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Abstract

Assisted reproduction technology (ART) has advanced significantly over the past four
decades, leading to improved pregnancy outcomes and a reduction in complications, par-
ticularly those associated with multiple pregnancies. These improvements largely stem
from advances in understanding embryonic physiology, which has enabled better culture
conditions. As a result, embryologists can now efficiently culture embryos to the blasto-
cyst stage and successfully cryopreserve them for future use. However, while incubators
aim to replicate the maternal environment of the oviduct and uterus, embryos in vitro
are cultured in static conditions, unlike the dynamic, constantly changing environment
they experience in vivo. Key factors such as pH, temperature, osmolality, and gas con-
centrations are crucial for establishing optimal embryo development and implantation
potential. Moreover, the vitrification procedure for gametes or embryos can introduce
oxidative stress, as well as osmotic shock and cryoprotectant toxicity, which may affect
embryo viability and increase the risk of birth defects. Since the first successful ART birth
in 1978, over 10 million babies have been conceived through these techniques. Although
most of these children are healthy, concerns exist about potential birth defects or changes
linked to the handling of gametes and embryos. The preimplantation period is marked
by significant epigenetic reprogramming, which can be influenced by ART procedures
such as ovarian stimulation, in vitro fertilization, embryo culture, and cryopreservation.
However, the long-term health implications for offspring remain uncertain. Epigenetic
reprogramming during early embryogenesis is essential for proper embryo development
and can be changed by ART-related conditions. These concerns have raised questions about
the possible connection between ART and a higher risk of birth defects or other changes in
children born through these methods. Therefore, we conducted a scoping review following
PRISMA-ScR guidelines to map evidence on ART-related risks, including epigenetic and
birth defect outcomes.

Keywords: culture media; pH and osmolality; temperature; oxygen tension; cryopreservation
and vitrification; birth defects; offspring health; epigenetic alterations; assisted reproduction
technology (ART)
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1. Introduction
Embryo culture aims to create an environment that supports embryo development

while minimizing stress. Since the 1970s, in vitro fertilization (IVF) culture systems have
evolved to improve embryo quality, enabling culture to the blastocyst stage and facilitating
elective single embryo transfer (eSET), which has reduced multiple pregnancies while
maintaining high success rates [1,2]. Despite these advances, in vitro culture conditions may
not fully replicate the embryo’s natural environment. Suboptimal conditions could impair
development, viability, and the potential for implantation. The in vitro culture process
includes features that could elevate embryonic stress, such as media composition, plastic
dishes, oxygen tension, temperature, pH, and osmolality [3,4]. These factors significantly
impact embryo development, making it crucial to continuously improve culture techniques
to minimize stress. IVF laboratories must ensure optimal conditions to support viable
embryos with high implantation potential and the future health of children. Over the past
40 years or more, assisted reproduction technology (ART) has enabled millions of infertile
couples to conceive, resulting in over 10 million children being born. In some European
countries, approximately 5% of births are ART-related [5–7]. While infertility remains
the main reason for IVF use, an increasing number of individuals are opting to freeze
oocytes [8–11] or embryos for future use, with nearly 310,000 frozen embryo transfer (FET)
cycles in Europe in 2018. Although ART is generally considered safe, concerns have been
raised about its association with low birth weight, birth defects, and metabolic disorders,
potentially linked to epigenetic dysfunction in gametes and embryos [12–14]. As FET cycles
increase, understanding their impact on future offspring health is crucial, particularly
regarding potential epigenetic modifications [15–19]. The percentage of children born
following ART is growing and currently is about 3–5%. It is essential to assess the potential
negative effects of the ART procedure on the conceived baby. Epidemiological studies
have indicated a higher incidence of low birth weight in children conceived through
ART with fresh embryo transfer [20]. A similar finding was reported by Sunkara and
colleagues, who analyzed data from the UK registry (Human Fertilization and Embryology
Authority, HFEA) covering 1991 to 2016 and including approximately 117,000 singleton
live births after ART. Their study showed that infertility negatively affects preterm birth
and low birth weight following fresh embryo transfer [21]. In contrast, research on frozen-
thawed embryo transfers (FETs) in ART has yielded different results. A large study by
Terho and colleagues found that FETs are linked to higher birth weight and a greater risk
of large-for-gestational-age (LGA) infants [22]. Therefore, this scoping review aims to
systematically map and synthesize evidence on ART procedural risks, prioritizing breadth
over quantitative synthesis.

2. Historical Landscape of Human Embryo Development
In vivo, during the first three days of embryonic development, the embryo travels

through the oviduct. By days 4–5, it reaches the uterine cavity, undergoing compaction and
blastocyst formation. In the early days of ART, scientists were typically using basic culture
media, with embryo transfer at the cleavage stage, when embryos have about 4–8 cells [1].
Before embryonic genome activation (EGA), the mammalian embryo is transcriptionally
silent and relies on maternal mRNA for its metabolic needs. EGA in human embryos
occurs at around the 4- to 8-cell stage, and this signals a metabolic switch for its energy
requirements [23,24]. In 1988, Braude and colleagues established that EGA in human
embryos correlates with transcriptional activation and protein synthesis. At this stage,
embryos predominantly use pyruvate and lactate for energy. After EGA, they switch
to glucose-based metabolism [25]. Following genome activation, the embryo undergoes
compaction, during which blastomeres tightly adhere to one another to form a cluster
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known as the morula. This marks the onset of radial symmetry. The morula forms a
blastocoel cavity due to fluid secretion, which raises the salt concentration within the
embryo and draws in water via osmosis. The blastocyst expands, thinning the zona
pellucida (ZP), eventually leading to the hatching process. At this point, the blastocyst
consists of the inner cell mass (ICM) and surrounding trophectoderm (TE) cells. The ICM
develops into the early epiblast, which forms all foetal tissues, while the TE forms the
placenta [1,26]. Implantation in humans occurs around day 7 of development. Failure
of implantation, often caused by poor embryo development or uterine receptivity, is a
significant barrier to ART success. Embryo viability is influenced by the composition of
culture media. The introduction of advanced media has revolutionized ART, enabling
embryos to grow beyond the cleavage stage. In the late 1990s, with more consistent media,
embryo culture was extended to the blastocyst stage, improving pregnancy rates and
reducing multiple pregnancies when transferring a single blastocyst [26–30].

