

$B=$ Chromatin structure and dynamics
ics
$C=$ Energy productioin and conversion
D $=$ Cell cycle control and mitosis
$E=$ Amino acid metabolis and transport
F = Nucleotide metabolism and transport
G = Carbohydrate metabolism and transport
$\mathrm{H}=$ Coenzyme metabolism
I = Lipid metabolims
$\mathrm{J}=$ Translation
$\mathrm{K}=$ Transcription
$\mathrm{L}=$ Replication and repair
$M=$ Cell wall/membrane/envelop biogenesis
$\mathrm{N}=$ Cell motility
$\mathrm{O}=$ Post-translational modification, protein turnover, chaperon
$\mathrm{P}=$ Post-translational modification, protein turganic ion transport and metabolism
$Q=$ Secondary Structure
$\mathrm{R}=$ General functional prediction only
$S=$ Functioin unknown
$\mathrm{T}=$ Signal transduction
$U=$ Intracellular trafficing and secretion
$\mathrm{V}=$ Defense mechanisms
W = Extracellular structures
$\mathrm{X}=$ Unamed protein
$\mathrm{Y}=$ Nuclear structure
Z = Cytoskeleton

Figure S5. GO classification of A. catenella unigenes. Each annotated sequence was assigned to at least one GO term and classified into different groups within the three functional categories.

GO Classification

Figure S6. KEGG pathway annotation and KO annotation. (A) Top 10 represented KEGG pathway. Number of unigenes and EC numbers involved in each pathway is shown; (B) Top 10 KO terms with number of unigenes assigned to each term.

Figure S7. KEGG classifications of unigenes based on the secondary pathway hierarchy. Letters A to D represent the four primary hierarchies in KEGG database: A: Cellular Processes; B: Environmental Information Processing; C: Genetic Information Processing; D: Metabolism.

KEGG Classification

Figure S8. Protein families in A. catenella transcriptome. (A) Distribution of Pfam families versus unigenes; (B) Top 10 represented Pfam families.

Figure S9. Alignment and GC content comparison of both isoforms of $s x t A$ obtained in this study with reported complete cds sequences of $s x t A$ from A. fundyense. (A) Alignment of comp66169 with sxtA long transcript (accession number: JF343239); (B) Alignment of comp20666 with sxtA short transcript (accession number: JF343238). The color labeled nucleotides were DinoSL and polyA regions which were not obtained in this study; (C) GC content comparison. GC content was calculated using the reported method [21].

A

comp66169-sxtA long

 setion $\begin{array}{ll}3 \text { atace } & 11 \\ \text { compertes_co } & 10\end{array}$

Figure S9. Cont.

$235 T$ CGGCAACGGAGCTCGGGTAGTCOGCGTCGTGGACGGCTTCAGGCOGGAGACGTGGOCAACOGCGGGGACOGCGTGCTCATACAGTACGRCACGAGCAAGCTCGECGCGOCKACCGGCGAGCGC次
stalang
 statave
 camp/6tce_ co

e. 00
 compserte_
 sothlacg
compose
 suAlang 2956 TCGRCGGCTGCTGGTGCATCGACGTGGCGAACTGCAGCTACGTGGOCTTCCAGTGGCGGGACGAGATCGCCGKTGGCGTGGACOGGGACGTGCGCACTTGGGOCGTCCACCOCCCGTGGACCAG compebte9_co
 statave
 compl6ive_co sematate
 comploter_p
 sublace
 sotilavg 3452 CAAOATACTCOTAQRCOACTCOCATOOCTOCOOCOTTCTTOOCCOCAACCOCORCTCOQAOCAACCCTTCOOOTATOOTOOCOOCOOCOTCOTCOAOTACTTCOOOCTOOACTACOCOOAOAMC campserten_e 0
 stationg

 statase
 Scatasg
compseres
 (compserts 4072 MOQACCTO TCA ${ }^{2}$.
 compser60_60
 stalane
 ADAONG 443 TTDCTOATOCTOATCCAROOTATOACCAOCCATOSCOCATCATCOCOTCTAADGTAGLOCCTOTCEATOTCTOCCATCTTAGCTOCTCACTATTCOCATCRACACFCOCAAOOTACOCOTCTOC camp6016P_co stince compster

Figure S9. Cont.

