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A.S. Nomogram Development and

Feature Selection Strategy Comparison

for Predicting Surgical Site Infection

After Lower Extremity Fracture

Surgery. Medicina 2025, 61, 1378.

https://doi.org/10.3390/

medicina61081378

Copyright: © 2025 by the authors.

Published by MDPI on behalf of the

Lithuanian University of Health

Sciences. Licensee MDPI, Basel,

Switzerland. This article is an open

access article distributed under the

terms and conditions of the Creative

Commons Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Nomogram Development and Feature Selection Strategy
Comparison for Predicting Surgical Site Infection After Lower
Extremity Fracture Surgery
Humam Baki 1,* and Atilla Sancar Parmaksızoğlu 2
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Abstract

Background and Objectives: Surgical site infections (SSIs) are a frequent complication af-
ter lower extremity fracture surgery, yet tools for individualized risk prediction remain
limited. This study aimed to develop and internally validate a nomogram for individual-
ized SSI risk prediction based on perioperative clinical parameters. Materials and Methods:
This retrospective cohort study included adults who underwent lower extremity fracture
surgery between 2022 and 2025 at a tertiary care center. Thirty candidate predictors were
evaluated. Feature selection was performed using six strategies, and the final model was
developed with logistic regression based on bootstrap inclusion frequency. Model per-
formance was assessed by area under the curve, calibration slope, Brier score, sensitivity,
and specificity. Results: Among 638 patients undergoing lower extremity fracture surgery,
76 (11.9%) developed SSIs. Of six feature selection strategies compared, bootstrap inclusion
frequency identified seven predictors: red blood cell count, preoperative C-reactive protein,
chronic kidney disease, operative time, chronic obstructive pulmonary disease, body mass
index, and blood transfusion. The final model demonstrated an AUROC of 0.924 (95% CI,
0.876–0.973), a calibration slope of 1.03, and a Brier score of 0.0602. Sensitivity was 86.2%
(95% CI, 69.4–94.5) and specificity was 89.5% (95% CI, 83.8–93.3). Chronic kidney disease
(OR, 88.75; 95% CI, 5.51–1428.80) and blood transfusion (OR, 85.07; 95% CI, 11.69–619.09)
were the strongest predictors of infection. Conclusions: The developed nomogram demon-
strates strong predictive performance and may support personalized SSI risk assessment in
patients undergoing lower extremity fracture surgery.

Keywords: surgical wound infection; fractures; bone; lower extremity; risk assess-
ment; nomograms

1. Introduction
Lower extremity fractures are among the most common orthopedic injuries requiring

surgical treatment [1,2]. Fractures of the patella, tibia, fibula, and ankle are commonly
reported and often necessitate operative management [3]. Surgical fixation remains the
standard treatment approach to achieve anatomical realignment and restore function in
these injuries [4,5]. However, surgical site infections (SSIs) remain a frequent complication
after lower extremity fracture surgery, contributing to longer hospital stays, reoperations,
and increased healthcare resource utilization [6]. SSI rates after lower extremity fracture
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surgery range from 3.6% in closed fractures to nearly 19% in open fractures, largely influ-
enced by the severity of the fracture and surgical complexity [7,8]. Beyond their frequency,
SSIs are associated with significant morbidity, including delayed wound healing, increased
risk of nonunion, and the need for reoperations [9]. Early identification of patients at
increased risk of SSI is a critical component of postoperative management.

Nomograms are widely used for individualized risk estimation in surgical populations,
unlike traditional risk scoring systems that rely on categorical variables. By integrating
continuous and categorical variables, they allow for patient-specific risk predictions in
a visual format [10]. Multiple studies in orthopedic surgery have validated their utility for
infection risk stratification and clinical decision-making [11–13]. The predictive accuracy
of a nomogram depends on the appropriate selection of variables included in the model.
Feature selection techniques, including univariate analysis, stepwise regression, and pe-
nalization methods, such as least absolute shrinkage and selection operator (LASSO), are
commonly applied to minimize overfitting and improve model generalizability [14].