Evolution of Embryo Culture Media

In the 1940s, Rock and Menkin made early attempts at in vitro fertilization, collecting
oocytes during laparotomy procedures [31]. Although their efforts to fertilize human
oocytes were unsuccessful, they laid the groundwork for later advancements. In 1973,
Landrum Shuttle claimed to have fertilized human eggs, but the embryos were discarded,
drawing considerable media attention [32]. The first true IVF breakthrough came in 1978
with the birth of Louise Brown, thanks to the pioneer work performed by Edwards and
Steptoe. Initially, IVF culture media were prepared “in-house,” based on simple media
with several chemical compounds added, including patients’ serum, bovine serum albumin
(BSA), penicillin, sodium pyruvate, phenol red, and bicarbonate. Embryos leading to the
birth of Louise Brown were cultured in Earle’s basic salt solution enriched with pyruvate
and serum from the patient [33–35]. In the 1980s, commercial media were introduced,
typically based on modified versions of Earle’s balanced salt solution. Progress continued
with Menezo and co-workers proposing the addition of amino acids (AAs) to the media,
improving embryo growth [36]. Patrick Quinn designed the Human Tubal Fluid (HTF)
medium to better support human embryos [37]. As knowledge of embryo metabolism
advanced, particularly based on the transition from pyruvate and lactate usage at the
cleavage stage to glucose metabolism post EGA, new culture media were developed to
better mimic the physiological environment of the reproductive system. These so-called
“sequential” media aimed to replicate the molecule and energy concentrations found in the
female reproductive tract. Therefore, several companies started to introduce worldwide
this new concept of sequential culture media, including SAGE in the U.S., MediCult/Origio
and Scandinavian IVF Science/Vitrolife in Europe, and Cook in Australia. Those sequential
media were based on the concept of a media change on day three to align with the embryo’s
metabolic shift. In the early 1990s, Lawitts and Biggers [38] introduced a new concept
for embryo culture, the “simplex optimization medium” approach, where embryos were
cultured continuously in a single medium, from fertilization to the blastocyst stage, without
needing to change the culture medium at any point (Figure 1) [38–40]. An advantage of
using this method is that it reduces stress on the embryos. Moving embryos between
different media can be stressful, and the transition itself can negatively affect development.
This approach helps optimize embryo viability, making it a significant advancement in ART.
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Figure 1. The illustration compares two methods commonly used in embryology labs for culturing hu-
man embryos: the sequential media approach, which mimics the natural changes in the reproductive
environment by using different media at various developmental stages, and the single-step method,
which maintains embryos in a consistent medium throughout development, from fertilization (2PN
stage) to blastocyst formation. Modified with permission from Sciorio and Rinaudo [39].

3. Media Composition and Embryo Development
Various factors can significantly influence embryo development; here, we examine

how specific conditions may hinder the progression of human embryos. Currently, a variety
of culture media are available on the market, each with different chemical compounds,
AAs, protein sources, and macromolecules. However, the exact concentrations of the
components in single-step or sequential media are kept secret by manufacturers, as media
compositions cannot be patented and are considered trade secrets [41]. All media typically
contain lactate, pyruvate, and glucose as carbohydrate sources in varying concentrations.
Glucose is crucial for glycolysis and serves as a precursor for the synthesis of lipids, nucleic
acids, and other biomolecules. A key unresolved question is whether one culture medium
is superior to another in supporting embryo development, implantation, or live birth rates.
This issue remains inconclusive due to limitations in many comparative studies, such
as insufficient statistical power, suboptimal experimental design, or failure to control for
confounding variables [42–44]. For example, some studies reported blastocyst formation
rates without distinguishing between development on days 5, 6, or 7 [45]. A systematic
review of randomized controlled trials published between January 1985 and July 2012,
conducted by Mantikou and colleagues, examined clinical outcomes such as embryo quality,
clinical pregnancy, miscarriage, and live birth rates [42]. The review found that due to poor
study design, a conventional meta-analysis was not possible. Only four studies declared
their live birth rates, and only one showed a significant difference between media [46].
Similarly, ongoing or clinical pregnancy rates were reported in nine trials, with four showing
significant differences [47]. Overall, this analysis did not identify a clearly superior culture
medium. Finally, while there is no definitive evidence that any culture medium is superior,
further and well-designed studies are needed to answer this question.