B comp20666 - sxtA short
 comprosec_to

seatinar compansed_ec semator comp206et_co 11
24
230
selamat compzover_co seblatap compzever_ro
sestinar companoses to sedamor
compiotec_co seasmat
companten sematar somparover_ro sebatar seblatat
comprover co
 sestanar somparareses co - 1俗 sestatar semparase

 cOTQ20

Figure S9. Cont.

 sEAshor 2169 OOTTGGACAOCACCATCOAGAGOOTCATCGOTGTCACA NOGTOCAOCAAGOAGTTTCGOCAOTACOATGOCCCCATOMOTGAGTACOTCAATOCOCACTTCTCTGOOGCCCOGACCOACAOCAC

sedamot

somp20060 co 2233 GСTGGAGTTCCACTCCTCCGCCGGAGCGGAGTTGGTCCGGT TGGTGGRGGGCTTCOGCCCCGAGGACACCGACAAGGGCGGCACAGGAGTGGTCATCGCCTACGACATCAGGAGSGCTOGTOGACTTCGACTCCTCCOCCOQGOCOCOCTTCCTCCGCGTOGTOGAOGOCTTCCOGCCCOAGOACACCOACAACGGCGGCACOGOAGTGOTCATCOCCTACOACATCAGOAGOQCCTTOCSC

SQASAR 24

sEAshot 2938 TCOCGGACATGGTCAAGTACATCGTCGCCATAGAGTCGATCGTGGTCGACGTCGAGGGGCOGGTGGTGCAGGAGTTGCAGCTGATCGAAGATGTCGAGTAGAAGTCGGTGCAGAGAGGCGGCGA comp20set_co 2819 TCOCOQACATOCTCAAOTACATCCTTOCCATAGAOTCCATCCTOATTOAGOTCOAOOGOCCOATCATOCAOGAOCTCCAOCTOATCCCOOATCTCOAOTACAMOTCOOTCCAOAAAOOCCOCOA selatot $29 E 2$ GASTTTGATGTACTACATGTCAGOCTATTGGCTGECCCACCCAGAGATACGCGATCAGAGCGAGCAGTTACTCCTCCTCACGCTGCAGGACCAGTGCTGCGGCAATAACCACTTGTAGCCTGGE cOMOZOEOK_CO 2943 GAAATTGATGTACTACATGTCAACCTATTGGCTGGCCGACGCAGAGATACGCGAGCAGRGTCAGCAGTTGCTTGTCCTCACGTTGCAGGACCAGTGCTGGOGCACTAAGAACTTGTAGGCTGGC

Figure S9. Cont.
C

S1. Sequences of $\operatorname{sxtA1}$ and $\operatorname{sxtA4} 4$ motifs in A. catenella

>ACHK-NT-sxtA1

TGTACTCCTACTACGTCCCGACGTCCTACGCCCCACTGCTGGACAGGTACCACAGCATCCTCTTCGAGAATCCCGGCTGGGGGTTCGCCGG TGCCGGCCGGGACTCGCAGGAGCAGGAGGTCCACGTCCACCGGACGCTGAACGTGGTGGGCAGCGGGGCGCAGCACCAGACGCTCTTCA CGGACCTCGTGCGGCTCATTGACTCGGTCTTCGCGGGCGGGGACTTCGCATCGCAGCCGGCGTTCATCGTGGACACGGGGTGCGGCGACG GCCGCTTGCTCAGGCGCATCTACGAGCACGTGAAGAGCAACACGCCGCGCGGGAAGGCGCTCGCCGAGCACCCGCTCACGATGGTCGGC GTCGACTTCAACAAGGACTCTCGGGTGGCGACGGAGCTCAACCTGAGCAGGCACGCGGTCCCGCACCTGGTGCTCTTCGGGGACGTCGGC AAGCCCGCCGACATCATGGAGACCCTCGGGCGGAATGGGGTGGACCCGAGCAGGTCCCTCCACGTGCGCTCCTTCCTA

