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Abstract

Background and Objectives: Diabetes is a global public health challenge, with increasing
prevalence worldwide. The implementation of artificial intelligence (Al) in the management
of this condition offers potential benefits in improving healthcare outcomes. This study pri-
marily investigates the barriers and facilitators perceived by healthcare professionals in the
adoption of Al Secondarily, by analyzing both quantitative and qualitative data collected,
it aims to support the potential development of Al-based programs for diabetes manage-
ment, with particular focus on a possible bottom-up approach. Materials and Methods: A
scoping review was conducted following PRISMA-ScR guidelines for reporting and reg-
istered in the Open Science Framework (OSF) database. The study selection process was
conducted in two phases—title/abstract screening and full-text review—independently
by three researchers, with a fourth resolving conflicts. Data were extracted and assessed
using Joanna Briggs Institute (JBI) tools. The included studies were synthesized narratively,
combining both quantitative and qualitative analyses to ensure methodological rigor and
contextual depth. Results: The adoption of Al tools in diabetes management is influenced
by several barriers, including perceived unsatisfactory clinical performance, high costs,
issues related to data security and decision-making transparency, as well as limited training
among healthcare workers. Key facilitators include improved clinical efficiency, ease of
use, time-saving, and organizational support, which contribute to broader acceptance of
the technology. Conclusions: The active and continuous involvement of healthcare workers
represents a valuable opportunity to develop more effective, reliable, and well-integrated
Al solutions in clinical practice. Our findings emphasize the importance of a bottom-up
approach and highlight how adequate training and organizational support can help over-
come existing barriers, promoting sustainable and equitable innovation aligned with public
health priorities.
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1. Introduction
1.1. Prevalence of Diabetes and Social Impact

According to the International Diabetes Federation (IDF), diabetes currently affects
approximately 589 million individuals worldwide between the ages of 20 and 79. Among
the various forms of diabetes, Type 2 Diabetes (T2D) accounts for the vast majority of cases,
with a prevalence estimated between 87% and 91%. Projections for 2050 indicate a substan-
tial increase in global prevalence, expected to reach 853 million cases within the same age
range, which will likely be accompanied by a corresponding rise in healthcare costs [1-5].
The majority of individuals with diabetes are obese and physically inactive, particularly
within the 45-64 age group (28.9% of males and 32.8% of females) [6-8]. In Italy alone,
the prevalence of diabetes was estimated at 4 million individuals in 2023 [9,10]. While
genetic predisposition and advancing age are recognized contributors to the pathogene-
sis of numerous chronic diseases such as diabetes [11,12], it is predominantly unhealthy
lifestyle behaviors that significantly influence both the onset and progression of these condi-
tions [13-17]. In particular, dietary patterns characterized by excessive caloric intake, a high
consumption of refined grains in place of whole grains, and insufficient physical activity
constitute the principal modifiable risk factors [18-20]. These detrimental habits not only
facilitate the development of disease but also exacerbate its clinical course, substantially
increasing the risk of complications. Such complications include both peripheral vascular
disorders and more complex cardiovascular events, with potentially severe outcomes such
as acute myocardial infarction and cerebrovascular accidents (stroke), which are associated
with increased morbidity and mortality between in T2D and Type 1 Diabetes (T1D) [21-23].
In light of this evidence, the implementation of comprehensive primary and secondary
prevention strategies aimed at promoting healthier lifestyles is imperative [24—26]. Empha-
sis should be placed on balanced nutritional intake, caloric moderation, and the adoption
of regular physical activity, with the goal of reducing the global burden of disease and
improving population health outcomes in T1D and T2D [27-30].