3.1. Amino Acids and Protein Supplementation

Culture media play critical roles beyond providing energy to developing embryos.
One key aspect is the composition of AAs, which regulate various processes in mammalian
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embryo development. AAs function as metabolites, antioxidants, pH buffers, osmolal-
ity regulators, and heavy metal chelators [39,48]. Specific AAs, such as glutamine, and
non-essential AAs (e.g., alanine, asparagine, aspartate, glutamate, glycine, proline, and
serine) support early embryo development, while both essential and non-essential AAs
contribute to the growth of the ICM [48]. Non-essential AAs are involved in TE stimulation
and ZP hatching [49]. Mouse studies suggest that limiting AAs can impair embryo devel-
opment, emphasizing the necessity of including AAs in culture media [50]. Menezo and
collaborators investigated how methionine is involved in crucial pathways, including glu-
tathione, hypotaurine, and taurine pathways, influencing chromosomal stability through
processes such as imprinting and DNA methylation [51]. A study by Clare and colleagues
performed in bovine embryos demonstrated that reduced methionine levels could lead
to DNA methylation in over 1600 genes, including several imprinted genes linked to an
abnormal foetal overgrowth phenotype [52]. Another concern with in vitro culture is that
the addition of AAs can increase ammonium production. At 37 ◦C, AAs degrade over
time, leading to the accumulation of ammonium, a compound toxic to embryos that can
impair implantation and adversely affect fetal development. The impact of ammonium is
intensified when culture is performed at 20% oxygen tension [53]. A solution to this issue is
to use more stable dipeptide forms, such as alanyl-l-glutamine or glycyl-l-glutamine, which
significantly reduce ammonium accumulation and create a safer environment for embryo
development [48,50,54,55]. Another important compound of culture media is represented
by the addition of human serum albumin (HSA) and complex protein supplements, enhanc-
ing embryo development and increasing live birth rates [56]. HSA, prevalent in the oviduct,
offers multiple benefits, including preventing embryo adhesion to consumables, stabilizing
membranes, and providing nitrogen sources, pH buffers, and chelation of trace elements
and toxins [56–59]. However, protein supplements may contain unwanted additives, such
as preservatives and growth factors, which can negatively affect embryo development, as
seen with octanoic acid, which contains toxic pro-oxidant metals [60].

3.2. pH and Osmolality

The pH of culture media is critical for embryo development, as it directly affects
embryo metabolism, viability, and growth. The pH of the culture medium is primarily
influenced by its bicarbonate content and the CO2 tension of the incubator, along with
external factors such as media composition, laboratory conditions, and altitude. Variations
outside the physiological pH range can impair embryo development, as shown in mouse
studies linking abnormal pH with foetal growth issues [61]. Embryos can adapt to changes
in pH, but oocytes are more vulnerable due to their limited internal pH regulation [62].
Therefore, maintaining stable pH within the physiological range during oocyte retrieval
and embryo culture is essential for optimal development [63]. For this reason, additives
such as zwitterionic buffers, including MOPS and HEPES, are used to stabilize pH when
gametes and embryos are outside the incubator. These buffers are considered safe and help
maintain pH consistency [63–65]. Historically, phenol red was used to indicate pH changes
visually, but it has been linked to reactive oxygen species (ROS) generation and potential
estrogenic effects. Consequently, various modern media formulations have removed phenol
red [66]. Additionally, another critical feature affecting human embryo development is
the medium osmolality. Elevated osmolality can negatively affect cell volume, cell surface,
and membrane stability, inducing stress and inhibiting embryo development, as shown in
mouse studies. Osmolality is influenced by the media’s chemical composition, including
proteins and AAs. Early embryo stages are particularly sensitive to osmolality changes, as
cell volume homeostasis is vital for development. Mammalian embryos develop best at
an osmolality of 255–295 mOsm/kg, while values above 300 mOsm/kg can cause osmotic
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stress and reduced implantation potential [67–70]. While commercial media manufacturers
set media osmolality, laboratory factors such as evaporation, culture dish preparation
time, media droplet volume, oil overlay, incubator humidity, airflow, and temperature can
lead to variation. Maintaining consistent osmolality is crucial, and thus, strict adherence
to laboratory protocols is essential for optimal embryo development [69]. Finally, to
better maintain physiological levels of pH, osmolality, and temperature during embryo
development, novel benchtop incubators, including those with time-lapse technology, are
considered better than large incubators for stable culture conditions [69–71].

3.3. Temperature

Temperature is extremely important for a variety of aspects relevant to gamete and
embryo physiology, including metabolism and the stability of the meiotic spindle (MS).
The MS is a structure that helps segregate chromosomes correctly during meiosis and
is considered a key indicator of oocyte health [72]. Its stability is linked to fertilization,
zygote division, and chromatin segregation, with any instability leading to chromosomal
errors, aneuploidies, implantation failure, and miscarriage [73]. The MS is sensitive to
changes in temperature and pH, and outside the physiological range, it becomes unstable.
Studies have shown that the MS begins to disassemble at temperatures below 33 ◦C, with
prolonged exposure to non-physiologic conditions resulting in complete depolymerization
of the spindle. Both animal and human studies have highlighted the negative effects
of temperature, pH, and osmolality fluctuations on microtubule stability and spindle
function [72–76]. Research has shown that keeping the temperature between 35 ◦C and
37 ◦C during oocyte recovery is beneficial for embryo development in bovine and mouse
models [76]. Similarly, a stable temperature while manipulating human oocytes improves
fertilization rates. Generally, 37 ◦C is generally considered optimal for embryo culture,
as it mimics the natural in vivo body temperature. However, human body temperature
fluctuates depending on factors such as metabolism, diet, sex, time of day, and the body area
measured. For instance, during the luteal phase, the female body temperature increases,
with the oviduct and follicle being cooler than the body by about 1.5 ◦C and 2.3 ◦C,
respectively [77]. While there is limited research on how temperature variations affect
embryo development in vitro, some studies have explored this. For example, De Munck
and colleagues compared a stable 37 ◦C with a fluctuating temperature range (36.6 ◦C to
37.5 ◦C) and found no significant differences in fertilization rates, embryo quality, or live
birth rates [78]. A study by Fawzy and co-workers, involving 412 women, compared culture
at 37 ◦C and 36.5 ◦C and found no significant differences in pregnancy or implantation
rates [79]. However, the cooler temperature of 36.5 ◦C was linked to a higher cleavage
rate but reduced fertilization, fewer high-quality embryos on day 3, and lower blastocyst
formation on day 5. In another study by Hong and co-authors, human embryos cultured at
37 ◦C showed higher blastocyst formation rates compared to those at 36 ◦C, though other
metrics such as fertilization and implantation were similar [80]. These findings suggest that
while embryos have some ability to adapt to temperature changes, in vitro culture should
ideally occur at 37 ◦C for optimal pregnancy outcomes in ART.