>ACHK-T-sxtA1

CTACTCCTACTACGTCCCGACCTCCTACGCCCCACTGCTGGACAGGTACCACCGCATCCTCTTCGAGAATCCCGGCTGGGGGTTCGCCGGC GCCGGCCGGGACTCGCAGGAGCAGGAGGTCCACGTCCACCGGACGCTGAACGTGGTGGGCAGCGGGGCGCAGCACCAGACGCTCTTCAC GGATCTCGTGCGGCTCATTGACTCGGTCTTCGCGGGCGGGGACTTCGCGGCGCAGCCGGCGTTCGTCGTGGACACGGGGTGCGGCGACGG CCGCTTGCTCAGGCGCATCTACGAGCACGTGAAGAGCAACACGCCGCGCGGGAAGGCGCTCGGCGAGCACCCGCTCACGATGGTCGGCG TCGACTTCAACAAGGACTCTCGGGTGGCCACGGAGCTCAACCTGAGCAGGCACGCGGTCCCGCACCTGGTGCTGTTCGGGGACGTCGGCA AGCCCGCCGACATCATGGAGATCCTCGGGCGGAGGGGGGTGGACCCGAGCAGGTCCCTCCACGTGCGCTCCTTCCAAACCCCACGACCA
>ACHK-NT-sxtA4
CACCAGAGTCATCCCGAGCCTCGTGGGCGAGAGCGGGTTCCTCCTCCTGTACATAAACGCCCACGACTGCGTGCAGACGGCCGCCAGGCT CTGCAAGAAGGGCGCCACCGTGGTGCGCCTGAAGCACAACGACACGGAACAGCCCGAGCACATGCTCTCGTCGATCCCGCAGGGGGCCG ACATCACCTACGTGTGCGACGGCGTGTACTCCACGGACGAAGAGCTCGCCGACTTGCCCGCCATATGTGCTTGTTTGAGGCCGCGCGGGG CCAAGATACTCGTAGACGACTCGCATGGCTGCGGCGTTCTTGGCCGCAACCCCAACTCGGAGCAACCCCTCGGGTATGGTGGCGGCGGCG TCATCGAGTACTTCGGGCTGGACTACGCGGAGAACAACATCATCTACGCCGGGCAGCTGAGCAAGGCGTTCAATTCGCCCGGCGGATTCG TCAGCTGTGCGCGCGAGACCGACGAGAATTTCGGCGTTCTGAACTTGGCCAAGAACTCGAACACACTCGTGTTCACAGGGCCGATCTGTA CTGCCGGCCTGTCGAGTGCGAAGACGACCTTCGACCTCAACGCCGCCGAGGGGGACCTTCAGCGCAAGCGGCTTCTGGCGGCTACCCTCG AATTCTGCGAGGGGCTCAAGGCGCTCGGGTGCCCCCACACCTACCACGAGTTCCCCATCGTCAACTCAGCGGGGGACCCCA
>ACHK-T-sxtA4
CCCCGATCATCCCGAGCCTCGTGGGCGAGAGCGGGTTCCTCCTCCTGTACATAAACGCCCACGACTGCGTGCAGACGGCCGCCAGGCTCTG CAAGAAGGGCGCCACCGTGGTGCGCCTGAAGCACAACGACACGGAACAGCCCGAGCACATGCTCTCGTCGATCCCGCAGGGGGCCGACAT CACCTACGTGTGCGACGGCGTGTACTCCACGGACGAAGAGCTCGCCGACTTGCCCGCCATATGTGCTTGTTTGAGGCCGCGCGGGGCCAAG ATACTCGTAGACGACTCGCATGGCTGCGGCGTTCTTGGCCGCAACCCCAACTCGGAGCAACCCCTCGGGTATGGTGGCGGCGGCGTCATC GAGTACTTCGGGCTGGACTACGCGGAGAACAACATCATCTACGCCGGGCAGCTGAGCAAGGCGTTCAATTCGCCCGGCGGATTCGTCAGC TGTGCGCGCGAGACCGACGAGAATTTCGGCGTTCTGAACTTGGCCAAGAACTCGAACACACTCGTGTTCACAGGGCCGATCTGTACTGCC GGCCTGTCGAGTGCGAAGACGACCTTCGACCTCAACGCCGCCGAGGGGGACCTTCAGCGCAAGCGGCTTCTGGCGGCTACCCTCGAATTC TGCGAGGGGCTCAAGGCGCTCGGGTGCCCCCACACCTACCACGAGTTCCCCATCGTCAACC