We developed and internally validated a nomogram to predict the risk of SSI follow-
ing lower extremity fracture surgeries. Multiple feature selection strategies were com-
pared to identify the approach providing optimal predictive accuracy, calibration, and
clinical applicability.

2. Materials and Methods
2.1. Study Design and Setting

This retrospective cohort study was conducted at Istanbul Yeni Yüzyıl University Hos-
pital, a tertiary care academic center. The study protocol was approved by the Institutional
Review Board of Istanbul Yeni Yüzyıl University (approval number: 2025/05-1543; date:
7 May 2025). Due to the retrospective nature of the study, the requirement for informed
consent was waived. This study was conducted and reported in accordance with the
TRIPOD guidelines [15]. TRIPOD adherence was cross-verified using the official TRIPOD
checklist prior to manuscript submission. Patient confidentiality was maintained through
anonymization of data prior to analysis.

2.2. Participants

Adult patients aged 18 years or older who underwent surgical treatment for lower
extremity fractures between January 2022 and January 2025 were eligible for inclusion. Pa-
tients were excluded if they had a pre-existing infection at the time of surgery, pathological
fractures attributable to malignancy or metabolic bone disease, chronic immunosuppressive
therapy, a history of solid organ transplantation, or a diagnosis of human immunodefi-
ciency virus infection. Patients managed non-surgically, those with incomplete clinical
data, or those without complete 90-day postoperative follow-up were also excluded. For
patients who underwent multiple surgeries during the study period, only the first operative
intervention was included. In patients with multiple concurrent fractures, the fracture
associated with the longest operative time and highest surgical complexity, as determined
by the need for advanced reconstructive techniques, was selected for analysis.

2.3. Data Collection and Review

All records extracted from the hospital information management system were supple-
mented by manual chart review to verify missing or ambiguous entries. All patient data
were abstracted using a standardized data collection form developed prior to the study
and reviewed independently by two researchers. Inter-reviewer agreement for eligibility
and outcome assessment was quantified using Cohen’s kappa coefficient. In cases of dis-
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agreement, a third senior reviewer adjudicated to reach consensus. A random audit of 5%
of manually reviewed charts was performed to confirm data accuracy.

2.4. Outcome Definition

The primary outcome was the occurrence of SSI within 90 days postoperatively. SSI
was defined according to the Centers for Disease Control and Prevention criteria, en-
compassing superficial incisional, deep incisional, and organ/space infections [16]. Clas-
sification was based on documented clinical signs, microbiological culture results, and
radiological findings available in the medical record.

2.5. Predictor Variables

Candidate predictors included demographic variables (age, sex, and body mass index),
comorbidities (diabetes mellitus, hypertension, malignancy, smoking status, chronic kidney
disease, chronic obstructive pulmonary disease, and American Society of Anesthesiolo-
gists [ASA] physical status classification), and surgical characteristics (emergency surgery,
presence of open fracture, tourniquet use, time to surgery from admission, operative time,
surgical technique [minimally invasive versus open], use of external fixation, flap cover-
age, bone grafting, drain insertion, reoperation, blood transfusion, estimated blood loss,
and length of hospital stay). Standard perioperative antibiotic prophylaxis was admin-
istered in accordance with institutional guidelines. Laboratory measurements included
hemoglobin, red blood cell count, white blood cell count, neutrophil count, lymphocyte
count, platelet count, prothrombin time, activated partial thromboplastin time, serum
albumin, glucose, D-dimer, and C-reactive protein (CRP). All continuous variables were
analyzed in their original form without transformation or categorization. Non-linear asso-
ciations between continuous predictors and outcome were assessed using locally weighted
scatterplot smoothing (LOWESS) plots.