1.2. Use of Devices and Technology in Diabetes Management

At the same time, with the promotion of healthy lifestyle behaviors, diabetes
management—particularly for TID—has long benefited significantly from technologi-
cal innovation applied in clinical settings, especially with regard to glucose self-monitoring
and insulin delivery. Devices such as continuous glucose monitoring (CGM) systems,
insulin pumps (IP), and smart multiple daily injection (MDI) systems, often integrated
into hybrid closed-loop systems, have become indispensable supports in daily clinical
practice [21,22]. They play a critical role in reducing glycemic variability and preventing
hypoglycemic episodes, thereby helping to avert major diabetes-related complications.
In the context of T2D as well, digital technologies—including self-management applica-
tions and telemonitoring tools—are proving valuable, particularly in the personalization
of therapeutic interventions and the optimization of clinical outcomes and complication
management [31-34]. In recent years, artificial intelligence (AI) has taken an increas-
ingly prominent role in both diabetes research and clinical practice, owing to its capac-
ity to process and analyze large volumes of clinical and behavioral data efficiently and
accurately [35-38]. Predictive models based on Al techniques such as machine learning
(ML) and deep learning (DL) are being developed and implemented to support clinical
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decision-making, enhance the prediction of complication risks, and personalize treatment
pathways [39-41]. Applications of Al in diabetes care range from early diagnosis to au-
tomated insulin dosing management and the identification of critical glycemic patterns,
thereby contributing to the emergence of a new paradigm in precision medicine for di-
abetes [35—41]. Nonetheless, the issue of potential barriers and facilitators perceived by
healthcare professionals in the effective implementation of these Al-based technologies in
routine clinical practice remains largely unexplored—a gap this study aims to address in a
bottom-up view, defined as “an approach guided by healthcare workers’ insights and daily
experiences” [42].

1.3. Study Aims

The primary objective of this study was to investigate the main barriers and facili-
tators perceived by healthcare professionals involved in the implementation of artificial
intelligence (Al) in diabetes management:

e  What are the barriers and facilitators to the use of Al by healthcare professionals in the
management of diabetes?

Secondarily, the study aims to explore and support research through the collection of
both quantitative and qualitative data to inform the development and implementation of
specific Al-based programs for diabetes management, following a bottom-up approach
involving healthcare professionals.

e  Which quantitative and qualitative insights, as perceived by healthcare professionals,
can most effectively inform the bottom-up implementation of Al in diabetes care?

2. Materials and Methods
2.1. Study Design and Registration

A scoping review was conducted to ensure methodological rigor and the relevance of
selected studies. This review followed the Preferred Reporting Items for Systematic reviews
and Meta-Analyses extension for Scoping Reviews guidelines (PRISMA-ScR) (PRISMA-
ScR checklist available in Supplementary Table S1) [43]. The protocol for this review was
registered in the Open Science Framework database (https://osf.io/xgy2z; accessed on
12 June 2025).

2.2. Search Strategy

The search strategy was developed adopting the Population, Concept, Context (PCC)
framework (Table 1), without temporal restrictions [44]. The search strategy, updated to
31 January 2025, involved the use of keywords matched using specific Boolean operators
such as AND/OR in the databases PubMed Medline, Scopus, CINHAL, and Embase.
Search strings are available in Supplementary Table S2.

Table 1. Inclusion and exclusion criteria, described according to the PCC framework.

Parameter Inclusion Criteria Exclusion Criteria
. Stud}es .mvolvmg healthcare profe§519nals Studies that do not involve
Population (principally doctors, nurses, specialists,

technicians) who manage diabetes with Al healthcare workers.
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Table 1. Cont.

Parameter Inclusion Criteria Exclusion Criteria
Studies exploring the adoption and . .
implementation of Al in managing diabetes, nor?-i?e(illt:kslsgfet ?(()ir?tzeftss 125 iﬁose
such as monitoring systems, diagnostics, . .
Concept - . . unrelated to managing diabetes;
predictive therapy, and personalized patient S .
. . technological interventions that do not
management. Al technologies extended in
ML or DL use. use Al, ML or DL.
Barriers and obstacles perceived from
healthcare WF)rker:.; o adf)ptmg Al (e, Studies that do not explore barriers or
technological difficulties, cultural - . :
. . Iy . facilitators in AI adoption by healthcare
challenges, insufficient training, resistance workers: research that onlv addresses
Context to change). Facilitators and enabling factors ’ Y

clinical outcomes of diabetes treatment
without focusing on perception,
implementation science, and attitude.

from healthcare workers in terms of Al
adoption (e.g., organizational support,
training, technology accessibility, evidence
of effectiveness).

ALl artificial intelligence; ML: machine learning; DL: deep learning.

