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Abstract: Although emerging evidence indicates that deep-sea water contains an untapped 

reservoir of high metabolic and genetic diversity, this realm has not been studied well 

compared with surface sea water. The study provided the first integrated meta-genomic  

and -transcriptomic analysis of the microbial communities in deep-sea water of North 

Pacific Ocean. DNA/RNA amplifications and simultaneous metagenomic and 

metatranscriptomic analyses were employed to discover information concerning deep-sea 

microbial communities from four different deep-sea sites ranging from the mesopelagic to 

pelagic ocean. Within the prokaryotic community, bacteria is absolutely dominant (~90%) 

over archaea in both metagenomic and metatranscriptomic data pools. The emergence of 

archaeal phyla Crenarchaeota, Euryarchaeota, Thaumarchaeota, bacterial phyla 

Actinobacteria, Firmicutes, sub-phyla Betaproteobacteria, Deltaproteobacteria, and 

Gammaproteobacteria, and the decrease of bacterial phyla Bacteroidetes and 

Alphaproteobacteria are the main composition changes of prokaryotic communities in the 

deep-sea water, when compared with the reference Global Ocean Sampling Expedition 

(GOS) surface water. Photosynthetic Cyanobacteria exist in all four metagenomic libraries 

and two metatranscriptomic libraries. In Eukaryota community, decreased abundance of 

fungi and algae in deep sea was observed. RNA/DNA ratio was employed as an index to 

show metabolic activity strength of microbes in deep sea. Functional analysis indicated that 

deep-sea microbes are leading a defensive lifestyle. 
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1. Introduction 

The water body underlying the photic zone in the world’s oceans, representing the largest water 

mass on earth (comprising 1.3 × 10
18

 m
3
), is the largest aqueous habitat for microbial life [1]. This 

realm differs distinctly from the photic zone, presenting low temperature (approximately 2–4 °C), high 

pressure and high inorganic nutrient levels [2]. Differences in physical geochemical parameters 

between the upper level of sea water and deep sea suggest that microbial communities in these 

environments are confronted by fundamentally different challenges. Although emerging evidence 

indicates that deep-sea water contains an untapped reservoir of high metabolic and genetic diversity, 

and microbial communities in deep-sea water play an important role in ocean biogeochemistry [2–5]. 

Many marine microorganisms can synthesize various metabolic compounds. In recent decades (since 

the 1970s), a considerable amount of drug candidates were discovered from marine natural  

products [6]. These natural products are a rich source of new chemical diversity and also a vital 

component of the pharmaceutical industry [7]. Hence, the development of tools to access deep-sea 

microorganisms and microbial community promises to provide insight into this significant new source 

of drug discovery and development. Recent studies have found that prokaryotic plankton is one of the 

main drivers of biogeochemical cycles over large ocean expanses [8], and that eukaryotic microbes 

account for a significant fraction of the biomass and activity of marine microbial communities [9,10]. 

To better understand the influence of microbes on ocean geochemistry, we set about exploring the 

structure and metabolic characteristics of microbial communities in deep-sea environments.  

Progress in next-generation sequencing is fueling a rapid increase in the number and scope of 

microbial community-targeted studies [11–16]. While metagenomics provides information on the 

taxonomic composition and metabolic potential of a microbial community, metatranscriptomics serves 

to unveil the actual metabolic activities of the community at a specific time and place, and how those 

activities change in response to environmental forces or biotic interactions [17]. Defining the 

relationship between microbial community composition and function (metabolic characteristics) has 

been a major challenge in studying heterotrophic carbon cycling in marine systems [5]. The 

combination of metagenomic and metatranscriptomic approaches has proven efficacious in 

deciphering the phylogenetic composition, metabolic potential and pathways of deep-sea microbial 

communities. For example, in a recent study, coupled metagenomic and metatranscriptomic analyses 

were utilized for taxonomic and functional characterization of marine microbial communities living at 

depths between 25 and 500 m [18]. The results provided novel insight into not only microbial diversity 

but also specific metabolic processes transpiring in the ecosystems. Moreover, the different relative 

abundance of taxonomic groups identified in the metagenomic and metatranscriptomic libraries arising 

from the study revealed differential relative transcriptional activities per cell [18].  

We present a study focused on simultaneous metagenomic and metatranscriptomic analysis of  

deep-sea microbial communities, including both prokaryotes and eukaryotes, from four different  
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deep-sea sites ranging from the mesopelagic to pelagic ocean (depth of 784–1937 m, 2–4 m above the 

sea floor). Many marine microbial community studies have focused on either prokaryotes or 

eukaryotes [11,12,15,19–21]. To our knowledge, this is the first integrated metagenomic and 

metatranscriptomic study to include both prokaryotic and eukaryotic microorganisms living in the 

same habitat. DNA and RNA amplifications were performed to meet the entry requirements of nucleic 

acids for pyrosequencing. Integrated metagenomic and metatranscriptomic results revealed a defensive 

life style instead of active growing/metabolic style of both prokaryotic and eukaryotic communities 

living in the deep-sea water. Microbial community structures and their metabolic characteristics in the 

environments are presented and discussed.  

2. Results and Discussion 

2.1. Overview of Data Generation and Analysis 

Among the four sampling sites in this study, CT04, CT05, and CT06 are 164.2 km east of the coast, 

while CT12 is much further out to sea, approximately 20 km southwest of a deep-sea hydrothermal 

vent. Detailed information about the sampling sites is provided in Table 1. Although all sampling sites 

are close to the sea floor (2–3 m above the sea floor), sites CT05 and CT06 are in the mesopelagic 

realm (200–1000 m), while CT04 and CT12 are within the bathypelagic realm (1000–4000 m). By 

studying samples from four disparate sites we were better able to reveal a more complete picture of 

microbial communities’ structures and their metabolic characteristics in the deep-sea water of North 

Pacific Ocean. 

Table 1. Sampling descriptions. 