2.6. Sample Size Considerations

The minimum required sample size was estimated based on a target shrinkage factor
of 0.90, an anticipated Nagelkerke R2 of 0.45, the inclusion of ten predictors, and an
expected event prevalence of 11.9%. This calculation indicated that at least 334 patients and
40 outcome events were necessary. The final study sample comprised 638 patients, with
76 (11.9%) experiencing SSI, corresponding to an events-per-predictor (EPP) ratio of 7.6.

2.7. Missing Data

No variable had more than 5% missing data in the final dataset of 638 patients. Lab-
oratory parameters demonstrated the highest rates of missingness, with serum albumin
missing in 15 patients (2.3%), D-dimer in 20 patients (3.1%), preoperative CRP in 12 pa-
tients (1.9%), and postoperative CRP in 17 patients (2.7%). Demographic, comorbidity, and
surgical variables were complete. Missing values were imputed using multiple imputation
by chained equations. Predictive mean matching was applied for continuous variables
and logistic regression imputation for categorical variables. Five imputed datasets were
created. Convergence of imputation models was evaluated through inspection of trace
plots. Missingness was assumed to be missing at random (MAR) and was assessed using
Little’s MCAR test. The number of imputations was determined sufficient based on the
fraction of missing information (FMI), which remained below 0.2 for all variables. Com-
plete definitions of all candidate predictors, missingness rates, and imputation strategies
are provided in Supplementary Table S1. All variables were included in the imputation
models, and continuous predictors were used in their raw scale without normalization
or transformation.
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2.8. Nomogram Construction in Clinical Risk Prediction

Nomograms have emerged as practical tools in orthopedic and surgical risk prediction
due to their ability to translate complex regression models into user-friendly visual formats.
Unlike categorical risk scores, nomograms preserve the predictive value of continuous
variables and allow individualized risk estimation. Their interpretability and bedside
applicability have led to increasing adoption in orthopedic infection risk stratification,
particularly for SSI [11,17].

In this study, we selected a nomogram approach to create a clinically applica-
ble and visually interpretable model for estimating SSI risk following lower extrem-
ity fracture surgeries. This decision was based on the heterogeneity of relevant
predictors—spanning demographic, surgical, and laboratory domains—which warranted
an integrated multivariable modeling framework [18]. Furthermore, prior studies have
demonstrated that nomograms provide reliable calibration and discrimination in orthope-
dic contexts when combined with modern validation tools such as bootstrap resampling
and decision curve analysis [13].

2.9. Feature Selection Strategies in Prediction Model Development

Robust feature selection is essential for developing generalizable clinical prediction
models. Given the wide range of variables potentially associated with SSI, we systematically
compared six feature selection strategies to balance model performance with interpretability.
These included representative methods from three main families: filter (univariate analysis),
wrapper (stepwise selection, recursive feature elimination), and embedded approaches
(LASSO, Boruta). Each method carries distinct advantages and limitations in terms of
computational efficiency, variable collinearity handling, and modeling bias [19].

In high-dimensional clinical datasets, embedded and regularized approaches like
LASSO have gained prominence due to their ability to prevent overfitting and simplify
models [20]. However, wrapper methods such as recursive feature elimination often yield
superior discrimination in well-structured datasets by accounting for interactions [21].

Given these considerations, we implemented multiple strategies and benchmarked
them across discrimination (AUROC), calibration, and decision metrics. This comparative
approach has been previously applied in orthopedic infection modeling with favorable re-
sults, and is recommended for achieving balance between model complexity and predictive
power [22,23]. Thresholds for variable retention and multicollinearity control strategies for
each selection method are summarized in Supplementary Table S2.

2.10. Analysis

All statistical analyses were performed using R version 4.4.2 (R Foundation for
Statistical Computing, Vienna, Austria). Continuous variables were assessed for nor-
mality using histogram visualization. Normally distributed variables were reported as
mean ± standard deviation, and compared using independent samples t-tests. Non-
normally distributed variables were summarized as median [interquartile range] and
compared using the Mann–Whitney U test. Categorical variables were expressed as
counts and percentages (n [%]) and compared using the Chi-square or Fisher’s exact test
as appropriate.