4. Oxygen Tension and Oxidative Stress
Oxygen concentration plays a critical role in human embryo development and

metabolism, as it impacts both therapeutic benefits and potential harm. During mito-
chondrial oxidative phosphorylation, oxygen is consumed, and ROS may be produced
due to the leakage of high-energy electrons in the electron transport chain. These ROS
can impair cellular metabolism, compromise DNA integrity, and reduce embryo viability.
Culturing embryos in atmospheric oxygen (around 20%) increases ROS generation. How-
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ever, in mammals, the natural oxygen levels within the female reproductive tract range
approximately 2% to 8%, indicating that embryos are not naturally exposed to such high
oxygen levels in vivo [77,81,82]. Therefore, incubating embryos at a reduced oxygen level,
typically around 5%, is widely recommended. Studies in animal models such as rats, mice,
cats, sheep, and pigs have demonstrated improved outcomes with lower oxygen concentra-
tions during embryo culture [77,81–86]. Similarly, human research suggests that reduced
oxygen environments may enhance embryo development, as well as improve pregnancy
and live birth rates. Further reports have shown that atmospheric oxygen can negatively
affect embryos, altering gene expression, protein function, and metabolism [77,82–86]. A
randomized controlled trial by Meintjes and collaborators demonstrated that culturing
human embryos at reduced oxygen levels significantly increased pregnancy, implantation,
and live birth rates [85]. These findings have been confirmed by several studies [77,81–86].
Although the exact mechanisms remain unclear, researchers hypothesize that a benefit
of low oxygen can be associated with a reduction in ROS and improved air quality by
reducing volatile organic compounds, resulting in better embryo gene expression and
epigenetic profiles [15,16,86,87]. ROS can cause damage to cell organelles, including DNA
fragmentation, protein dysfunction, and lipid damage [88]. Mitochondria are also affected
by oxidative stress [61,89]. A study on mouse embryos found that IVF-generated embryos
cultured at 20% oxygen had fewer mitochondria and more abnormal mitochondria com-
pared to embryos generated through spontaneous mating [86]. Oxidative stress can also
alter embryonic epigenomes [86,90]. Li and colleagues examined the effects of high oxygen
levels (20%) in bovine embryos and found a significantly increased DNA methylation in
cleavage and blastocyst stage embryos [91]. Additionally, high oxygen tension affected
histone marks in bovine blastocysts and altered the embryo proteome in mice [92]. Cul-
turing embryos at high oxygen led to the downregulation of proteins and abnormal gene
expression [86,93]. In conclusion, culturing embryos at low oxygen concentrations pro-
motes faster development and less disruption in gene expression. This method is now the
preferred practice in clinical settings, with most IVF laboratories using 5% oxygen [90–94].
However, according to a study by Christianson and colleagues, albeit as early as 2014, they
reported that only 25% of IVF laboratories worldwide exclusively used 5% oxygen [95].

5. Cryopreservation and Cryoprotectants
Cryopreservation involves freezing cells or tissues and storing them in liquid nitrogen

(LN2) at −196 ◦C, halting all biological activity while maintaining cell viability for future
use (Figure 2). This method has been widely applied in ART to preserve human gametes
and embryos. The first successful live birth from a thawed cryopreserved embryo using the
“slow freezing” method was reported in Australia in 1983 by Trounson and Mohr [96]. In
the 1990s, vitrification emerged as a significant improvement, offering better survival and
pregnancy outcomes compared to slow freezing [9,97]. Vitrification has since become the
preferred method for cryopreserving human oocytes and embryos, with evidence showing
superior results over slow freezing protocols [9,98–100]. The success of vitrification depends
on several factors, including the temperatures used during vitrification and warming, the
type of carrier (open or closed vitrification) and, most importantly, the concentration and
type of cryoprotective agents (CPAs) used. Studies have reported that the warming rate
is as crucial as the cooling rate. Seki and Mazur found that improper warming, due to
re-crystallization, can cause damage, and they concluded that a warming rate of at least
3000 ◦C/min is essential to maintain oocyte cryo-survival rates above 80% [101]. CPAs
protect cells during the freezing process by preventing cryo-damage. There are two main
types of CPAs: penetrating and non-penetrating. Penetrating CPAs, such as dimethyl
sulfoxide (DMSO), ethylene glycol, and glycerol, have small molecular weights and can
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pass through cell membranes to protect the cells from freezing injury. Non-penetrating
CPAs, such as trehalose, sucrose, and glucose, cannot cross the cell membrane but create
an osmotic gradient that helps reduce ice formation by drawing water out of the cell [102].
However, CPAs are not without risks, as they can cause cellular toxicity, which depends on
factors including exposure time, temperature, and concentration. Efforts to minimize CPA
toxicity have focused on reducing exposure times and temperatures [103,104]. A recent
approach by Liebermann and colleagues proposed ultra-fast warming, where embryos
are immersed in a thawing solution for just one minute at 37 ◦C before being transferred
to culture media. This method reduces time outside the incubator, minimizing oxidative
stress and improving cryo-survival, implantation, and pregnancy rates [105].