Sampling Sites Position  Depth (m) Sampling Time 

CT04 44°29′34.80′′ N, 125°8′49.61″ W 1181–1194 7/23/2008, 21:00–21:24GMT 

CT05 44°34′1.02″ N, 125°9′3.75″ W 785–790 7/27/2008, 3:05–7:21GMT 

CT06 44°33′52.99″ N, 125°9′3.73″ W 763–789 7/27/2008, 3:12–7:31GMT 

CT12 45°51′57.01″ N, 129°47′19.47″ W 1840–1913 8/2/2008, 00:01–00:24GMT 

In natural environments such as the deep sea, microbial cell density can be as low as  

10
3
–10

4
 cells mL

−1
 of seawater [22]. In addition, RNA abundance decreases with depth due to a 

relatively slow metabolism [23]. Compared to biomass-abundant samples such as surface seawater, the 

intact RNA that can be isolated from these environments is very limited in quantity: usually low to 

several hundred nanogram level. On the other hand, typical commercial next-generation sequencing 

platforms require 3–5 μg or more of input DNA/cDNA to produce reliable sequencing data, 

approximately equal to the total amount of DNA isolable from 10
9
 Escherichia coli cells [24]. Due to 

the limited samples collected from the deep-sea water, an amplification process was employed in this 

study for both genomic DNA and total RNA samples to provide sufficient DNA and cDNA for 

metagenomic and metatranscriptomic analysis. Total RNA was used for metatranscriptomic analysis, 

allowing simultaneous assessment of rRNA and mRNA to produce both taxonomic and metabolic 

information on the studied microbial communities [18,25].  
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Using the amplification method [24], we generated 4.9–16 μg of the final products from  

5.0–20.0 ng of DNA/RNA template, with only ~600 ng DNA detected in negative controls. The 

statistical summary of the sequenced data determined by MG-RAST is shown in Table 2. The Nugen 

Ovation WGA system (NuGEN, San Carlos, CA) used for DNA amplification has been evaluated by 

the manufacturer and demonstrated the ability to faithfully replicate genomic DNA. The performance 

of WT-Ovation™ Pico RNA Amplification System (NuGEN) used for total RNA amplification in this 

study has been evaluated in two other studies and shown to be reproducible with minimal bias [26,27]. 

Pyrosequencing of community DNA and RNA across four deep-sea sampling sites generated  

160,072 and 64,928 sequencing reads (after quality control and de-replication), with mean lengths of 

225.5 bp and 182.2 bp, respectively. Table 3 shows the microbial community compositions of different 

samples as revealed by metagenomic and metatranscriptomic analysis. The results demonstrate that the 

taxonomic compositions of microbial communities as revealed by metagenomic analysis differ 

markedly from those obtained by metatranscriptomic analysis, especially for archaeal and bacterial 

groups, suggesting the importance of using both approaches to avoid possible methodological bias. In 

metagenomic and metatranscriptomic data, the proportion of eukaryotic reads was much higher than 

that of archaeal and bacterial reads (Table 3). The proportion of eukaryotic reads (58.73%–71.92% 

based on metagenomic analysis, and 73.45%–87.54% based on metatranscriptomic analysis) in this 

study without pre-filtration were almost an order of magnitude higher than those in several previous 

studies using pre-filtered sea water, which were typically under 5% [19,28,29], but was similar to one 

recent study which reported higher proportions of eukaryotes at different depths (10 m, 25.60%; 800 m, 

48.08%; 4400 m, 37.27%) in the North Pacific Ocean [30].  

Table 2. Statistical summary of the sequencing results. 

 DNA  RNA 

 CT04 CT05 CT06 CT12  CT04 CT05 CT06 CT12 

Total reads 61,650 46,012 50,491 40,049  12,804 13,722 18,367 33,509 

Ave. length (bp) 217 ± 143 228 ± 145 252 ± 156 236 ± 144  170 ± 113 184 ± 120 177 ± 124 202 ± 121 

Ave. GC% 49 ± 8 50 ± 8 48 ± 8 48 ± 8  49 ± 6 36 ± 6 49 ± 7 48 ± 6 

Failed QC 15,938 11,537 11,133 0  3745 4421 5443 0 

Annotated protein 8545 7328 9070 12,720  201 0 0 10,300 

Unknown protein 18,581 14,359 17,011 15,723  4602 5790 6981 13,569 

Ribosomal RNA 1505 1042 999 2811  1932 1009 3663 6175 

Unknown 17,081 11,746 12,278 8795  2324 2502 2280 3465 

Table 3. Taxonomic compositions of metagenomic and metatranscriptomic libraries. 

 Metagenome (%)  Metatranscriptome (%) 

 CT04 CT05 CT06 CT12  CT04 CT05 CT06 CT12 

Archaea 1.31 1.97 4.23 1.60  1.24 0.80 0.64 1.05 

Bacteria 26.56 30.27 34.30 24.16  23.06 9.42 17.14 19.98 

Eukaryotes 69.94 65.73 58.73 71.92  73.45 87.54 81.40 78.37 

Viruses 0.41 0.29 0.47 0.44  0.30 0.50 0.23 0.25 

Others * 1.78 1.74 2.26 1.88  1.96 1.77 0.59 0.35 

* Others: unclassified sequences. 
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To better define the characteristics of deep-sea microbial communities, we also employed, as a 

reference for the data analysis, metagenomic data from the microbial community isolated from surface 

waters (sampling depth: 1 m) of Browns Bank, Gulf of Maine, in the Global Ocean Sampling 

Expedition (GOS) project [29]. We chose this data set as our reference in part because the timing of 

the GOS project’s sample collection was similar to that in our study (GOS: August 21th, 2003); and in 

part because its sampling location, especially the latitude, was also relatively close to that of our study 

(GOS: +43°39′53.95′′, −65°33′50.78′′).  