Feature selection was performed using six different strategies: bootstrap inclusion
frequency, LASSO, univariate filtering (p < 0.20), stepwise selection, Boruta algorithm,
and recursive feature elimination (RFE). Models derived from each selection method were
evaluated using logistic regression or Firth’s penalized logistic regression in the presence
of separation or convergence instability.
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Model performance was assessed in a 70/30 train-test split using multiple metrics:
area under the receiver operating characteristic curve (AUROC), Brier score, calibration
slope, Akaike information criterion (AIC), and Bayesian information criterion (BIC). For
models with missing calibration statistics or failed convergence, diagnostic limitations
were noted. The final model was selected based on a balance of discrimination, calibration,
parsimony, and clinical interpretability. Odds ratios (ORs) with 95% confidence intervals
(CI) were reported for all predictors in the final model. A nomogram was constructed using
the rms package based on this model.

Model development adequacy was assessed using the pmsampsize package. Given
a Nagelkerke R2 of 0.71 and 8 predictors, the minimum required sample size was estimated
as 243 with at least 29 events, assuming a target shrinkage of 0.9. Our final sample (n = 638;
events = 76) exceeded these thresholds, corresponding to an EPP of 9.5, supporting model
stability and low overfitting risk.

3. Results
A total of 638 patients undergoing lower extremity fracture surgery were included,

of whom 76 (11.9%) developed SSI. Inter-reviewer agreement for eligibility assessment
yielded a Cohen’s kappa coefficient of 0.84 (95% CI, 0.78–0.90). For outcome adjudication
of SSIs, the Cohen’s kappa coefficient was 0.81 (95% CI, 0.74–0.88). Disagreements occurred
in 18 cases (2.8%) for eligibility assessment and 12 cases (1.9%) for outcome adjudication.
All disagreements were resolved through consensus by a third senior reviewer.

Comparative characteristics between the SSI and non-SSI groups are presented in
Tables 1 and 2. The SSI group had higher BMI, longer time to surgery, greater operative
time, higher transfusion and flap coverage rates, and elevated inflammatory markers such
as CRP, D-dimer, and neutrophil count (all p < 0.05). Lymphocyte count and albumin levels
were significantly lower in the SSI group.

Feature selection and model building were performed using six distinct strategies
(Table 3). During this process, several methodological issues emerged. In the LASSO-based
model, 21 candidate variables were initially identified, but the final penalized solution
retained only one predictor. This sparse configuration resulted in near-complete separation,
with a maximum predicted probability of 0.997 for the positive class in the training set
and a convergence warning flag during model fitting. Penalized logistic regression with
Firth correction was applied to mitigate this issue and ensure coefficient stability, but
performance remained suboptimal, with reduced precision in cross-validation and extreme
calibration behavior.

In the Boruta-based selection strategy, the algorithm yielded 16 predictors with high
selection frequency, but several of these showed multicollinearity and unstable estimates
when entered into a traditional logistic model. To stabilize coefficient shrinkage and
address variance inflation, ridge penalization was applied in the final logistic regression
step, improving the condition number from 47.2 to 9.5. However, this adjustment led to
inflated slope values and highly optimistic AUROC estimates in the test set.

Univariate filtering allowed the inclusion of 27 variables, 7 of which had a positive
class frequency below 5%. Although the Univariate + Firth model achieved an AUROC
of 0.997 in the test set, its predictive reliability was undermined by overly sparse inputs.
Moreover, due to complete separation and degenerate predictions in the minority class,
sensitivity and specificity values could not be reliably reported.

The RFE + LRM model retained 13 variables and yielded excellent discrimination, but
failed to produce a valid Hosmer–Lemeshow test statistic due to the convergence instability
observed in repeated validation folds. The stepwise model showed a similar pattern of
calibration weakness despite acceptable AUROC.
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Table 1. Baseline demographics, clinical characteristics, and laboratory findings according to surgical
site infection status.

