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Abstract: Background and Objectives: This scoping review aimed to identify and synthesize
current evidence on the clinical applications of artificial intelligence (Al) in periodontol-
ogy, focusing on its potential to improve diagnosis, treatment planning, and patient care.
Materials and Methods: A comprehensive literature search was conducted using electronic
databases including PubMed-MEDLINE, Cochrane Central Register of Controlled Trials,
Cochrane Database of Systematic Reviews, Scopus, and Web of Science™ Core Collection.
Studies were included if they met predefined PICO criteria relating to Al applications
in periodontology. Due to the heterogeneity of study designs, imaging modalities, and
outcome measures, a scoping review approach was employed rather than a systematic
review. Results: A total of 6394 articles were initially identified and screened. The review
revealed a significant interest in utilizing Al, particularly convolutional neural networks
(CNNis), for various periodontal applications. Studies demonstrated the potential of Al
models to accurately detect and classify alveolar bone loss, intrabony defects, furcation
involvements, gingivitis, dental biofilm, and calculus from dental radiographs and in-
traoral images. Al systems often achieved diagnostic accuracy, sensitivity, and specificity
comparable to or exceeding that of dental professionals. Various CNN architectures and
methodologies, including ensemble models and task-specific designs, showed promise in
enhancing periodontal disease assessment and management. Conclusions: Al, especially
deep learning techniques, holds considerable potential to revolutionize periodontology
by improving the accuracy and efficiency of diagnostic and treatment planning processes.
While challenges remain, including the need for further research with larger and more
diverse datasets, the reviewed evidence supports the integration of Al technologies into
dental practice to aid clinicians and ultimately improve patient outcomes.

Keywords: artificial intelligence; diagnosis; treatment planning; dental imaging;
periodontology

1. Introduction

Periodontal disease is a common condition characterized by infection and inflamma-
tion of the gums and bone supporting teeth. Gingivitis is the early stage, marked by gum
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inflammation, which can progress to periodontitis, a more severe form causing bone loss
and potential tooth loss. Global prevalence is high, affecting 20% to 50% of the popula-
tion [1]. Findings from the 2019 Global Burden of Disease Study indicate that roughly
3.5 billion individuals across the globe were affected by oral health problems [2,3]. Among
them, about 1 billion adults worldwide have severe periodontal disease, representing
roughly 14% of the global adult population. This severe form can significantly diminish
quality of life by affecting appearance, chewing ability, and self-esteem [4,5]. In the United
States, approximately 47.2% of adults were reported to have mild to severe periodontitis in
2019. The economic burden is considerable, with an estimated USD 54 billion lost globally
in 2010 due to reduced productivity caused by severe periodontal disease [6].

During its early development, periodontal disease may not cause any symptoms or
may exhibit subtle signs that individuals might not even recognize. Without timely treat-
ment, however, it can progress to significant bone deterioration, causing tooth mobility and
eventually tooth loss [7]. Early detection by dental professionals is paramount in halting
the progression of this condition. Given its potential for asymptomatic or indistinct initial
manifestations that patients themselves may overlook, dentists and hygienists must be
highly skilled in recognizing subtle clinical signs during routine examinations. This necessi-
tates thorough visual inspections, careful periodontal probing, and potentially radiographic
assessments to identify early inflammation or minimal bone loss that might otherwise go
unnoticed. By prioritizing comprehensive evaluations and staying abreast of the latest
diagnostic techniques, dental professionals can play a critical role in intervening before
significant bone resorption occurs, thereby preventing tooth mobility and eventual tooth
loss, and ultimately safeguarding patients’ oral health and quality of life. Implementing
advanced screening systems that are easily accessible to the public could significantly
increase the number of oral health problem assessments.