2.3. Eligibility Criteria

The inclusion criteria encompassed primary studies published in English without
temporal restriction and relevant to the study’s objectives and involving healthcare workers
in Al processes. All studies that did not meet the stated inclusion criteria were excluded.
The authors nevertheless attempted to include studies in Chinese as well, after evaluating
the English-language abstract to ensure it met the inclusion criteria.

2.4. Study Selection Process

The study selection process for this review followed a two-phase procedure: an initial
screening of titles and abstracts, followed by a detailed evaluation of full-text articles.
All potentially relevant articles were imported into the reference manager Ryyan (https:
//www.rayyan.ai/; accessed on 20 June 2025) for data organization and management. The
initial screening was conducted independently and blind by three authors (G.C., A.M,,
and M.R.), who evaluated titles and abstracts based on their relevance to the study and in
accordance with the predefined inclusion criteria. A fourth independent researcher (A.C.)
resolved any disagreements at this stage. Following the initial screening, full-text articles
meeting the preliminary criteria were independently assessed by the first three researchers,
and the fourth still managed conflicts. Any discrepancies were resolved through consensus
meetings, with the last researcher (A.C.) acting as an arbitrator to ensure integrity in the
selection process. This systematic approach ensured a rigorous and unbiased selection of
studies for this review.

2.5. Data Extraction and Quality Appraisal

Data extraction from the included studies was organized into key categories, consis-
tent with the methodological framework [43,44]. This structured categorization facilitated
both detailed reporting and thorough analysis. The main categories included interven-
tion, outer setting, inner setting, individual characteristics, and implementation process.
This structured approach enhanced the clarity and depth of our analysis, aligning with
established methodological standards. The extracted data were presented as a narrative
summary, organized according to the review’s objectives and supplemented in Table 2.
The risk of bias and methodological quality of the included studies were assessed using
established guidelines of the JBI framework [43]. Two independent reviewers (A.M. and
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A.C.) conducted the evaluation to ensure objectivity. Any disagreements were resolved
through discussions with a third researcher (M.R.), ensuring that a consensus was reached.
The risk of bias and methodological quality of the included studies were evaluated using JBI
checklists for qualitative [45] and cross-sectional studies [46] and the MMAT tool for mixed-
methods studies [47]. Decisions regarding methodological quality of the studies included
were made, independently, by two reviewers, and any disagreements were resolved by
discussion. The sum of the points was classified as the percentage of the items present; thus,
a score lower than 70% was classified as low-quality, between 70 and 79% of the checklist
criteria was classified as medium-high-quality, between 80 and 90% was assigned high-
quality, and a score greater than 90% of the criteria was classified as excellent-quality [48].
However, due to the exploratory nature of the present work, no studies were excluded for
insufficient quality.

2.6. Conceptual and Analytical Framework

The synthesis and presentation of study results followed established guidelines [43,44].
The description of the identified barriers and facilitators is structured according to the
Consolidated Framework for Implementation Research (CFIR) [49], a comprehensive the-
oretical framework widely used to guide implementation research. CFIR comprises five
major domains—intervention characteristics, outer setting, inner setting, characteristics
of individuals, and implementation process—that offer a systematic approach to under-
standing factors influencing implementation. In this scoping review, CFIR was used as a
guiding structure to map and interpret both qualitative and quantitative data extracted
from the selected studies, enabling a comprehensive and theory-informed synthesis of the
findings. Key statistical measures, including means (M), standard deviations (SD), and
p-values, were integral to the analysis. To maintain the integrity of the original studies,
statistical significance reporting was preserved as presented in each study. Consistent with
scientific conventions, p-values of 0.05 or lower were considered statistically significant,
ensuring the inclusion of robust and meaningful findings in the review. In addition to the
quantitative synthesis, qualitative data were also systematically extracted and analyzed,
where applicable, to capture nuanced insights and contextual dimensions of the study
findings. The qualitative synthesis followed established principal thematic frameworks in
the study included and to further enhance and complete the analysis conducted.