Variable SSI−
(n = 562)

SSI+
(n = 76) p Mean Difference

(95% CI)

Age (years) 48.1 ± 18.7 52.8 ± 18.7 0.045 4.64 (0.12 to 9.17)
Sex (Male) 348 (61.9%) 54 (71.1%) 0.155

BMI (kg/m2) 26.9 ± 9.5 30.1 ± 10.6 0.015 3.18 (0.64 to 5.71)
Diabetes mellitus 65 (11.6%) 19 (25.0%) 0.002

Hypertension 183 (32.6%) 34 (44.7%) 0.048
Malignancy 16 (2.8%) 6 (7.9%) 0.054

Smoking 117 (20.8%) 15 (19.7%) 0.946
CKD 20 (3.6%) 5 (6.6%) 0.338

COPD 53 (9.4%) 10 (13.2%) 0.414
ASA Score = 3–4 18 (3.2%) 5 (6.6%) 0.174

Emergency surgery 172 (30.6%) 30 (39.5%) 0.153
Open fracture present 78 (13.9%) 26 (34.2%) <0.001

Tourniquet use 386 (68.7%) 33 (43.4%) <0.001
Time to surgery (hours) 17.4 ± 7.3 22.3 ± 9.2 <0.001 4.87 (2.69 to 7.05)

OR time (minutes) 111.7 ± 26.8 126.0 ± 27.0 <0.001 14.29 (7.73 to 20.84)
Minimally invasive technique 133 (23.7%) 7 (9.2%) 0.007

Fixation: external fixator 135 (24.0%) 32 (42.1%) 0.005
Flap coverage performed 3 (0.5%) 18 (23.7%) <0.001
Bone grafting performed 0 (0.0%) 10 (13.2%) <0.001

Drain inserted 223 (39.7%) 43 (56.6%) 0.007
Reoperation 2 (0.4%) 9 (11.8%) <0.001

Blood transfusion 18 (3.2%) 20 (26.3%) <0.001
Estimated blood loss (mL) 235.0 ± 112.6 302.2 ± 126.9 <0.001 67.15 (36.75 to 97.56)

Length of hospital stay (days) 4.4 ± 2.1 8.9 ± 4.8 <0.001 4.53 (3.42 to 5.64)
ASA: American Society of Anesthesiologists; CKD: chronic kidney disease; COPD: chronic obstructive pulmonary
disease; OR: operating room; SSI: surgical site infection.

Table 2. Laboratory findings according to surgical site infection status.

Variable SSI− (n = 562) SSI+ (n = 76) p Mean Difference
(95% CI)

Hemoglobin (g/dL) 130.7 ± 14.1 129.7 ± 14.6 0.571
RBC count (×106/µL) 4.4 ± 0.4 4.3 ± 0.4 0.009 –0.14 (–0.24 to –0.04)
WBC count (×109/L) 10.0 ± 1.7 10.5 ± 1.7 0.011 0.55 (0.13 to 0.98)

Neutrophil count (×109/L) 6.2 ± 1.2 6.9 ± 1.2 <0.001 0.74 (0.44 to 1.03)
Lymphocyte count (×109/L) 1.5 ± 0.3 1.3 ± 0.3 <0.001 –0.24 (–0.31 to –0.17)

Platelet count (×103/µL) 239.0 ± 44.5 240.7 ± 50.2 0.780
Prothrombin time (s) 11.0 ± 0.6 11.0 ± 0.6 0.476

APTT (s) 25.9 ± 1.8 26.1 ± 2.0 0.473
Albumin (g/dL) 40.6 ± 1.8 39.8 ± 1.5 <0.001 –0.79 (–1.17 to –0.41)
Glucose (mg/dL) 125.6 ± 23.2 151.6 ± 28.7 <0.001 26.03 (19.22 to 32.85)
D-Dimer (mg/L) 6.9 ± 4.2 15.1 ± 9.1 <0.001 8.13 (6.03 to 10.22)

Preoperative CRP (mg/L) 10.1 ± 6.0 17.7 ± 6.5 <0.001 7.62 (6.06 to 9.19)
Postoperative CRP (mg/L) 74.5 ± 32.1 115.1 ± 33.7 <0.001 40.68 (32.55 to 48.81)

APTT: activated partial thromboplastin time; CRP: C-reactive protein; D-Dimer: D-dimer fibrin degradation
product; RBC: red blood cell; WBC: white blood cell; SSI: surgical site infection.