Figure 2. The diagram illustrates the cryopreservation procedure primarily used for preserving
human oocytes and embryos, known as the vitrification method. Initially, the embryo or oocyte
is placed in an equilibration solution for up to 12 min to initiate the dehydration process. This
is followed by the vitrification step, during which the embryo or oocyte is exposed to a highly
concentrated cryoprotectant solution for up to 60 s before being plunged into liquid nitrogen. ES:
equilibration solution, VS: vitrification solution, LN2: liquid nitrogen.

Application of Cryopreservation Procedures in ART

Over the past few decades, advancements in ART have led to significant improvements
in cryopreservation techniques for both human embryos and oocytes. In the USA alone,
it is estimated that 600,000 embryos were stored between 2004 and 2013, and in Europe,
335,744 FETs were performed in 2019 [6]. Cryopreservation serves a variety of purposes,
including storage of surplus embryos after fresh transfers, support of the eSET policy,
preservation of fertility for cancer patients, and enablement of pre-implantation genetic
testing [106–109]. Other purposes include management of abnormal stimulation cycles
(e.g., elevated progesterone levels) and prevention of ovarian hyperstimulation syndrome,
a serious complication [105–108]. Current evidence indicates that ART treatment, including
cryopreservation procedures, is generally safe. However, some studies have reported
associations between ART and a higher incidence of low birth weight, birth defects, altered
growth, and metabolic disorders [12,110–116]. For example, FETs have been linked to
increased birth weights compared to fresh transfers or natural conception in the absence
of cryopreservation [112,113]. A meta-analysis of 26 studies found that singletons born
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after freezing and thawing had higher birth weight and were more likely to be LGA,
with an increased risk of hypertensive disorders [114]. While it remains unclear whether
vitrification, CPAs, placental development, or parental infertility contribute to this effect,
studies have found no difference in birth weight when embryos are transferred during
a natural cycle, suggesting that hormonal medications used for endometrial preparation
might influence birth outcomes [115]. Nevertheless, advancements in cryopreservation
techniques have significantly improved oocyte freezing, making it a valuable option for
fertility preservation, especially for women postponing pregnancy or those whose fertility
may be compromised by oncology treatment. The trend of delaying the first pregnancy has
led to a growing demand for oocyte freezing. In the UK, elective egg freezing is the fastest-
growing fertility treatment, with a 10% annual increase [117]. Over the past decade, egg-
freezing cycles in Spain have grown from 4% to 22% of all vitrification procedures. In the
USA, fertility preservation cycles increased from 9607 in 2017 to 13,275 in 2018, reflecting a
broader global trend [115–118]. Oocyte cryopreservation is particularly beneficial for young
cancer patients, whose fertility may be compromised by medical treatments [106,119,120].
In 2020, there were an estimated 19.3 million new cancer cases globally, with breast cancer
being the most common diagnosis [121]. Oocyte cryopreservation is also used in egg
donation programs (Figure 3), which have expanded significantly in the last few years.
The number of oocyte donation cycles in the USA, for example, increased from 10,801 in
2000 to 49,193 in 2017 [121]. Oocyte banks play a crucial role in this process, collecting and
freezing eggs for later use in IVF procedures, including genetic testing or fertilization with
fresh or frozen spermatozoa. Studies have shown that oocyte vitrification provides high
survival rates after warming and yields pregnancy rates comparable to those using fresh
donor oocytes [122–125].

Figure 3. The illustration depicts the imported oocyte donation program, which utilizes cryopreserved
oocytes obtained from a donor bank. In this process, oocytes are collected and vitrified in the donor
bank laboratory. Once cryopreserved, they are carefully transported to the recipient clinic, where they
are warmed and subsequently used in fertility treatment for the intended recipient. eSET, elective
single embryo transfer; ICSI, intracytoplasmic sperm injection; MII, metaphase II oocyte; OS, ovarian
stimulation. Reprinted with permission from Sciorio et al., 2023 [104].
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6. Epigenetics and the Embryonic Epigenome
In 1942, Conrad Waddington emphasized the importance of environmental interac-

tions with genes during the early stages of embryo development. Despite the limited
understanding of embryogenesis at the time, Waddington underlined the need to explore
the factors that regulate developmental processes and mediate the relationship between
genotype and phenotype. He introduced the term “epigenetics”, describing it as “the
branch of biology that studies the causal interactions between genes and their products
that bring the phenotype into being” [126]. This concept signaled a shift in understanding
gene expression, not as solely dictated by the genetic code, but also influenced by external
factors that impact development. Epigenetic regulation is essential for normal mammalian
development, controlling gene activity without altering the DNA sequence (Figure 4) [127].
This regulation is responsible for controlling a variety of processes, from cell differentiation
to the maintenance of tissue identity. In mammals, epigenetic changes occur in waves,
resetting the epigenome in both germ cells and preimplantation embryos. The first wave of
reprogramming occurs early in embryogenesis, when epigenetic marks are reset to prepare
the embryo for further development. Notably, DNA methylation marks at imprinted genes,
which are genes that are expressed in a parent-of-origin-specific manner, are retained
during this phase. The second wave takes place during the development of primordial
germ cells (PGCs) in the foetal gonadal ridge. Here, global DNA methylation marks are
erased, including those at imprinted genes, resetting the epigenome in preparation for the
next generation. After this erasure, parental imprints are re-established during germ cell
differentiation, with distinct methylation patterns in male and female germ cells, ensuring
proper gene expression in the offspring. During these stages of epigenetic reprogramming,
the epigenome is particularly vulnerable to both environmental and internal factors that can
alter the reprogramming process. Such disruptions may have long-term effects, including
an increased risk of disease in future generations [128–130]. One of the most extensively
studied epigenetic modifications is DNA methylation, which involves the addition of a
methyl group to the 5’ carbon of the cytosine pyrimidine ring in CpG dinucleotides [131].
DNA methylation patterns are maintained through cell divisions by DNA methyltrans-
ferase 1 (DNMT1) [132], ensuring the stability of epigenetic modifications. Disruptions to
these modifications during critical developmental windows can result in improper gene
expression, leading to developmental disorders and an increased risk for a range of diseases
later in life, including cancer, neurological disorders, and metabolic conditions [132–134].
This intricate balance between genetic information and epigenetic regulation highlights the
importance of understanding how external influences, such as diet, toxins, or stress, can
affect gene expression. Waddington’s work highlighted the dynamic relationship between
genes and the environment, emphasizing that the correct development of an organism is
not solely determined by its DNA sequence but also by epigenetic factors, which can be
inherited and influenced by environmental conditions.
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Figure 4. This summary outlines the critical genetic and epigenetic events that occur during preim-
plantation embryo development, with particular emphasis on the timing of the vitrification procedure.
Multiple stressors may influence embryonic development, especially within the first five days, a
period marked by intense cellular activity and rapid evolution. The illustration highlights specific
epigenetic regulatory processes that are crucial for proper embryo development and successful
implantation. These stressors can act synergistically, potentially amplifying adverse effects that may
have long-term consequences for the health of the resulting child. Reprinted with permission from
Sciorio and colleagues, 2023 [16].