2.2. Metagenomic Analysis of the Deep-Sea Prokaryotic Communities 

When compared with archaea, bacterial reads represented more than 90% of the prokaryotic 

sequencing reads from both metagenomic and metatranscriptomic data for all sampling sites, 

suggesting that bacteria are absolutely dominant in the prokaryotic communities in the deep-sea water 

samples. This is similar to previous studies conducted on soil, surface water, deep sea, and marine 

sediment [25,28–31]. However, archaea were typically found at higher levels in the marine sediment 

than in sea water [32]. Figure 1 shows the compositions of prokaryotic communities in metagenomic 

and metatranscriptomic data from four sampling sites and the reference surface water community 

revealed by metagenomic data [29]. The results revealed remarkably high microbial diversity even 

though the cell densities were much lower in the deep sea. Prokaryotic communities of the GOS 

surface water and the four deep-sea sampling sites diverged significantly in terms of phylogenetic 

composition at broad levels of phyla and classes (Figure 1). In the surface water, the proportion of 

archaea was less than 1% of the prokaryotic community, while in the deep sea, it was increased to as 

high as 13.54% (CT06). This result is in accord with a general trend observed in multiple ocean basins: 

the proportion of archaea increases with depth [33,34]. The changes from GOS surface water to  

deep-sea water were primarily manifest by the emergence of archaeal phyla Crenarchaeota, 

Euryarchaeota and Thaumarchaeota, bacterial phyla Actinobacteria and Firmicutes, sub-phyla 

Betaproteobacteria, Deltaproteobacteria and Gammaproteobacteria, and the decreasing abundances 

of bacterial phyla Bacteroidetes and Alphaproteobacteria. Among them, phylogenetic lineages within 

chemolithoautotrophic Thaumarchaeota, Betaproteobacteria and Gammaproteobacteria were 

recognized as ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) that can 

oxidize ammonia to nitrite [35]. This process is the first and rate-limiting step in nitrification and is 

also a vital component of the global biogeochemical nitrogen cycle [36]. The AOB Betaproteobacteria 

and Gammaproteobacteria are considered a major mediator of ammonia oxidation processes [37]. 

Previous study has confirmed that at least some AOA (e.g., Nitrosopumilus, one of the main members 

identified in the Thaumarchaeota group in this study) have a high ammonia affinity and can grow in 

extremely oligotrophic environments [38]. Considering the trace substrate concentration in the deep 

sea, AOA Thaumarchaeota may be the major nitrifier in that environment [39]. Figure 1 also reveals a 

slight increase of Planctomycetes in the deep sea, all of which are members of the well-known 

anammox bacterial genus identified previously in the marine sub-oxic zone including Rhodopirellula, 

Blastopirellula, Planctomyces, Pirellula, Candidatus Kuenenia, Gemmata and Isosphaera [40,41]. The 

presence of Planctomycetales species Candidatus Brocadia and Candidatus Kuenenia in the  

low-oxygen, dark pelagic ocean is an indicator that anaerobic ammonium oxidation (anammox) [42], a 
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globally important microbial process of the nitrogen cycle, may be another metabolic pathway 

supporting primary production in this environment [43]. More information on environmental 

parameters, especially oxygen concentration, will be required before a definitive conclusion can be 

reached. Actinobacteria and Firmicutes had higher representation in the deep-sea prokaryotic 

community compared to surface water, probably due to the adaptive advantage of Actinobacteria and 

Firmicutes under low-nutrient conditions of the deep sea [44]. Moreover, it has been proposed that the 

ability of Actinobacteria to survive in cold and dystrophic environments might be due to its adaptive 

ability to go into resting states with low metabolic activity [45].  

Figure 1. Comparison of prokaryotic microbial communities’ composition in four deep-sea 

sampling sites and in Global Ocean Sampling Expedition (GOS) surface water. 

 

Our results demonstrated a dramatic decrease of Alphaproteobacteria in the deep sea (Figure 1), 

consistent with a previous study at the Hawaii Ocean Time-series (HOT) station ALOHA [28]. In the 

Alphaproteobacteria group, Candidatus pelagibacter, an abundant member of the SAR11 clade [46] 

and one of the most abundant groups of bacteria in the upper surface waters of the oceans [29,47], was 

found to be the most conspicuously decreased genus in the deep-sea samples. The SAR11 clade was 

found to contribute to the variability in utilization of nutritional compounds (glucose, ATP, a 

combination of amino acids, and organic compounds, the sources of C, N, and P) by the bacterial 

community, and its activity can be linked to the bacterial community’s activity as a whole because of 

its ability to adapt to nutrient limitation [48]. Hence, the decreased representation of  

Candidatus Pelagibacter in the deep-sea prokaryotic communities indicated lower levels of nutrient 

utilization and bacterial community activity in the deep sea relative to surface water. In the surface 

water, class Flavobacteria dominated within the Bacteroidetes phylum, while in the deep sea the 
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taxonomic composition within Bacteroidetes changed to a mixed assemblage of Bacteroidia and 

Prevotella. This represented a shift from aerobic to anaerobic phylotype, that is, aerobic Flavobacteria 

in surface waters giving way to most anaerobic Bacteroidia and Prebotella spp in the deep-sea water, 

consistent with the decrease in dissolved oxygen (DO) in deep sea relative to surface environments. 

2.3. Metatranscriptomic Analysis of the Deep-Sea Prokaryotic Communities  

Of the 38 total prokaryotic phyla identified in metagenomic libraries from the four samples, there 

were 20 phyla in CT04, 10 phyla in CT05, 17 phyla in CT06, and 26 phyla in CT12 also detected in 

the metatranscriptomic libraries (Figure 2). Of the four deep-sea sampling sites, CT12 harbored the 

most diverse metabolically active prokaryotes. In the metatranscriptomic libraries of all four samples, 

Gammaproteobacteria constituted the highest proportion, similar to the metagenomic libraries. 