A comparative evaluation of all models in the test set is presented in Table 4. While
some models achieved extremely high AUROC values (e.g., Univariate + Firth: 0.997;
Boruta + Ridge: 0.997), they also displayed clear signs of overfitting. These included either
extremely low ∆AUROC values (<0.005) with high calibration slope (>5.0), or exception-
ally low Brier scores coupled with implausibly confident predictions. For instance, the
Boruta + Ridge + LRM model had the lowest AIC (53.49), yet its slope exceeded 8.1,
reflecting poor generalizability. Conversely, the Bootstrap + LRM model demonstrated
a more stable profile with strong AUROC (0.924), acceptable ∆AUROC (0.0571), a rea-
sonable Brier score (0.0602), and the best overall balance in AIC (114.62) and BIC (151.54)
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among all non-penalized models. The ROC curves of all candidate models are shown
in Figure 1.

Table 3. Ranked performance of robust models by AUC and 95% confidence intervals.

Feature Selection
Method

Variables
Selected
by FS (n)

Variables
in Final

Model (n)
AUROC (95% CI) Sensitivity

(95% CI)
Specificity
(95% CI)

Hosmer–
Lemeshow p

Nagelkerke
R2

Bootstrap + LRM 9 7 0.924
(0.876–0.973)

0.862
(0.694–0.945)

0.895
(0.838–0.933) 0.367 0.708

LASSO + Firth 21 1 0.755
(0.657–0.852)

0.724
(0.543–0.853)

0.691
(0.616–0.757) 0.0002 0.310

Univariate + Firth
(Shrinked) 27 27 0.997

(0.989–1.000) Not reportable Not reportable 0.118 1.00
(pre-shrink)

Stepwise + LRM 18 12 0.882
(0.814–0.950)

0.414
(0.255–0.593)

0.963
(0.922–0.983) <0.001 0.664

Boruta + Ridge + LRM 16 9 0.997
(0.992–1.000)

0.931
(0.780–0.981)

0.988
(0.956–0.997) 1.000 0.934

RFE + LRM 13 13 0.954
(0.905–1.000)

0.897
(0.736–0.964)

0.975
(0.938–0.990) Not available 1.000

LRM: Logistic Regression Model; FS: feature selection; AUROC: area under the receiver operating characteristic
curve; CI: confidence interval; R2: Nagelkerke’s Pseudo R-squared; RFE: recursive feature elimination; Firth:
Firth’s penalized logistic regression; Pre-shrink: Pre-penalization model performance; Not reportable: Performance
metrics could not be computed due to complete separation or lack of predicted variability.

Table 4. Comparative diagnostic performance of models for SSI prediction in the test set.

Model ∆AUROC Brier Score Calibration Slope AIC BIC

Bootstrap + LRM 0.0571 0.0602 3.2659 114.62 151.54
LASSO + Firth 0.1810 0.0117 12.6590 239.42 310.97

Univariate + Firth (Shrinked) 0.0030 0.0207 0.5343 199.59 327.87
Stepwise + LRM 0.0887 0.0772 5.7881 128.21 165.13

Boruta + Ridge + LRM 0.0019 0.0191 8.1792 53.49 106.82
RFE + LRM 0.0460 0.0366 5.8358 28.00 85.44

AUROC: area under the receiver operating characteristic curve; ∆AUROC: difference between training and
test AUROC; Brier Score: mean squared error of predicted probabilities; Calibration Slope: logistic regres-
sion slope of predicted probabilities against actual outcome; AIC: Akaike information criterion; BIC: Bayesian
information criterion.