6.1. Potential Impairment by Vitrification and Epigenetic Alterations

In recent years, several research groups have explored the relationship between the
cryoprotectants used during the vitrification procedure and epigenetic disruption in early
embryo development during ART [135]. One of the most studied cryoprotectants is DMSO,
commonly used to cryopreserve human embryos and gametes. DMSO can impair cellular
function, metabolism, enzyme activities, cell growth, and apoptosis, and it may induce
alterations in microRNAs (miRNAs) and epigenetic dysfunction [136,137]. Research has
shown that DMSO exhibits toxic effects that vary depending on temperature, exposure
duration, and concentration [138]. Investigations into the relationship between DMSO
and epigenetic modification have indicated that DMSO may disrupt the function of the
enzyme DNMT3a, although the precise underlying mechanism remains unclear [135–137].
Animal studies have demonstrated that vitrification and warming of mouse oocytes can
significantly reduce the expression of the imprinted gene Kcnq1ot1 [139]. In another study,
Chen and colleagues observed that vitrifying mature bovine oocytes led to abnormal
increases in the expression of the imprinted genes Peg10, Kcnq1ot1, and Xist in blastocysts
generated following ICSI [140]. Follow-up research by the same group revealed that
vitrification of mouse MII oocytes altered the expression of the maternally imprinted genes
Peg3, Peg10, and Igf2r in oocytes and the paternally imprinted gene Gtl2 in cleavage-stage
embryos [141]. Further studies have reported reduced methylation levels of imprinted
genes such as H19, Peg3, and Snrpn in mouse blastocysts derived from vitrified mouse
oocytes [142]. Similar findings suggest an overall decrease in global DNA methylation
levels in oocytes and early embryos following vitrification [143–146].

6.2. Human Studies

Human studies on the effects of vitrification on epigenetic regulation are limited due
to challenges in obtaining research material and ethical concerns (Table 1). However, some
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studies have examined the effects of DMSO on DNA methylation. For instance, research on
human cardiac microtissues revealed dysregulation of DNA methylation pathways, with
increased expression of methyltransferases DNMT1 and DNMT3A, critical for maintaining
DNA methylation, while TET1, which has an important role in active demethylation, was
downregulated [137]. Despite these findings, studies on human oocytes and embryos
following vitrification have reported minimal or no significant changes in DNA methy-
lation or imprinted gene expression. In one investigation, the imprinted genes H19 and
Kcnq1ot1 showed no differences in DNA methylation in vitrified oocytes [147]. In this study,
immature oocytes donated after egg retrieval were vitrified and later in vitro matured to
the MII stage [147]. Liu and colleagues investigated the effects of vitrification on nuclear
configuration and global DNA methylation in germinal vesicle (GV)-stage oocytes, which
were vitrified, warmed, and then matured to the MII stage. While they observed no sig-
nificant differences in mitochondrial distribution or global DNA methylation patterns, a
significantly higher rate of abnormal spindle configuration was noted following vitrifica-
tion [148]. Similarly, De Munck found no notable changes in overall DNA methylation level
in 8-cell embryos derived from vitrified oocytes [149]. In another study, Huo and colleagues
analysed 16 donated human MII oocytes and identified 1,987 genes that were differentially
expressed after oocyte vitrification and warming, with 82% of genes downregulated and
18% upregulated [150]. These genes were involved in various critical biological processes,
including meiosis. For instance, key meiotic genes such as Ncapd2 and Tubgcp5 were signifi-
cantly downregulated after vitrification [150]. An important consideration is whether the
length of storage in LN2 could lead to epigenetic changes. Studies have generally found
no alteration in gene expression associated with the duration of storage, suggesting that
any damage observed after vitrification is more likely due to the cryopreservation process
itself rather than storage duration [150–152]. This finding was confirmed by Stigliani and
colleagues, who found no difference in gene expression between oocytes stored for three or
six years in LN2 [152]. Similarly, research by Yan and collaborators on the impact of storage
length on embryo survival and implantation showed that blastocysts stored for over six
years had significantly lower survival, pregnancy, and live birth rates compared to those
stored for less than three years, although no difference was observed in miscarriage or
ectopic pregnancy rates [153]. To summarize, while animal models suggest that vitrification
can affect imprinted gene expression and change the DNA methylation level [143–146],
epigenetic changes in humans appear to be limited. The clinical significance of these
changes remains unclear, and further research is needed to fully understand the potential
consequence of vitrification on human oocytes and embryos [16,18,154–156].