Compared to prokaryotic community composition as explored from metagenomic data, proportions of 

Crenarchaeota, Thaumarchaeota, Alphaproteobacteria, Bacteroidetes and Planctomycetes were 

decreased markedly, while Euryarchaeota, Deltaproteobacteria, Firmicutes and Actinobacteria were 

increased in the metatrascriptome libraries (Figure 2). The archaeal phyla Korarchaeota and 

Nanoarchaeota, and bacterial phyla Poribacateria, Chrysiogenetes, Deferribacteres, Elusimicrobia, 

Fibrobacteres, Gemmatimonadetes, Lentisphaerae and Zetaproteobacteria, which made up a minor 

portion of the metagenomic libraries, were completely absent in the metatranscriptome libraries from 

all four deep-sea sites. As discussed in more detail below, the relative abundances of these taxonomic 

groups (phylum level) were very different in the metagenomic and metatranscriptomic libraries, 

indicating differential relative transcriptional activities per cell [18].  

Figure 2. Metabolically active prokaryotes in deep sea. 
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2.4. Integrated Metagenomic and Metatranscriptomic Analysis of Prokaryotic Communities in  

Deep-Sea Water 

From the metagenomic analysis, a total of 453, 462, 598 and 564 different prokaryotic genera were 

identified for site CT04, CT05, CT06 and CT12, respectively; while from the metatranscriptome 

analysis, the numbers of detected genera were 113, 34, 138 and 332. The number of species identified 

and overall community diversity revealed by metatranscriptomic data was relatively low compared to 

the metagenomic data. Metagenomic analysis provides better coverage of microbial species but lacks 

the information afforded by metatranscriptomic analysis on the metabolic activities of the communities 

described. Given the differences observed between metagenomic and metatranscriptomic analysis, it is 

clear that neither metagenome-based nor metatranscriptome-based analysis is sufficiently 

comprehensive to fully characterize a microbial community. In this study we defined a parameter to 

measure the strength of metabolic activity at the genus level as the ratio of transcript abundance in the 

RNA pool to gene abundance in the DNA pool. The abundances calculated and provided by  

MG-RAST are counts of taxon (the abundance represents the number of times a particular taxon is 

detected) or function (each count represents the number of times a particular functional role is  

detected) [49]. Prokaryotic genus with very low abundance values (as low as 1), or lack of either DNA 

or RNA data, was excluded from the analysis. Figure 3 shows the RNA/DNA ratio of the major 

prokaryotic classes identified in the deep-sea samples. We found that the RNA/DNA ratio of single 

phylum/sub-phylum varied considerably among the deep-sea sites, likely reflective of the different 

metabolic conditions the prokaryotic communities were experiencing in the varied environments 

(Figure 3). Overall, the prokaryotic community in site CT12 (20.0 km away from a hydrothermal vent 

on the Juan de Fuca Ridge [50]) showed the highest RNA/DNA ratios among the four sites for almost 

all detected phyla except Synergistetes, consistent with the relatively higher temperature and  

mineral-rich environment which support highly diverse and more active communities of microbes 

around hydrothermal vents [51,52]. Due to the small taxonomic coverage from the RNA pool, 

RNA/DNA ratios were missing for most of these phyla in CT05, except for phyla Euryarchaeota, 

Thaumarchaeota, Actionbacteria, Firmicutes and Proteobacteria. 

Figure 4 shows the RNA/DNA ratios of some interesting prokaryotic genera identified in the 

studied samples. Here RNA/DNA ratio was employed as an index to show strength of metabolic 

activity (SMA) of prokaryotes in deep-sea environments. Piezophilic bacteria Shewanella, 

thermophilic archaea/bacteria, sulfur/sulfate reducing bacteria, methanotrophic archaea/bacteria, 

genera within the green sulfur bacteria Chlorobia group, and Cyanobacteria genera detected in the 

deep-sea samples were chosen as targets. Of all the sites, overall, deep-sea site CT12 harbored the 

largest number of genera showing high potential SMA (Figure 4), even for the photoautotrophic 

Cyanobacteria group. Considering the metabolic characteristics of these targeted genera (piezophilic, 

thermophilic, methanotrophic and sulfur/sulfate reducing), along with the unique physico-chemical 

properties of hydrothermal vents or proximal sites [20], we infer that though CT12 is 20 km away from 

the hydrothermal vent, it is still under its environmental influence. 
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Figure 3. Comparison of metabolic activity strength using RNA/DNA ratios of prokaryotic 

communities in deep sea. 

 

Figure 4. Metabolic activity strength comparison using RNA/DNA ratios of selected 

prokaryotic genera. 
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To functionally annotate the sequences collected from each site, the metagenome and 

metatranscriptome reads obtained were searched against Clusters of Orthologous Groups (COG) of the 

National Center for Biotechnology Information (NCBI). The COG function clusters revealed in the 

DNA and RNA data showed huge differences in their diversity and the number of reads assigned to 

each category (Table 3). Unique functions identified in metatranscriptomic data were less diverse than 

those in the metagenomic data, probably due to the fact that only a fraction of prokaryotic organisms 

were metabolically active and expressing their functional genes or because, even though many genes 

were expressed, their expression levels were lower than the built-in detection threshold of MG-RAST 

(Table 3). Assuming the density of sea water to be 1025 kg/m
3
, pressure increases by 1 atm with each 

10 m of depth (www.calctool.org). Based on this premise, we estimated that the hydrostatic pressure in 

our sampling sites ranged from 77.29 to 190.78 atm, with the highest pressure present at the deepest 

site CT12. Hence, in contrast to the microbial communities near the surface, genes involved in COG 

clusters detected in deep-sea metagenomic libraries showed characteristics strongly associated with the 

high hydrostatic pressures including “cell wall/membrane/envelope biogenesis”, “cytoskeleton”, 

“defense mechanisms”, “signal transduction mechanisms”, “replication, recombination and repair”, 

and “inorganic ion transport and metabolism” (Figure 5). The transcriptional potential of  

protein-coding genes varied remarkably among the sampling sites. In particular, genes from GOS 

surface water had higher representation in COG clusters including “cell cycle control, cell division, 

chromosome partitioning”, “amino acid transport and metabolism”, “carbohydrate transport and 

metabolism”, “lipid transport metabolism”, “nucleotide transport and metabolism”, “secondary 

metabolites biosynthesis”, and “transport and catabolism” (Figure 5).  