2.7. Synthesis of the Results

In this review, while the benefits of meta-analysis are acknowledged, a combined quan-
titative synthesis was deemed not feasible due to the heterogeneity of the included studies.
This variability, characterized by differences in intervention types and methodologies for
quantifying relationships between variables, led to inconsistencies in both methodological
and statistical approaches. As a result, a detailed narrative synthesis was chosen, following
established guidelines for synthesis without meta-analysis (SWiM) [50]. This approach was
selected for its effectiveness in transparently and rigorously synthesizing diverse quantita-
tive data, aligning with the PRISMA guidelines [43]. Data synthesis was performed based
on the CFIR framework [49]. The CFIR is a well-established conceptual model in imple-
mentation science, and it is a comprehensive and standardized meta-theoretical framework.
The updated version of the framework is organized into five domains: intervention, outer
setting, inner setting, individual characteristics, and implementation process [49]. The
CFIR served as a foundational structure for the exploratory assessment of barriers and
facilitators to implementing imaging-based, Al-assisted diagnostic decision-making. The
comprehensive and adaptable use of the updated CFIR throughout data collection, analysis,
and reporting aimed to enhance research efficiency, generate generalizable findings to
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inform Al implementation practices, and contribute to a robust evidence base for tailoring
implementation strategies to overcome key barriers.

3. Results

The PRISMA flowchart of the screening process is shown in Figure 1. A total of
n = 3451 records were retrieved from the databases, and after carefully removing the
duplicates (1 = 593), the researchers (GC, AM, AC, and MR) screened a total of n = 3143
for title and abstract. Thirty-two full texts were screened. Finally, a total of n = 7 studies,
conducted between 2019 and 2024, were included [51-57].

Identification of studies via databases and registers

5 3451 records identified from
2 databases:
= Scopus (n = 1757) 308 duplicate records
2 PubMed (n = 1318) removed
s Embase (n = 345)
3 CINAHL (n =31)

Y
(%)
Q
§ 3143 records screened » 3111 records excluded
s.
Q

y
32 reports assessed for 12 reports excluded for:
eligibility Study dt'aSIgn (n=11)
= Population (n = 8)
‘3 Topic (n = 6)
s
g \ 4
Q
7 studies included in the
review

Figure 1. PRISMA flowchart.

Studies’ characteristics are shown in Table 2. The population varied from 10 partici-
pants to 207, with a range of ages from 40 to 60 years. The involved healthcare professionals
were mainly nurses, healthcare assistants, and doctors (i.e., ophthalmologists, diabetolo-
gists, endocrinologists, physicians, and general practitioners).

Table 2. Summary of the included studies.

Sample Size

Study Country Study Design Setting (N, % Female) Al Type
, /0
Smartphone-based and
Held et al,, " . Al-supported diagnosis
2022 [51] Germany Qualitative Primary care 24 (42) tools for the screening
of diabetic retinopathy
Liao et al Hospital and Al-assisted system for
2024 [52]" China Qualitative community 40 (42.5) diabetic retinopathy

healthcare center screening
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Table 2. Cont.

Sample Size

Study Country Study Design Setting (N, % Female) Al Type
Petersen et al Al-assisted system for
2024 [53] N Denmark Qualitative Hospital 18 (61) diabetic retinopathy
screening
Al-powered clinical
decision support
Romero et al., . Mixed Primary care system for identifying
2019 [55] United States -methods outpatient clinics 83 (N/A) diabetes patients at
risk of poor
glycemic control
Roy et al Physicians in Al-based diabetes
y " India Cross-sectional Y . 202 (N/A) diagnostic
2024 [54] clinical practice . .
interventions
Wahlich et al., United o Hospital a'nd AI.—assm.ted system for
. Qualitative community 98 (N/A) diabetic retinopathy
2024 [57] Kingdom .
healthcare center screening
Wewetzer Al-assisted system for
etal., 2023 Germany Cross-sectional Primary care 209 (107) diabetic retinopathy
[56] screening

Al artificial intelligence; N: number; N/A: not applicable; %: percentage.

The study conducted by Liao et al. also included healthcare administrative staff and in-
formation technology experts [52]. The majority of the included studies were focused on the
use of Al for diabetic retinopathy screening [51-53,56,57], with only two studies focused on
Al as a tool for glycemic control and Al as a general tool for diagnostic intervention [54,55].

Most of the studies adopted a qualitative design (n = 4) that used semi-structured in-
terviews [51-53,57]. Two quantitative cross-sectional studies were based on surveys [54,56],
and finally, one study adopted a mixed-methods design [55].