 

Figure 1. ROC curves of all models for SSI prediction. ROC curves of six prediction models for
surgical site infection. AUROC values are presented in the legend. The diagonal line represents the
reference line (no discrimination).
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Taken together, Bootstrap + LRM offered the most interpretable and well-calibrated
solution, with no convergence issues, no implausible confidence shifts, and a manageable
variable count (n = 7). This model was selected for final implementation and nomogram
construction. This final model incorporated seven predictors. The adjusted ORs for these
predictors are presented in Table 5. The resulting nomogram is illustrated in Figure 2, de-
picting the point contribution of each covariate and the corresponding total risk estimate for
SSI. Although chronic obstructive pulmonary disease did not reach statistical significance,
it was retained in the final model due to its consistent selection across bootstrap replicates
and negligible impact on model calibration or discrimination.

Table 5. Adjusted odds ratios from the final logistic regression mode.

Variable OR (95% CI) p

RBC (×106/µL) 0.13 (0.05–0.32) <0.0001
Preoperative CRP (mg/L) 13.13 (5.18–33.30) <0.0001
Chronic Kidney Disease 88.75 (5.51–1428.80) 0.0016

Operation Time (minutes) 5.41 (2.66–10.98) <0.0001
COPD * 0.62 (0.11–3.41) 0.500

Body Mass Index (kg/m2) 3.06 (1.08–8.70) 0.036
Transfusion (Yes/No) 85.07 (11.69–619.09) <0.0001

Estimated Blood Loss (mL) 5.37 (2.45–11.77) <0.0001
Body Mass Index (kg/m2) 3.06 (1.08–8.70) 0.036

RBC: red blood cell count; CRP: C-reactive protein; COPD: chronic obstructive pulmonary disease; OR: odds ratio;
CI: confidence interval. * COPD was retained in the final model and nomogram despite not reaching statistical
significance (p = 0.50), as it was included in the bootstrap-selected variable set and did not adversely affect overall
model performance.

 

Figure 2. Nomogram derived from the final prediction model. Nomogram developed using the final
logistic regression model (Bootstrap + LRM) to predict risk of surgical site infection. Point assignments
for each variable are shown at the top, with the total score mapped to predicted probability at
the bottom.



Medicina 2025, 61, 1378 9 of 13

4. Discussion
This study developed and internally validated a multivariable prediction model for

SSI following lower extremity fracture surgery in a cohort of 638 patients, among whom
76 (11.9%) developed infection. A total of 29 candidate predictors were assessed using
six feature selection strategies to identify a parsimonious model. The final model was
incorporated into a nomogram to enable individualized risk estimation using routinely
collected perioperative data.

Feature selection in clinical prediction modeling not only affects statistical performance
but also determines how applicable a model is in real-world settings. In orthopedic trauma
surgery, incorporating routinely available predictors such as CRP, blood transfusion, and
chronic kidney disease ensures both usability and relevance. While approaches like LASSO
and RFE demonstrated strong discrimination, they also showed convergence or calibration
issues consistent with prior reports [24–26]. We therefore adopted bootstrap inclusion
frequency, which preserved clinical interpretability, enhanced model stability, and reduced
overfitting risk [27].

Reliable individualized risk prediction is essential for informing perioperative decision-
making. In this study, the final model demonstrated strong discrimination, with an AUROC
of 0.924, demonstrating strong separation between patients who did and did not develop
SSI. The observed discrimination level is comparable to that of the Ex-Care BR surgical
risk model (AUROC = 0.93) and exceeds that observed in models predicting postoperative
complications after ankle arthrodesis (AUROC approximately 0.71) [28,29]. Calibration was
similarly robust, with a calibration slope of 1.03 and a Brier score of 0.0602, indicating low
prediction error. These figures compare favorably with those reported for the ACS-NSQIP
calculator in thoracic surgery (AUROC = 0.67; Brier score > 0.10) and models predicting
perioperative complications in spine surgery (Brier score approximately 0.094) [30,31].
Together, the model’s discrimination, calibration, and low prediction error highlight its
potential role in perioperative risk assessment, where accurate individualized predictions
are essential for guiding clinical decision-making [32].