2.4.1. Cell Wall/Membrane/Envelope Biogenesis 

Several functional groups related to lipopolysaccharide biosynthesis were found, including LPS: 

glycosyltransferases (COG1442), Dihydrodipicolinate synthase/N-acetylneuraminate lyase 

(COG0329), Glycosyltransferases involved in cell wall biogenesis (COG0463), and a predicted sugar 

phosphate isomerase involved in capsule formation (COG0794). Lipopolysaccharide (LPS) constitutes 

the outermost leaflet of the outer membrane of gram-negative bacteria [53], while dihydrodipicolinate 

synthase (DHDPS) catalyses the first step in the biosynthetic pathway producing  

meso-diaminopimelate (DAP) and (S)-lysine, required components of the cell wall [54]. The higher 

proportion of “Cell wall/membrane/envelope biogenesis” related genes in deep-sea samples compared 

to surface water is probably due to the requirement for cell wall integrity under high pressure [18]. 

2.4.2. Signal Transduction Mechanisms 

COG cluster “signal transduction mechanisms” including Signal transduction histidine kinase 

(COG 0642), FOG: PAS/PAC domain (COG 2202), FOG: CheY-like receiver (COG0784), a predicted 

membrane GTPase involved in stress response (COG1217), and FOG: GGDEF, and GAF domain 

(COG2199, COG 2203) were identified in the metagenomic data of deep-sea prokaryotic communities. 

Signal transduction histidine kinase (COG 0642) and FOG: PAS/PAC domains (COG 2202) are two 

groups that were particularly enriched in deep-sea protein coding genes. Genes encoding histidine 

kinase are important for chemotaxis and quorum sensing [55]. The PAS domain is integral to proteins 
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that sense environmental stimuli such as oxygen and redox potential [56]. The proportion of signal 

transduction pathways evident in deep-sea prokaryotic communities was higher than in GOS surface 

water, a manifestation of the need for deep-sea prokaryotic communities to sense and adapt to 

dystrophic deep sea environments, and consistent with previous findings from a study on microbial 

communities at 6,000 m depth in the Puerto Rico Trench [21].  

Figure 5. Clusters of Orthologous Groups (COG) distributions of prokaryotic 

metagenomic libraries. 

 

2.4.3. Replication, Recombination, and Repair 

In this category, Recombinational DNA repair protein (RecF pathway) (COG0353) and Adenine 

specific DNA methylase Mod (COG2189) are major functions among the functions array detected in 

the metagenomic data from the deep-sea water samples. Methylation of DNA by the DNA adenine 

methylase plays an important role in DNA mismatch repair and replication regulation [57]. The 

enrichment of DNA repair protein coding genes probably indicated the strong DNA repair capacity of 

prokaryotes in deep-sea water to protect themselves from DNA degradation in the harsh  

environments [58], increasing their likelihood of survival [28]. 
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2.4.4. Inorganic ion Transport and Metabolism 

Outer membrane receptor proteins, mostly Fe transport (COG1629), is the most dominant function 

detected in this category for all four deep-sea sampling sites. Iron is an important component of most 

redox enzymes [59]. We also detected the sequences of functional genes associated with membrane 

transport of heavy metals such as Co, Cu, Zn, Mn and Cd in site CT12. It has been reported that some 

microorganisms in hydrothermally active areas can remove heavy metals from hydrothermal fluid [60]. 

The presence of these functional genes supported our hypothesis that the microbial community in 

CT12 was under the influence of the hydrothermal vent 20 km away.  

In metatranscriptomic libraries of deep-sea prokaryotic communities, far more limited COG clusters 

were identified compared to the metagenomic libraries. The transcriptional activity of protein-coding 

genes varied distinctly among the four sampling sites. In total 24 functional categories were identified 

in the metagenomic libraries; 6 in CT04, 9 in CT06 and 15 categories in CT12 were characterized 

(Table 4). Only two COG groups, Transcriptional regulator (COG0583) and Ribosomal protein S3 

(COG0092) were identified in CT05. Under the cell wall/membrane/envelope biogenesis category, the 

two bathypelagic sites CT04 and CT12 showed significantly higher percentages than the other two 

sites. In the metagenomic pool, this category accounted for 15.33% in CT04 and 7.24% in CT12; while 

in the metatranscriptomic pool, the percentages were increased to 60.87 and 40.53, respectively. While 

the increase may be due to the smaller number of COG categories detected in the metatranscriptomic 

pool, it still shows that mRNA related to cell wall/membrane/envelope biogenesis was more highly 

expressed in the two deeper sites compared to the shallower CT05 and CT06 sites. “Replication, 

recombination and repair” was a category occupying a high percentage in all deep-sea sites except 

CT05. Serine/threonine protein kinase (COG0515) and Adenine specific DNA methylase Mod 

(COG2189) enriched this category. Sites CT12 and CT06 showed relatively higher percentages of the 

category “Inorganic ion transport and metabolism”, which was enriched by Outer membrane receptor 

proteins (COG1629) in CT06, and Outer membrane receptor proteins (COG1629) and ABC-type 

phosphate/phosphonate transport system ATPase component (COG3638) in CT12. Hence, the 

defensive life style of prokaryotes in the deep sea could be inferred from metatranscriptomic  

analysis [19,61] since the detected mRNA COG categories were mostly related to cell wall/membrane 

and capsule formation for high pressure resistance, nucleotide repair, and membrane transporter  

for virulence. 

Table 4. Prokaryotic protein coding genes assignment to COG in metagenomic and 

metatranscriptomic libraries. 