All the included studies described research conducted in primary care settings, with
the exception of the study conducted by Roy et al. [54], which was conducted in a clinic.
Notably, two studies were performed inside community healthcare centers [52,57].

3.1. Quality Appraisal

Table 3 shows the overall quality of the included studies according to the JBI frame-
work [44]. Complete quality appraisal is available in Supplementary Tables S3-55.

Table 3. Results of quality appraisal.

Study Checklist Overall Quality

Held et al., 2022 [51] JBI for qualitative studies Medium

Liao et al., 2024 [52] JBI for qualitative studies Excellent
Petersen et al., 2024 [53] JBI for qualitative studies High
Romero et al., 2019 [55] MMAT High
Roy et al., 2024 [54] JBI for analytical cross-sectional studies Low

Wahlich et al., 2024 [57] JBI for qualitative studies Medium

Wewetzer et al., 2023 [56] JBI for analytical cross-sectional studies Medium

MMAT: Mixed-Methods Appraisal Tool; JBI: Joanna Briggs Institute.

Regarding the four qualitative studies, Whalich et al. [57] and Held et al. [51] were
rated as medium-quality due to the absence of statements addressing the researchers’
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cultural positions and the mutual influence between the researchers and the research
process. The studies by Liao et al. [52] and Peterson et al. [53] were well designed.

The two studies with a cross-sectional design presented as low-quality due to the lack
of information during the description of the inclusion and exclusion criteria [54] and the
setting of the study, while the study by Wewetzer et al. [56] was reported as medium-quality
owing to the lack of managing confounding factors.

Finally, the mixed-methods study performed by Romero et al. [55] all was well de-
signed and conducted, with a high-quality rating.

3.2. Barriers and Facilitators Identified According to the CFIR Framework

The following sections present findings according to the CFIR framework domains,
and Figure 2 illustrates the main identified barriers and facilitators. Comprehensive data
extraction is shown in Supplementary Table Sé6.

Insufficient funds

Unsatisfactory clinical
performance

Lack of a collaborative
professionals network

Easiness of use

"Black box" topi High cost
SESIOXTIBRIS ghicae’> Primary care "filter" function strengthening

Time saving Unknown reliability

Empowered doctor-patient relationship

Improved clinical efficiency

Job displacement fear

Individuals

Positive Negative
personal attitude personal attitude

Lack of understanding of Al

Data security concerns

Poorly tailored reports Clinical autonomy threat

Intervention reasoning mechanisms Outer setting
" Hospital administrators/ .
Implementation department heads engagement Inner setting

Perceived Al- Patient visit
supported care omission

Lack of system Lack of adequate training

incorporation feedbacks

Increased care
coordination perception

Limited knowledge

Increased grading load

Clinicians active Limited Al systems integration
engagement

Increased workload Ease of integration

Barriers

Facilitators

Figure 2. Barriers and facilitators of Al implementation for diabetes management reported by

healthcare professionals.

3.2.1. Individuals Domain

The principal barrier is the negative personal attitude towards Al systems, with asso-
ciated skepticism [51], incompetence in understanding the Al reasoning mechanisms [52],
or forgetfulness to visit the patient [53].

The facilitators belonging to this domain are engagement of hospital administrators
or department heads [52], positive attitude towards the future of Al technology [57],
perception of increased care coordination [55], or perception of Al as a support [57].
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3.2.2. Intervention Domain

The relevant barrier under this domain is the unsatisfactory clinical performance of
the Al system. This aspect is related to image recognition, time (duration of examination
and latency of results), validity (Al system may miss some retinopathy changes), and
uncertainty about the accuracy and trustworthiness of Al outputs [51-54]. Also, Romero
et al. [55] reported as a barrier the high false positive rate in patient risk classification,
whereas the studies of Wewetzer et al. [56] and Wahlich et al. [57] highlighted diagnostic
limitations of Al systems (they may not detect other conditions besides the one for which
they have been designed for, leading to incomplete diagnosis). Finally, doubts about
reliability and accuracy may negatively impact physician confidence in the system [56,57].
Another common barrier is related to the financial burden of AI software/high acquisition
costs [52,53,56].

Another fundamental barrier to consider is the concern about data security, liability,
and how the system made the decision (black box problem) [54,55,57]. Romero et al. [55]
and Liao et al. [52] also reported the poorly tailored reporting of Al systems.