Table 1. Summary of both human and animal studies showing the effects of vitrification
on DNA methylation and histones modifications. GV; oocyte at germinal vesicle stage, MII;
oocyte at metaphase II stage, IVM; in vitro maturation, 5hmC; 5-hydroxymethylCytosine, 5mC;
5-methylCytosine. DMR; differentially methylated regions.

Study
[Ref]

Materials:
Human or Animal

Oocytes or
Embryo Analyzed

(n)

Technology of
Assessment

Studied
Sequences or

Genes
Main Findings

Al-Khtib
et al., 2011

[147]

(Human)
GV oocytes

donated
for research and

IVM to MII

77 MII after IVM
from 184 vitrified
GV stage, and 85

MII from 120 fresh
GV

Pyrosequencing

Methylation
profile of H19 and

KCNQ1OT1,
H19-DMR, and

KvDMR1

Oocyte vitrification at
the GV stage does not
affect the methylation
profiles of H19-DMR

and KvDMR1
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Table 1. Cont.

Study
[Ref]

Materials:
Human or Animal

Oocytes or
Embryo Analyzed

(n)

Technology of
Assessment

Studied
Sequences or

Genes
Main Findings

Zhao et al.,
2020 [143]

(Bovine)
Oocytes

Vitrified MII
oocytes from

matured in vitro

Single-cell
whole-genome

methylation
sequencing

Global
analysis

Peg3 methylation level
was significantly

decreased in
derived blastocysts

Cheng et al.,
2014 [145]

(Mouse)
Blastocysts

Blastocysts from
Vitrified MII

oocytes

Bisulfite
sequencing H19, Peg3, Snrpn

No significant
differences

in oocytes. Decrease in
blastocysts after

oocyte
vitrification.

De Munck
et al., 2015

[149]

(Human)
Mature (MII)

donated oocytes

31 embryos
(Day-3) from 17

fresh oocytes and
14 after

vitrification

Immunofluorescence
(5mC, 5hmC)

Global
Analysis

No differences in
fluorescence intensities
between embryos from

fresh and vitrified
oocytes

Liu et al., 2017
[148]

(Human)
Vitrified mature

oocytes (MII), and
MII from GV

matured in vitro

56 in vivo MII, 106
MII from GV

matured in vitro,
122 MII from
vitrified GV

Immunofluorescence
(5mC)

Global
analysis

No significant
differences in

fluorescence intensities
between the groups

Barberet et al.,
2020 [156]

(Human)
Placenta

Review
manuscript

Pyrosequencing
and

q-PCR

H19, IGF2,
KCNQ1OT1

SNURF

The placental DNA
methylation levels of
H19/IGF2 were lower

in the fresh
embryo transfer group

than in the control
(H19/IGF2-seq1) and

frozen embryo transfer
(H19/IGF2-seq2)

groups

7. Potential Risk of ART Procedures and Epigenetic Dysfunction
During early development, embryonic cells undergo a process in which they are di-

rected toward their future cell types through epigenetic reprogramming and the restoration
of cell-type-specific epigenetic marks. This critical period overlaps with the time when
gametes and embryos are manipulated and cultured in the embryology laboratory during
ART. As a result, such artificial interventions during this sensitive time can potentially
cause epigenetic disruptions in the offspring that develop from these embryos. Several
studies have highlighted that imprinted loci are particularly susceptible to environmental
influences during embryo culture. For example, abnormal methylation patterns of KvDMR1
have been observed in humans with Beckwith-Wiedemann Syndrome (BWS) following
ART procedures, and hypomethylation of this locus has been found in bovine conceptuses
derived from ART, which showed signs of Large Offspring Syndrome (LOS) [157–162].
Additionally, research has demonstrated that ART-related procedures, such as controlled
ovarian stimulation, ICSI, and embryo manipulation, might lead to epigenetic abnormal-
ities [157,159,163]. A systematic review by Lazaraviciute and co-authors [164] evaluated
the incidence of imprinting disorders and DNA methylation changes at key imprinted
genes in children conceived through ART compared to those conceived naturally. The
review included 18 studies and reported a combined odds ratio of 3.67 (95% CI), indicating
a higher incidence of imprinting disorders among ART-conceived children. The authors
concluded that babies born via IVF and ICSI have an increased risk of imprinting disorders.
However, the evidence linking ART to epigenetic alterations at specific imprinted genes
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was limited [164]. Another review, which summarized findings from eight studies focusing
on BWS and ART, found a significant positive correlation between IVF/ICSI procedures
and BWS, with an approximately 5.2-fold higher relative risk (95% CI 1.6–7.4) in children
born through ART [165]. However, the authors did not observe an association for either
Angelman Syndrome (AS) or Prader-Willi Syndrome (PWS) with IVF/ICSI, although a
link was found between fertility problems and these conditions. Furthermore, the data on
Silver-Russell Syndrome (SRS) was limited due to a small sample size (n = 13), and, there-
fore, no clear conclusions could be made regarding the incidence of SRS in ART-conceived
children. Another epidemiological study conducted in Denmark and Finland assessed the
risk of imprinting disorders in children conceived via ART [166]. The authors compared
the incidence of PWS, SRS, BWS, and AS among ART-conceived children (n = 45,393 born
1994–2014 in Denmark and n = 29,244 born 1990–2014 in Finland). Their study reported a
significantly increased odds ratio for BWS (OR 3.07, 95% CI: 1.49–6.31) in ART-conceived
children, while no significant associations were found for PWS, SRS, and AS [166]. Similarly,
a nationwide study in Japan found a 4.46-fold increase in BWS and an 8.91-fold increase in
SRS in children born following ART, with many cases exhibiting abnormal DNA methy-
lation at imprinted genes [167]. These findings underscore the growing recognition of
how altered epigenetic marks and epimutations may influence human health, highlighting
an important and evolving area of medical research. Further investigations, including
large-scale national studies, need to be conducted to determine whether ART-induced
epigenetic changes or the aforementioned syndromes are associated with specific patient
characteristics or with the infertility conditions of both parents.