Artificial intelligence (AI) is revolutionizing dentistry by becoming an integral part of
everyday clinical practice. Its impact is wide-ranging, significantly improving how dental
professionals diagnose conditions using imaging, plan treatments tailored to individual
patients, manage their practice, and streamline their workflow [8]. Al enhances the analysis
of dental images like conventional X-rays and CT scans through advanced algorithms,
allowing for more accurate identification of problems such as dental caries, vertical root
fractures, apical lesions, salivary gland diseases, maxillary sinusitis, maxillofacial cysts,
cervical lymph node metastasis, osteoporosis, neoplasms and alveolar bone loss [9]. In treat-
ment planning, Al uses predictive data to create personalized treatment approaches and
refine the creation of orthodontic appliances like clear aligners [10,11]. Moreover, Al offers
dentists real-time support for making clinical decisions and provides thorough risk evalua-
tions, ultimately leading to better patient results [12-17]. Al also plays a role in professional
training through sophisticated simulations. Additionally, robot-assisted surgery holds
promise for performing precise procedures, increasing accuracy and potentially shortening
recovery times [18]. While challenges like system integration and data security exist, Al
demonstrably increases both efficiency and accuracy within dental practices. Deep learning
(DL) techniques, particularly convolutional neural networks (CNNs), have proven highly
effective in analyzing images for diagnosis across various medical fields, experiencing
rapid advancements in the last ten years [19-22]. Al models are increasingly recognized
as promising tools that can assist dental professionals with a wide range of challenges.
Research suggests that Al has the potential to be a powerful asset in improving patient care
and significantly easing the burden on clinicians. Al applications in periodontology hold
promise for improving diagnosis, treatment planning, and patient care. A scoping review
is a preliminary assessment of the extent and nature of a research area. It systematically
maps the available evidence, identifies key concepts, theories, and sources of evidence, and
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can clarify definitions and conceptual boundaries. This makes it particularly useful for
informing future research, identifying gaps in the literature, and determining the feasibility
of a full systematic review. This scoping review aims to map the existing evidence on the
clinical applications of artificial intelligence in periodontology, focusing on the range and
nature of Al use in diagnosis, risk assessment, treatment planning, and outcome prediction
for patients with periodontal diseases, and to identify any gaps in the current research
landscape regarding diagnostic accuracy and treatment efficacy. Due to the heterogeneity
of study designs, imaging modalities, and outcome measures, a scoping review approach
was employed rather than a systematic review. This methodology allowed for a broad
overview and critical discussion of the available evidence, providing a valuable synthesis
of a rapidly evolving field. We hypothesized that Al applications in periodontology will
demonstrate superior performance compared to traditional methods in terms of diagnostic
accuracy, treatment planning, and prediction of treatment outcomes, ultimately leading to
improved patient care and clinical outcomes.

2. Materials and Methods
2.1. Protocol and Registration

The present review was registered online with the Open Science Framework (OSF)
on 5 March 2025 under the following ID: osf-registrations-2m7wt-v1. This scoping review
followed the methodological framework established by Peters et al. which is an update of
the Joanna Briggs Institute methodology [23], with reporting guided by the PRISMA-ScR
checklist [24]. The PRISMA flow diagram illustrating the study selection process is shown
in Figure 1.
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Figure 1. PRISMA flow diagram illustrating the study selection process.

2.2. Eligibility Criteria

This review synthesized existing literature to address the central research question:
What are the clinical applications of artificial intelligence in periodontology, and what is
the evidence for their effectiveness and impact on patient outcomes? The research question
for this review was structured using the PICO framework as follows:
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e  Population: Patients with periodontal diseases.

e Intervention: Artificial intelligence applications (e.g., diagnosis, risk assessment, treat-
ment planning, outcome prediction).

e  Comparison: Traditional methods or other Al applications.

e  Outcome: Diagnostic accuracy, treatment efficacy.

The eligibility of studies for inclusion in this review was determined by the following
inclusion and exclusion criteria:

2.2.1. Inclusion Criteria

e  Study Design: Clinical trials, cohort studies, case-control studies, cross-sectional studies.

e  Population: Patients with any type of periodontal disease (gingivitis, periodontitis).

e Intervention: Any Al application used for diagnosis, risk assessment, treatment plan-
ning, or outcome prediction in periodontology.

e  Outcomes: Diagnostic accuracy, treatment efficacy, patient-reported outcomes.

e Language: English.

2.2.2. Exclusion Criteria

e Study Design: Case reports, case series, narrative reviews and systematic reviews,
editorials, letters to the editor, conference papers/presentations.

Population: Animal studies, in vitro studies.

Intervention: AI applications not directly related to periodontology.

Outcomes: Not relevant to clinical practice or patient care.

Language: Non-English.

2.3. Information Sources and Search

A comprehensive literature search was conducted using electronic databases including
PubMed-MEDLINE, Cochrane Central Register of Controlled Trials, Cochrane Database
of Systematic Reviews, Scopus, Web of Science™ Core Collection, ProQuest Dissertations
and Theses Global for studies published up to 3 February 2025. This review was conducted
as a scoping review rather than a systematic review to accommodate the diverse range of
topics addressed.