The identified facilitators are an improved clinical efficiency [52,54,55], easiness of
use [52,54], and the time sparing effect, both for the patient and for the physician [53,56,57].
Only one study reported a financial facilitator [51].

3.2.3. Implementation Process Domain

The principal barriers are the lack of feedback in incorporation of the system [52], the
increased workload due to extra steps outside the routine workflow [55], and the impact of
a grading workload [57].

The only facilitator identified in the implementation process is the successful active
engagement of the clinicians [52].

3.2.4. Inner Setting Domain

The principal barrier related to the inner setting is the lack of adequate training or
limited knowledge and training on the Al system [52,54,55]. Also, the lack of integration of
the Al system into the hospital/facility information system is another relevant concern that
acts as a barrier [54-56].

The only inner setting facilitator identified under this domain is the ease of integration,
with the associated simple installation [51,52].

3.2.5. Outer Setting Domain

For the outer setting domain, the crucial emerging barrier is the lack of a collaborative
network between primary, secondary, and tertiary hospitals, which includes the related
tensions between GPs and specialists with the concern of a lower referral rate [51,52]. Also,
the fear of job displacement or changes in clinical autonomy is another concern that is
reported as a barrier [54]. A study also reported that insufficient reimbursement by health
care systems may act as a significant barrier [56].

The facilitators reported that can be classified under this domain are the development
of national guidelines related to Al [52], the strengthening of the primary doctor filter
function, and an associated closer relationship between patient and GP [51].

4. Discussion

The implementation of Al systems in healthcare represents one of the most significant
challenges of the coming decade, not only for daily clinical practice but also for public
health systems as a whole. The findings of this study, interpreted through the CFIR
framework [49], clearly show that the barriers and facilitators to Al adoption operate on
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multiple levels, reflecting organizational, technological, individual, and systemic dynamics
that influence full implementation and value realization.

4.1. Innovation, Effectiveness, and Trust in Technology

The most critical issue that emerged relates to the perceived unsatisfactory clinical
performance—an aspect with profound implications for public health [58,59]. If Al systems
are unable to ensure adequate levels of sensitivity and specificity—or if their reliability
is perceived as uncertain—they risk undermining the quality of care and increasing the
chances of missed or inappropriate diagnoses [60]. In the context of population screening
(such as diabetic retinopathy), a high number of false positives or false negatives could
either overload the system or falsely reassure patients. This confirms what has already
been observed in international studies, which emphasize the need for rigorous clinical
validation before the large-scale deployment of Al systems [61,62]. Furthermore, the lack
of transparency in Al’s decision-making processes undermines the trust of healthcare
professionals and patients, posing an ethical and regulatory challenge essential for the
sustainable development of the technology [60,63]. This issue is currently the focus of
attention within the European Health Data Space and the EU Artificial Intelligence Act,
which introduces strict requirements for the “explainability” and traceability of collected
data [64]. These concerns are rooted primarily in the CFIR domain of intervention, where
the perceived evidence strength, complexity, and relative advantage of the Al tools are
critical to their adoption. Additionally, elements from the individuals domain emerge,
particularly regarding trust and acceptance by healthcare professionals.

4.2. Equity and Sustainability: Al Costs, Access, and Integration

The barrier represented by the costs of acquiring and managing Al can also be inter-
preted in terms of equity in access to healthcare innovations [65]. This economic barrier
was identified within the CFIR domain of intervention characteristics, highlighting the per-
ceived complexity and resource intensity associated with adopting Al-based tools. Mainly
in publicly funded universal healthcare systems, the adoption of expensive technologies
risks creating territorial inequalities, where larger or better-funded facilities can afford to
implement AI, while peripheral or resource-limited ones risk being effectively excluded [66].
This issue was already highlighted by the World Health Organization (WHO) in the 2021
report “Ethics and Governance of Artificial Intelligence for Health”, which urges careful
evaluation of Al’s redistributive impact in public health contexts [67]. Adding to this is the
poor integration with existing information systems, which are often not designed to accom-
modate supplementary technologies, thereby hindering true interoperability. Without full
connectivity between Al, electronic health records, and healthcare management systems,
Al risks remaining an isolated technology, incapable of delivering real value to patient
care [68,69]. These considerations also align with the principles of the United Nations
Sustainable Development Goals (SDGs), particularly those promoting health, innovation,
and equity in access to care [70].