ART Procedures, In Vitro Culture, and Birth Weight

Birth weight is a crucial metric related to fetal growth and is suggested by several
authors as a potential prognostic factor of long-term risk of metabolic disease. Low birth
weight is known to be associated with higher rates of coronary heart disease, as well as re-
lated disorders such as stroke, hypertension, and non-insulin-dependent diabetes [168,169].
Dumoulin and co-workers conducted a study comparing pregnancy rates and perinatal
outcomes following 826 first IVF cycles, where embryos were randomly cultured in two
different types of sequential media [170]. Among the 110 live-born singletons analyzed, a
statistically significant difference in birth weight was observed between the two groups
(3453 +/− 53 g versus 3208 +/− 61 g, p = 0.003), after adjusting for gestational age and
gender. The authors concluded that the culture conditions used during in vitro develop-
ment could influence birth weight in ART-conceived singletons [170]. This conclusion
was later supported by a follow-up study from the same group involving a larger cohort
of 294 live-born singletons [47]. Similar findings have been reported by other research
groups [171–174]. Further evidence suggests that the type of IVF culture medium may also
influence postnatal growth during the first two years of life, reinforcing the idea that early
embryonic development is highly sensitive to its environment, with potential long-term
consequences [175]. A comprehensive review by Lu and collaborators emphasizes that the
majority of children conceived through ART are healthy. Nevertheless, growing evidence
suggests that these children may face increased risks of low birth weight, lower gestational
age, premature delivery, prenatal morbidity, as well as epigenetic disorders. The underlying
mechanisms behind these outcomes remain incompletely understood [176]. Therefore,
ongoing monitoring of children conceived via ART as they progress into adolescence and
adulthood is crucial [176]. However, not all studies support these findings. For example, a
retrospective analysis by Lin and co-authors found no significant difference in birth weight
or length among newborns cultured in three different commercially available media [177].
Other independent studies also reported no meaningful differences in birth weight based
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on culture medium [178,179]. These conflicting findings have kept the debate ongoing,
highlighting the need for more robust, long-term studies tracking the growth and health of
ART-conceived children.

In addition to the type of culture medium, several other factors during in vitro culture
may affect birth weight, including the age of the medium, its storage duration in the
refrigerator or incubator [180], and variations in protein sources and concentration [181].
One of the most debated aspects is the timing of embryo transfer: whether it occurs at the
cleavage stage (day 2–3) or the blastocyst stage (day 5–6). Zhu and colleagues addressed this
in a retrospective study involving 2929 singletons, finding that those born after blastocyst
transfer had significantly higher birth weights compared to those from day 3 embryo
transfers (3465.31 ± 51.36 g versus 3319.82 ± 10.04 g; p = 0.009) [182]. A systematic review
of 11 human studies exploring the link between culture media and birth weight found
mixed results: six studies reported a significant impact on birth weight, while five found no
effect [183]. As discussed earlier, epidemiological data indicate that fresh embryo transfers
in ART are associated with an increased risk of low and very low birth weight [20,21]. In
contrast, a different pattern emerges following FETs in ART. A large population-based
study analyzed data from Denmark, Norway, and Sweden between the years 2000 and
2015, comparing birth weights of live-born singletons conceived after FETs (n = 17,500),
fresh embryo transfers (n = 69,510), and natural conception (n = 3,311,588). The results
showed that birth weight was significantly higher after FETs compared to fresh embryo
transfer for both boys and girls [22]. Consistent findings were reported in the USA by
Litzky and co-workers, who analyzed registry data from 2007 to 2014. In this study, FETs
(n = 55,898) were associated with an average increase of 142 g in birth weight compared to
fresh embryo transfers (n = 180,184; p < 0.001) [184].

8. Concluding Remarks
Currently, ART procedures have enabled millions of infertile couples to have children

and are generally considered safe. However, concerns persist regarding the safety of these
methods on the health and well-being of the offspring, both at birth and in later adult
life. This review aimed to explore the potential risk of ART procedures, including in vitro
culture and cryopreservation, regarding birth defects or epigenetic alterations following
ART. Several animal studies and retrospective follow-ups of ART-born children suggest an
increased risk of epigenetic errors, especially at imprinted loci. However, conclusive evi-
dence linking ART to epigenetic modifications and long-term disease risk remains lacking.
Notably, ovarian stimulation, manipulation of oocytes and embryos, and cryopreserva-
tion procedures should be restricted to a minimum to reduce potential negative effects.
Unfortunately, many decisions in human ART are made without conclusive evidence, as
long-term follow-up studies are still very limited. Therefore, large-scale epidemiological
studies assessing the impact of ART on offspring health at birth and in adulthood are
urgently required. Finally, future research using advanced technologies such as single-cell
sequencing and epigenomics is essential to better understand the potential epigenetic
aberrations occurring during oocyte and embryo manipulation or cryopreservation. This
will help improve the safety and efficacy of ART procedures.
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