 Metagenomics  Metatranscriptomics 

 CT04 CT05 CT06 CT12  CT04 CT05 CT06 CT12 

Unique COG Functions Identified 401 406 876 528  8 2 20 85 

Sequences Assigned to COG Functions 5971 5745 2336 2841  166 6 306 877 

2.5. Active Presence of Photosynthetic Bacteria in Deep-Sea Water 

Photoautotrophic microbes such as genera Prochlorococcus and Synechococcus are abundant 

members of the microbial community in the euphotic zone and responsible for much of the primary 
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production in the ocean [62,63]. Meanwhile, early studies have suggested that viable photoautotrophic 

microbes such as Synechococcus sp. can be found in deep sea water or sediments exposed to little or 

no sunlight [19,64]. However, these studies provided no evidence as to whether these photoautotrophic 

microbes were metabolically active in the deep sea, or merely present as dormant cells. In our previous 

study, in addition to direct auto-fluorescence imaging, the presence of photoautotrophic microbes in 

the deep mesopelagic zone (765–790 m) was demonstrated by both bacterial 16S and 23S rRNA-based 

clone library analysis, and the metabolic activity of the oxygenic photoautotrophic bacteria 

Cyanobacteria Synechococcus sp. was demonstrated by expression level quantification of the 23S 

rRNA gene involved in protein synthesis and photosynthesis-involved gene psbA using RT-qPCR [65]. 

Here we employed metagenomic and metatranscriptomic analysis to further demonstrate the existence 

of active photosynthetic microbes in samples from four deep-sea sites. Photoautotrophic bacterial 

phylum Cyanobacteria (including genera Cyanobium, Cyanothece, Synechococcus, Anabaena, 

Cylindrospermopsis, Nodularia, Nostoc, Arthrospira, Lyngbya, Microcoleus and Oscillatoria) were 

found by both metagenomic and metatranscriptomic analysis in samples from all four sites, further 

suggesting the presence of metabolically active photosynthetic bacteria in the pelagic ocean realm. 

SEED subsystems identified in both metagenomic and metatranscriptomic pools are listed in 

Supplemental Table S1. In contrast to the diverse Cyanobacteria subsystems identified in 

metagenomic data, only a few were identified from the metatranscriptomic data. This might be due to a 

combination of the low quality of the RNA samples and the low metabolic activity of deep-sea 

Cyanobacteria. In site CT05, no Cyanobacteria SEED subsystems were detected. The Photosystem II 

protein D1 encoding gene (psbA) was detected in the metatranscriptomic pool of CT06, which belongs 

to Nostoc sp. (strain PCC 7120/UTEX 2576), suggesting that a “photosynthesis” pathway may be still 

maintained when Cyanobacteria find themselves in deep-sea environments. Counterintuitively, the 

most diverse Cyanobacteria subsystems were identified in samples from the deepest site, CT12, the 

site also most close to the hydrothermal vent. 

The reason for the presence of metabolically active Cyanobacteria may be the sinking mechanism 

of marine particles. Cell aggregation phenomena are frequently observed in many Cyanobacteria 

species [66]. A study on particle interceptor traps at the Bermuda Atlantic Time-series Study found 

that the Cyanobacteria Prochlorococcus and Synechococcus were consistently detected in the water 

column, and that they trap samples at different depths in the euphotic zone, showing that 

Cyanobacteria can contribute to downward particle flux [67]. Further study is necessary to provide 

more information about the active presence of Cyanobacteria in dark, deep-sea environments. 

2.6. Taxonomic and Functional Study of the Deep-Sea Eukaryotic Community 

In line with our observations regarding the deep-sea prokaryotes, deep-sea eukaryotic communities 

displayed remarkably different compositions from those in the GOS surface water (Figure 6). Though 

eukaryotes accounted for a far higher proportion in the sampled deep-sea microbial communities 

(58.73%–71.92% in metagenomic data) than in the GOS surface water (3.31% in metagenomic  

data) [29], the diversity of the deep-sea eukaryotic community was very limited: In the GOS surface 

water, 25 different eukaryotic phyla were identified, while 17, 17, 18 and 20 eukaryotic phyla were 

identified at the deep-sea sampling sites CT04, CT05, CT06 and CT12, respectively. In contrast, fungi 
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Chytridiomycota, flagellate Euglenida, parasite Rhombozoa, animal Tardigrada, and yellow-green 

algae Xanthophyceae were absent in all four deep-sea sites. Besides, the community changes from the 

GOS surface water to the deep-sea water were primarily manifest in the emergence of phyla Chordata 

and Nematoda, and the decrease of fungi Ascomycota, Basidiomycota, green algae Chlorophyta, plant 

Streptophyta and Cnidaria. Fungus Chytridiomycota, Glomeromycota, Microsporidia, 

Neocallimastigomycota, algae Phaeophyceae, Xanthophyceae, diatom Bacillariophyta and other 

animal phyla were also identified in the deep-sea metagenomic data, although making up only a small 

proportion of the total. Because we studied the microbial diversity using non-size-fractionated  

deep-sea samples, animalia Chordata and Nematode, whose sizes are typically around 2.50 mm, turned 

out to be dominant groups here. The proportion and diversity of fungi was also found to be decreased 

in the deep-sea water. In the GOS surface water, 100 fungus species were identified; while in the  

deep-sea water 63, 66, 68 and 75 different fungus species were identified in sites CT04, CT05, CT06 

and CT12, respectively. The decrease in fungus was also reported in a previous study which reported 

that, compared to surface water, fungi were rare and less diverse in high-pressure, deep-sea 

environments [68]. Our results also identified three phyla belonging to eukaryotic parasites, including 

Apicomplexa, Annelida and Nematode. Apicomplexa were commonly found in deep-sea environments 

including hydrothermal vents [69] and methane cold seeps [70]. Annelida, which we identified with 

very small abundance in site CT12, is one of the few parasites found in hydrothermal vents [71]. 