4.3. Healthcare System and Multilevel Governance

In terms of governance and shared decision-making, it becomes clear that the lack of
coordination between levels of care (e.g., primary care, specialists, hospitals) and potential
communication difficulties among professionals represent critical barriers to Al implemen-
tation. This issue is part of a broader challenge in healthcare governance, which calls for
dynamic and modern models of both vertical and horizontal service integration [71-73].
Technology alone does not solve these problems; on the contrary, it can amplify them
if introduced without a clear and shared organizational framework. The concern, par-
ticularly regarding the potential loss of clinical autonomy—clearly emerging from the
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data reviewed—is a key issue for the “social” legitimacy of digital innovations in health-
care [74,75]. According to Greenhalgh et al. (2017), the adoption of new technologies
requires a co-construction of change, in which professionals are actively involved not only
in the use but also in the design and evaluation of the tools to be implemented in clinical
practice [76]. These barriers align with the CFIR domains of inner setting and implementation
process, emphasizing organizational coordination gaps and limited stakeholder engagement
in technology adoption.

4.4. Training, Digital Literacy, and Empowerment

These issues fall within the CFIR domain of characteristics of individuals, particularly
focusing on knowledge, self-efficacy, and the need for ongoing professional development
to support effective Al adoption. From an internal perspective, the lack of adequate
training on Al tools is a systemic barrier that must be urgently addressed—especially if the
goal is to adopt Al-based care systems across multiple levels of healthcare delivery [77].
Structured pathways for continuous education are therefore essential, integrating “Al
literacy” into university curriculum, ongoing professional development programs, and
career advancement tracks. This ensures they do not become mere executors but rather
informed actors who use technology as an extension of their clinical skill expertise [78,79].

4.5. Opportunities for Public Health

Despite the critical issues that have emerged, the identified facilitators show significant
transformative potential. Time savings, increased clinical efficiency, the perception of
greater care coordination and positive acceptance by some operators are valuable elements
for the success of public policies that aim at the equitable and sustainable digitalization of
healthcare [80-82].

The presence of possible national and international guidelines to support health pro-
fessionals is perceived as an enabling element, and in this scenario, Al could represent
a turning point if integrated with global implementation strategies, clinical audits, and
impact assessment [64]. It is desirable that an international public control room is created
to guarantee the implementation of Al, capable of providing technical standards, ethical
assessments, and support to local decision makers and organizers of health services in gen-
eral that meet all the quality standards necessary for the use of Al in clinical practice [67,83].
These facilitators reflect the CFIR domains of outer setting and implementation process, partic-
ularly highlighting the role of policy support, external incentives, and structured strategies
to guide effective and equitable Al integration.