While discrimination and calibration define overall model performance, clinical util-
ity also depends on identifying predictors with strong, interpretable effects. In the final
model, red blood cell count, preoperative CRP, chronic kidney disease, operative time,
body mass index, blood transfusion, and estimated blood loss were selected based on
bootstrap inclusion frequency. Several predictors demonstrated notably high odds ratios,
including chronic kidney disease (OR, 88.75; 95% CI, 5.51–1428.80) and blood transfu-
sion (OR, 85.07; 95% CI, 11.69–619.09), reinforcing their established association with SSI
risk. While bootstrap-based selection improves robustness, these large effect sizes may
also reflect residual confounding or the influence of small subgroup counts and should
be interpreted with caution. Chronic kidney disease has been identified as a significant
risk factor for SSI in fracture surgeries, particularly in vascular procedures involving the
lower limbs [33]. Operative time and estimated blood loss also showed strong associa-
tions, consistent with prior studies where prolonged surgery and higher intraoperative
blood loss were independently linked to increased SSI rates in orthopedic trauma pa-
tients [34]. Similarly, blood transfusion has been repeatedly cited as a modifiable risk factor
for SSIs in lower extremity fracture surgery [35]. The model’s sensitivity (86.2%) and speci-
ficity (89.5%) further reflect its predictive strength. Comparable machine learning models
predicting SSI after lower extremity fracture surgeries have reported AUROCs around
0.78 with lower sensitivity and specificity values, highlighting the relative improvement in
our model’s performance [34]. These metrics suggest a well-calibrated balance: minimizing
false negatives—crucial in infection prevention—while avoiding unnecessary interventions
for low-risk patients. The consistency with established risk factors and the strong predic-
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tive ability support the integration of this model into individualized perioperative care
pathways for lower extremity fracture surgery. Recent machine learning models for SSI
prediction have reported comparable AUROC values, but their limited interpretability and
lack of clinical transparency reduce their bedside applicability [34,35].

Translating individualized risk estimates into clinical practice offers the potential to
refine perioperative strategies in orthopedic surgery. Identifying patients at increased risk
for SSI may support more targeted preventive efforts and patient-centered decision-making.
The deliberate comparison of feature selection methods emphasizes the importance of
balancing model complexity with clinical usability. Future research could examine how risk
models integrate into perioperative workflows and assess their impact on patient outcomes.
However, implementation of this nomogram into clinical practice would require additional
steps, including integration with electronic health records, clinician training, and decision
support system validation. Moreover, patient-specific factors and institutional protocols
may affect generalizability despite the model’s strong internal performance.

Limitations

This study has several limitations. First, its retrospective design may affect the com-
pleteness and consistency of data capture, despite strict eligibility criteria and independent
outcome adjudication. Second, the analysis was conducted at a single tertiary care center,
which may limit generalizability to broader or more diverse populations. Third, although
multiple imputation addressed missing data, the possibility of unmeasured confounding
cannot be excluded. Fourth, while multiple feature selection strategies were systematically
compared, other modeling approaches not evaluated here might yield different results.
Similarly, variables not selected or included in the final model, despite their potential rele-
vance, may contribute to SSI risk in other contexts. Fifth, external validation in independent
cohorts is necessary to confirm the model’s performance. Future studies may consider
prospective multicenter designs or leverage national orthopedic registry data to evaluate
generalizability across different practice settings and patient populations.

5. Conclusions
This study developed a nomogram to predict SSI after lower extremity fracture surgery

based on routinely collected perioperative variables. The final model incorporated red
blood cell count, preoperative CRP, chronic kidney disease, operative time, body mass
index, blood transfusion, and estimated blood loss. The nomogram enables the translation
of routinely collected perioperative data into individualized SSI risk estimates. Further
validation is necessary to establish its generalizability.
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