Another detected eukaryotic parasite, Nematodes, is among the most abundant metazoan taxa in  

deep-sea ecosystems in general [72–74]. 

Figure 6. Eukaryotic community compositions in deep sea. 

 

Searching against the COG database, we found a similar trend in functional categories for deep-sea 

eukaryotes and prokaryotes in the metagenomic libraries (Figure 7). In contrast to GOS surface water, 

deep-sea eukaryotic protein coding genes are more involved in functions such as “defense 
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mechanisms”, “intracellular trafficking, secretion, and vesicular transport”, “signal transduction 

mechanisms”, “replication, recombination and repair” and “inorganic ion transport and metabolism”, 

which are useful for leading a defensive life style as discussed in the section on prokaryotes. For  

deep-sea eukaryotic communities relatively limited COG clusters were identified in the 

metatranscriptomic libraries compared to the metagenomic libraries. The transcriptional activity of 

protein-coding genes varied remarkably among the four sampling sites, and it was difficult to identify 

any obvious trends analogous to those identified in the metagenomic libraries (Figure 8). Of the  

23 functional categories identified in the metagenomic libraries, 17 categories in CT04, 8 in CT05,  

15 in CT06 and 20 categories in CT12 were identified in their metatranscriptomic pool: better 

coverage compared to the prokaryotic metatranscriptomic libraries, possibly due to the larger number 

of sequencing reads obtained (Table 5). Among the four deep-sea metatranscriptomic libraries, site 

CT12 showed the highest percentage of genes related to the functional category “inorganic ion 

transport and metabolism”. This category from CT12 was mainly enriched with clusters including 

“Outer membrane receptor proteins, mostly Fe transport” COG0629, “Predicted divalent heavy-metal 

cations transporter” COG0428, and “Cation transport ATPase” COG0474. For the categories “signal 

transduction mechanisms” and “replication, recombination and repair”, site CT12 also harbored a 

significantly higher percentage of genes than other three sites. “Diadenosine tetraphosphatase and 

related serine/threonine protein phosphatases” COG0639 and “Universal stress protein UspA and 

related nucleotide-binding proteins” COG0589 are two main components included in this category. 

Site CT05 showed discernibly lower metabolic strength in most eukaryotic phyla, while CT06, very 

close and at similar depth to CT05, showed the highest metabolic strength in almost all eukaryotic 

phyla, similar to our findings in the deep-sea prokaryotic study.  

Table 5. COG clusters identified in metatranscriptomic libraries of deep-sea  

prokaryotic communities 

Level 1 Level 2 CT04 CT05 CT06 CT12 

Cellular processes  

and signaling 

Cell cycle control, cell division, chromosome partitioning 0 0 0 0.12 

Cell wall/membrane/envelope biogenesis 60.87 0 19.46 40.53 

Defense mechanisms 0 0 0 0.12 

Intracellular trafficking, secretion, and vesicular transport 0 0 0 0.23 

Posttranslational modification, protein turnover, chaperones 12.17 0 4.70 1.51 

Signal transduction mechanisms 0 0 0 1.51 

Information storage  

and processing 

Replication, recombination and repair 21.74 0 27.52 26.13 

Transcription 0 33.33 14.09 3.83 

Translation, ribosomal structure and biogenesis 0 66.67 0 0.35 

Metabolism 

Amino acid transport and metabolism 0.87 0 4.70 0.58 

Carbohydrate transport and metabolism 0 0 0 0.46 

Energy production and conversion 0.87 0 7.38 0 

Inorganic ion transport and metabolism 0 0 9.06 12.89 

Lipid transport and metabolism 0 0 0 0.12 

Secondary metabolites biosynthesis, transport and catabolism 0 0 0 0.46 

Poorly characterized 
Function unknown 3.48 0 9.73 3.95 

General function prediction only 0 0 3.36 7.20 
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The RNA/DNA ratio was again employed as an index to describe the metabolic strength of  

deep-sea eukaryotes. Placozoa, considered the simplest organized metazoan model system [75,76], 

showed the highest SMA value in all four deep-sea sampling sites (Figure 9). The highly active 

metabolism of Placozoa in the cold, dark, deep sea is quite surprising, because it has been suggested 

that the growth rate and vegetative reproduction of Placozoa may be positively correlated to increasing 

temperature [77]. Deep-sea autotrophic ecosystems, such as hydrothermal vents or cold seeps, are 

normally not considered conducive living environments for fungi that are abundant in terrestrial 

ecosystems because of their ability to degrade organic matter [78,79]. However, in our study the fungi 

Basidiomycota and Microsporidia showed the highest SMA value in site CT12, suggesting their 

affinity for the hydrothermal vent-influenced habitat. These results are consistent with the unexpected 

diversity of fungal species, such as Basidiomycota, detected in hydrothermal areas in previous  

studies [78,80].  

Figure 7. COG distributions of eukaryotic metagenomic libraries. 
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Figure 8. Metabolic activity strength comparison using RNA/DNA ratios of eukaryotic 

communities in deep sea. 

 

Figure 9. COG distributions of eukaryotic metatranscriptomic libraries. 
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3. Experimental Section  

3.1. Microbial Sample Collection and DNA/RNA Isolation 

Microbial samples for this study were collected from waters in four deep-sea Northeast Pacific 

Ocean sites during the Thompson TN 221 Research Cruise between 28 July 2008 and 2 August 2008, 

as described in Table 1. The more detail about sampling process has been described and published 

earlier [24,65]. Among these sampling sites, CT04, CT05 and CT06 are 164.2 km east of Newport, 

Oregon, while CT12 is much further away from the coast, lying approximately 20 km southwest of a 

deep-sea hydrothermal vent in the Juan de Fuca Ridge. At each site a total of 30 liters of deep-sea 

water was collected in six rigid, tightly-sealed 5-liter bottles carried on the Woods Hole Oceanographic 

