Supporting Information

Figure S1. ¹ H NMR spectrum of 1	2
Figure S2. ¹³ C NMR spectrum of 1	3
Figure S3. DEPT135 spectrum of 1	3
Figure S4. HSQC spectrum of 1	4
Figure S5. HMBC spectrum of 1	4
Figure S6. NOESY spectrum of 1	5
Figure S7. HRESIMS spectrum of 1	5
Figure S8. IR spectrum of 1	6
Figure S9. ¹ H NMR spectrum of a mixture of 3 and 2	6
Figure S10. ¹³ C NMR spectrum of a mixture of 3 and 2	7
Figure S11. DEPT135 spectrum of a mixture of 3 and 2	7
Figure S12. HSQC spectrum of a mixture of 3 and 2	8
Figure S13. HMBC spectrum of a mixture of 3 and 2	8
Figure S14. NOESY spectrum of 2	9
Figure S15. HR-ESIMS spectrum of 7-carboxypenicitrinol C (2)	9
Figure S16. IR spectrum of 7-carboxypenicitrinol C (2)	10
Figure S17. ¹ H NMR spectrum of 8	10
Figure S18. ¹³ C NMR spectrum of 8	11
Figure S19. DEPT135 spectrum of 8	11
Figure S20. HMBC spectrum of 8	12
Figure S21. HRESIMS spectrum of 8	12
Figure S22. IR spectrum of 8	13
Figure S23. ¹³ CNMR, DEPT135 spectra of 9	13
Figure S24. HMBC spectrum of 9	14
Figure S25. NOESY spectrum of 9	14
Figure S26. HRESIMS spectrum of 9	15
Figure S27. IR spectrum of 9	15
Figure S28. ¹ H NMR spectra of 10 and 11	16
Figure S29. ¹³ C NMR, DEPT135 spectra of 10 and 11	17
Figure S30. HMBC spectrum of 10	18
Figure S31. HRESIMS spectrum of 10	18
Figure S32. IR spectrum of 10	19
S1. Enzyme inhibitory assay	19
S2. Larval Settlement Bioassays	20

Figure S1. ¹H-NMR spectrum of penicitrinol F (1).

Figure S2. ¹³C-NMR spectrum of penicitrinol F (1).

Figure S4. HSQC spectrum of penicitrinol F (1).

Figure S5. HMBC spectrum of penicitrinol F (1).

Figure S6. NOE spectrum of penicitrinol F (1).

Figure S7. HR-ESIMS spectrum of penicitrinol F (1).

Figure S8. IR spectrum of penicitrinol F (1).

Figure S10. ¹³C-NMR spectrum of a mixture of 3 and 2.

Figure S12. HSQC spectrum of a mixture of 3 and 2.

Figure S13. HMBC spectrum of a mixture of 3 and 2.

Figure S14. NOE spectrum of 7-carboxypenicitrinol C (2).

Figure S17. ¹H-NMR spectrum of 2,6-dihydroxy-4,5-dimethyl-3-(3-oxo-1-butenyl) benzoic acid (8).

Figure S18. ¹³C-NMR spectrum of 2,6-dihydroxy-4,5-dimethyl-3-(3-oxo-1-butenyl) benzoic acid (8).

Figure S19. DEPT135 spectrum of 2,6-dihydroxy-4,5-dimethyl-3-(3-oxo-1-butenyl) benzoic acid (8).

Figure S20. HMBC spectrum of 2,6-dihydroxy-4,5-dimethyl-3-(3-oxo-1-butenyl)benzoic acid (**8**).

Figure S21. HR-ESIMS spectrum of 2,6-dihydroxy-4,5-dimethyl-3-(3-oxo-1-butenyl) benzoic acid (8).

Bruker Compass DataAnalysis 4.0

Figure S22. IR spectrum of 2,6-dihydroxy-4,5-dimethyl-3-(3-oxo-1-butenyl)benzoic acid (8).

Figure S23. ¹³C-NMR, DEPT135 spectra of 4-(hydroxymethyl)-3-methoxy-5-methyl cyclopent-2-enone (9).

Figure S24. HMBC spectrum of 4-(hydroxymethyl)-3-methoxy-5-methylcyclopent-2-enone (9).

Figure S25. NOE spectrum of 4-(hydroxymethyl)-3-methoxy-5-methylcyclopent-2-enone (9).

Figure S26. HRESIMS spectrum of 4-(hydroxymethyl)-3-methoxy-5-methyl cyclopent-2-enone (**9**).

Figure S27. IR spectrum of 4-(hydroxymethyl)-3-methoxy-5-methylcyclopent-2-enone (9).