4.6. Barriers and Facilitators in a Bottom-Up Perspective

The introduction of Al and other technological tools into clinical settings—particularly
for the management of chronic diseases—represents a significant opportunity to rethink
traditional models of care and transition toward a more predictive, proactive, and personal-
ized approach [84-89]. Chronic conditions such as diabetes, hypertension, cardiovascular,
and respiratory diseases represent a substantial burden for public healthcare systems and
require coordinated, continuous, and patient-centered management strategies [90,91]. In
this context, Al can serve as a catalyst for innovation, provided that it is embedded in
a well-structured and responsive clinical and organizational ecosystem [92]. Building
on the CFIR framework, our analysis identified key barriers and facilitators across its
five domains: characteristics of the intervention, outer setting, inner setting, individual
characteristics, and implementation process. These domains provided the foundation for a
structured and theory-informed classification of the data, while the discussion reframed
these results in light of a bottom-up perspective—that is, how professionals working within
healthcare systems perceive, experience, and respond to the integration of Al in their
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clinical practice [49,93,94]. From a practical standpoint, Al-based systems—such as those
used for diabetic retinopathy screening or cardiovascular risk stratification [95,96]—can
support the early detection of complications, thereby reducing the need for hospital-based
interventions and enabling more timely, preventive care. This dual benefit supports both
patients, who receive appropriate interventions sooner, and healthcare systems, which
benefit from improved outcomes and resource efficiency [97]. However, integrating Al into
routine clinical practice necessitates parallel transformations in organizational routines,
workforce training, and digital competencies among healthcare professionals [98]. Rather
than framing Al as a substitute for human expertise, it is essential to foster a collaborative
model in which technology enhances the clinical judgment and skills of professionals. This
reframing can help overcome cultural resistance to adoption, often rooted in concerns about
professional identity and loss of autonomy [99,100]. Among the barriers, frontline pro-
fessionals reported challenges such as poor interoperability of Al with existing electronic
health records, lack of shared implementation strategies, and insufficient digital literacy.
These aspects reflect issues related to the CFIR domains of intervention characteristics,
inner setting, and outer setting. Additionally, fragmented care coordination and lack of
shared governance structures were seen as limiting factors in the effective deployment
of Al across healthcare levels [101,102]. Conversely, several facilitators emerged from a
bottom-up viewpoint, highlighting how Al adoption can be positively influenced by per-
ceived improvements in workflow efficiency, time savings, and greater integration between
primary and specialty care. Professionals also reported a willingness to engage with new
tools in general technology devices when training is adequate and when they are actively
involved in implementation decisions in clinical and social decision [103-105].

4.7. A Public Health View on Al in Clinical Practice

For chronic disease management, where continuity and coordination of care are essen-
tial, Al systems can support transitions between care settings, enhance remote monitoring,
and offer predictive insights that guide therapeutic decisions [106-108]. However, without
appropriate regulation and inclusive planning, the risk of exacerbating health inequities
remains high—particularly in underserved or digitally marginalized populations [109,110].
To prevent such disparities, healthcare professionals must be empowered not only as end
users but also as digital mediators and educators, helping to guide patients and caregivers
in the effective and ethical use of Al technologies [111-115]. Their proximity to patients
and deep understanding of local care pathways position them as crucial actors in fostering
responsible innovation. Finally, the development of Al for chronic care must be embedded
in a broader cultural and ethical framework that views data as a collective asset and public
health as the primary driver for technological development. This shift is necessary to ensure
that data-driven medicine evolves in a fair, sustainable, and inclusive direction [116,117].

4.8. Strengths and Limitations

The study’s strengths include its solid methodological framework, facilitated by the
adoption of the JBI methodology, the PRISMA-ScR guidelines for reporting [43,44], and the
registration of the protocol on the OSF database, elements that ensure transparency and
international rigor. The use of the CFIR framework [49] allowed for an in-depth analysis
of the factors influencing Al adoption by healthcare workers, facilitating a coherent and
useful classification from a public health perspective. However, some limitations should be
considered. The exploratory nature of the scoping review did not allow for a quantitative
synthesis of data due to the methodological heterogeneity of the included studies and
the cohorts considered. Additionally, many findings are based on subjective perceptions
of the involved workers in the studies included, which requires caution in interpreting
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the collected data and highlights the need for future integration with objective data and
evidence-driven research. For these elements, future studies aimed at addressing these gaps
are required. In particular, it is suggested to develop longitudinal research and randomized
studies that evaluate not only perceptions but also the real effectiveness and efficiency of
Al in managing diabetes and chronic diseases in general from a healthcare worker’s point
of view. This approach would help build more comprehensive and useful evidence for the
sustainable implementation of technological innovation in public health perspectives.

5. Conclusions

The adoption of Al in chronic care, particularly in diabetes management, is shaped by
a dynamic interplay of perceived barriers and facilitators among healthcare professionals.
Their active and continuous involvement represents a key opportunity to develop more
effective, reliable, and context-aware Al solutions that are better integrated into everyday
clinical workflows. Promoting targeted training programs and sustained organizational
support for healthcare workers involved in the complex management of diabetes may
help overcome current challenges, advancing more equitable and sustainable innovation.
Crucially, these findings point toward the value of a bottom-up approach—one that pri-
oritizes the perspectives and practical needs of frontline professionals—as a promising
pathway to support the successful implementation of Al in clinical practice. Framing Al
adoption within a broader public health perspective, attentive to systemic readiness and
social equity, can guide more inclusive strategies that align innovation with real-world
healthcare priorities.
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