Institute’s Towed Camera System (“TowCam”). The entire TowCam sampling excursion into the deep 

and return to the surface took about 1 h. Deep sea water was immediately filtered through  

0.22-μm filters which were then stored at −80 °C till use. The filtration time for each single filter 

(sample) was about 0.5 h. To preserve the RNA profiles’ integrity, cells were gently washed from the 

filter membranes with chilled RNAlater solution (Ambion, Austin, TX, USA). A total of five 5.0-mL 

washes were performed for each filter, and cells recovered from the five washes were combined into a 

single pool and stored immediately at −80 °C for later DNA/RNA isolation. Genomic DNA was 

isolated with the DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA, USA) following the bacterial 

DNA isolation protocol provided by the manufacturer. Total RNA was extracted from the collected 

microbial cells using a modified protocol combining Trizol (Invitrogen, Grand Island, NY, USA) and 

the prescribed RNeasy methods (QIAGEN, Valencia, CA, USA). The detailed procedures for 

sampling, storage and nucleic acid isolation have been described in previous papers [24,65]. 

3.2. DNA/RNA Amplification, Second Strand cDNA Synthesis, and Quality Examination 

Genomic DNA and total RNA (rRNA and mRNA) were isolated, purified and amplified for 

pyrosequencing and the more detail has been described previously [24]. Briefly, the Ovation WGA 

system (NuGEN, San Carlos, CA, USA) was employed to amplify isolated DNA following the 

manufacturer’s protocol. After amplification, the products were purified with the QIAquick
®
 PCR 

Purification kit (QIAGEN, Valencia, CA, USA). The concentration and purity were determined using a 

NanoDrop (Thermo Scientific, West Palm Beach, FL, USA). Total RNA amplification was performed 

using the WT-Ovation™ Pico RNA Amplification System (NuGEN, San Carlos, CA, USA). The 

products from transcriptome amplification were purified and measured in the same way as DNA 

amplification products. DNA and RNA amplification products, both single-stranded, were converted 

into double-stranded products before conducting clone library construction and sequencing using the  

WT-Ovation™ Exon Module (NuGEN, CA, USA) method described previously [24]. To check the 

quality of amplification products and preclude the possibility of external contamination, we 

constructed clone libraries for the amplified products of each sample. The isolated plasmid 

DNA/cDNA from 20 random clones from each library were sequenced using ABI 373 Sequencer 

(Applied Biosystem Inc., Carlsbad, CA, USA) and BLAST annotated against the NCBI databases.  
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3.3. Pyrosequencing 

Approximately 5 µg of amplified DNA and double stranded cDNA from each sample were 

sequenced with Roche GS FLX Titanium chemistry pyrosequencing (Roche 454 Life Science, 

Branford, CT, USA), according to the established protocols provided by Engencore Inc.  

(University of South Carolina, Columbia, SC, USA).  

3.4. Data Analysis 

We used the MG-RAST metagenomics analysis server provided by Argonne National Laboratory to 

perform phylogenetic and functional analysis on the metagenomic and metatranscriptomic data [49]. In 

MG-RAST version 3, reads are considered replicates if the first 50 bp are identical. De-replication was 

processed when uploading data. The M5NR, a searchable database integrated from several existing 

sequence databases, including KEGG (Kyoto Encyclopedia of Genes and Genomes), NCBI (National 

Center for Biotechnology Information), SEED (The SEED Project), and COG (Clusters of 

Orthologous Groups of proteins), was used to perform organism hierarchical classification and 

functional hierarchical classification searches in the pyrosequencing data. All searches were performed 

using the default parameters suggested by the MG-RAST server. 

4. Conclusions  

Microbial communities in seawater at four deep-sea sites were isolated and amplified to perform 

taxonomic and functional analyses by using an integrated metagenomic and metatranscriptomic 

approach. The results showed that within the prokaryote community bacteria is absolutely dominant 

over archaea (~90%) in both metagenomic and metatranscriptomic pools in the deep-sea prokaryotic 

samples. When compared with the microbial communities of the GOS surface water, the proportion of 

archaea in the prokaryotic community was increased in the deep-sea water. The emergence of archaeal 

phyla Crenarchaeota, Euryarchaeota and Thaumarchaeota, bacterial phyla Actinobacteria, 

Firmicutes, sub-phyla Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria, and the 

decrease of bacterial phyla Bacteroidetes and Alphaproteobacteria were the main differences observed 

in the prokaryotic community compositions present in the deep-sea water. Cyanobacteria were 

identified in samples from all four deep-sea sites by metagenomic and metatranscriptomic analysis, 

suggesting their active functionality in deep-sea environments in spite of very little sunlight. 

Employing the RNA/DNA ratio as a metric indicative of the metabolic strength of microbes, we found 

that the metabolic strength of single phylum/sub-phylum varied remarkably across deep-sea sites, 

suggesting that the prokaryotic communities are experiencing distinctly different metabolic conditions 

at the different sites. In contrast to the GOS surface water communities, functional groups related to 

cell wall/membrane and capsule forming for high pressure resistance; signal sensing and transduction 

for adapting to the low-nutrient deep-sea environment; multidrug efflux for intrinsic and acquired 

resistance to antimicrobials; and defense mechanisms for self-protection were enhanced in the  

deep-sea water, indicative of a defensive life style rather than an active growing/metabolic style on the 

part of the prokaryotic community living in the deep sea. Taxonomic and functional analysis of the 

CT12 site, located 20 km away from the Juan de Fuca hydrothermal vent, harbored higher diversity 
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than other deep-sea sites. In addition, decreases in abundance of fungi and algae in the deep sea were 

detected in our eukaryote study. Similar to prokaryotes, COG distribution analysis revealed that 

eukaryotes adapted a more defensive life style in the harsh deep-sea environments. This study provides 

the first integrated genomic and transcriptomic view of the microbial communities in deep-sea water of 

the North Pacific Ocean. It gave insight into deep-sea microbial community, the significant new source 

of drug discovery and development. 
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