**1301b0096-5 (NA-46)

采集时间: 星期五 1月 18 11:16:18 2013 (GMT+08:00)

Figure S28. ¹H-NMR spectrum of 10 (NA-48) (A) and 11 (NA-27) (B).

Figure S29. ¹³C-NMR, DEPT135 spectra of 10 (NA-48) (A) and 11 (NA-27) (B).

(B)

Figure S30. HMBC spectrum of 8-methoxy-1-naphthyl-1-(6'-*O*-acetyl)-α-glucopyranoside (10).

Figure S31. HRESIMS spectrum of 8-methoxy-1-naphthyl-1-(6'-O-acetyl)-α-glucopyranoside (10).

Figure S32. IR spectrum of 8-methoxy-1-naphthyl-1-(6'-O-acetyl)-α-glucopyranoside (10).

S1. Enzyme Inhibitory Assay

S1.1. Cathepsin B Activity Assay

The assay was performed in 96-well plate according to a published method with modification. Brifely, 50 μ L reaction buffer (100 mM sodium acetate (pH 5.5), 1 mM EDTA, 4 mM dithiothreitol) containing 0.0025 unit of cathepsin B from human liver (Sigma, one unit will liberate 1 nanomole of 7-amino-4-methylcoumarin from Z-Arg-Arg 7-amido-4-methylcoumarin per min at pH 6.0 at 40 °C) and 2 μ L test compounds dissolved in DMSO were added to each well of a 96-well plate. After preincubation for 15 min at room temperature, 50 μ L of reaction buffer containing 100 μ M Z-Arg-Arg-7-amido-4-methylcoumarin (Sigma) was added and incubated for 30 min at room temperature. Fluorescence was measured using a microplate reader (Wallac 1420 Victor 2, PerkinElmer, HolIand) with an excitation of 355 nm and emission at 460 nm.

S1.2. IMPDH Enzyme Assay

His-taged human IMPDH Π was recombinantly expressed in *Escherichia coli* and purified by Ni-NTA affinity chromotagraphy as described previously. The IMPDH activity assay was performed in 200-µL assay volume of 96-well plate. Briefly, 2 µL of test compound (dissolved in DMSO) or DMSO and 150 µL enzyme buffer containing 100 mM KH₂PO₄, 0.5 mM EDTA pH 8, and 2 mM dithiothreitol and 50 nM IMPDH were added into the plate and incubated at 37 °C for 15 min. The reaction was initiated by adding 50 µL reaction buffer containing a final concentration of 200 µM inosine 5-monophosphate (Sigma) and 200 µM NAD (Sigma). The OD was read at 340 nm after incubation at 37 °C for 30 min with a microplate reader (Wallac 1420 Victor 2, PerkinElmer, HolIand).

S1.3. PTP1B and SHP2 Activity Assays

Human recombinant PTP1B and SHP2 were expressed in *E. coli* and purifed by Ni-NTA affinity chromotagraphy in our laboratory, respectively. The enzyme activity was measured using p-nitrophenyl phosphate (pNPP) as substrate in a 96-well plate. Brifely, purified recombinant PTP1B or SHP2 (0.05 μ g) in 50 μ L buffer containing 50 mM citrate (pH 6.0), 0.1 M NaCl, 1 mM EDTA, and 1 mM dithiothreitol (DTT) and test compounds were added to each well of a 96-well plate. After preincubation for 15 min at room temperature, 50 μ L of reaction buffer containing 2 mM pNPP was added and incubated at 37 °C for 30 min. The PTP1B or SHP2 activity was measured by detecting the absorbance at 405 nm for the amount of produced p-nitrophenol.

S2. Larval Settlement Bioassays

Antifouling activity of compounds was evaluated in settlement inhibition assays with laboratory-reared *B. neritina* larvae. Larval settlement bioassays were performed using sterile 24-well polystyrene plates as previously reported. Briefly, the stock solution of tested samples in DMSO was diluted with autoclaved filtered sea water (FSW) to concentrations ranging from 1 to 300 ppm. Then the EC₅₀ and LC₅₀ values of active compounds were calculated. In this way, about 20 competent larvae were added to each well in 1 mL of the test solution. Wells containing only FSW with DMSO served as the controls. Three replicates of each treatment were used. The plates were incubated at 27 $^{\circ}$ C for 1 h. The percentage of larval settlement was determined by counting the settled, live individuals under a dissecting microscope and expressing the result as a proportion of the total number of larvae in the well. EC₅₀ (inhibits 50% of settlement of *B. neritina* larvae in comparison with the control) and LC₅₀ (refers to the concentration that kills 50% of the test organisms in comparison with the control) levels of active compounds were calculated by using the Excel software program.