A manual review of the reference lists from the included articles was performed
to identify additional relevant studies. There were no restrictions on the publication
date. Two authors (G.S.C., V.PK.) independently performed the database searches. Any
discrepancies were resolved through discussion with a third author (E.K.) until consensus
was achieved. The search strategy involved a combination of keywords based on the PICO
framework. Details of the search strategy are presented in Table 1.

2.4. Selection of Sources of Evidence

The search results were initially checked for duplicates. Then, we assessed the eligi-
bility of the remaining studies by examining their titles and abstracts. Relevant articles
that passed this initial screening were retrieved in full text for detailed eligibility evalu-
ation. Finally, studies that satisfied our PICO-based inclusion criteria were subjected to
data extraction.

2.5. Data Charting Process and Data Items

Data were extracted using a pre-defined data extraction form. The extracted informa-
tion included key study characteristics such as author(s), publication year, study location,
population and size, study aims, and design. Furthermore, the extracted information
encompassed data specific to the research question including details of Al model employed
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(type of algorithm, input data, training data, performance metrics) and outcome data
including diagnostic accuracy (sensitivity, specificity, area under the curve-AUC) and other
relevant findings and considerations.

Table 1. Databases and keywords employed in the review.

Database Search Strategy Hits

((AI OR “Artificial Intelligence” OR “machine learning” OR “deep learning” OR “neural
PubMed-MEDLINE network” OR “convolutional network”)) AND (Periodontology OR periodontics OR 3195
periodontal disease OR periodontitis OR periodontium OR periodontal)

((AI OR “Artificial Intelligence” OR “machine learning” OR “deep learning” OR “neural
Cochrane Central Register network” OR “convolutional network”)) AND (Periodontology OR periodontics OR

of Controlled Trials periodontal disease OR periodontitis OR periodontium OR periodontal) in Title Abstract 46

Keyword—(Word variations have been searched)

((AI OR “Artificial Intelligence” OR “machine learning” OR “deep learning” OR “neural
Cochrane Database of network” OR “convolutional network”)) AND (Periodontology OR periodontics OR 0
Systematic Reviews periodontal disease OR periodontitis OR periodontium OR periodontal) in Title Abstract

Keyword—(Word variations have been searched)

TITLE-ABS-KEY/((ai OR “Artificial Intelligence” OR “machine learning” OR “deep learning”
Scopus OR “neural network” OR “convolutional network”)) AND (periodontology OR 3370

p periodontics OR periodontal AND disease OR periodontitis OR periodontium

OR periodontal)

((AI OR “Artificial Intelligence” OR “machine learning” OR “deep learning” OR “neural
Web of Science™ network” OR “convolutional network”)) AND (Periodontology OR periodontics OR 804
Core Collection periodontal disease OR periodontitis OR periodontium OR periodontal) (Topic) and

Preprint Citation Index (Exclude—Database) Timespan: All years. Search language = Auto

title(((AI OR “Artificial Intelligence” OR “machine learning” OR “deep learning” OR

“neural network” OR “convolutional network”)) AND (Periodontology OR periodontics OR
periodontal disease OR periodontitis OR periodontium OR periodontal)) OR abstract(((Al

OR “Artificial Intelligence” OR “machine learning” OR “deep learning” OR “neural 29
network” OR “convolutional network”)) AND (Periodontology OR periodontics OR
periodontal disease OR periodontitis OR periodontium OR periodontal))

Filters activated: Full text

ProQuest Dissertations
and Theses Global

2.6. Synthesis of Results

The included studies were categorized based on their primary Al application within
periodontology, encompassing areas such as radiographic assessment of alveolar bone loss,
the detection of intrabony and furcation defects using deep learning, automated gingivitis
diagnosis, the automated identification of biofilm, calculus, and gingival inflammation,
the application of deep and machine learning for overall periodontal disease detection
and staging, the use of Al for enhanced dental diagnostics and patient communication,
and other miscellaneous applications. Subsequently, a table was utilized to present a
clear overview of the key Al methodologies and models employed across these categories,
alongside their corresponding main findings and outcomes. Diagnostic accuracy outcomes,
including sensitivity, specificity, and likelihood ratios, were summarized.

3. Results
3.1. Selection of Sources of Evidence

A total of 6394 records were identified through the electronic search. After removal
of duplicates (n = 255), 6139 records remained for abstract screening. Upon exclusion
of 6013 articles based on their abstracts, 126 articles remained for full-text evaluation.
Following the exclusion of 60 articles based on full-text analysis, 66 articles remained for
the inclusion in the review. Study designs other than original research articles, such as case
reports, conventional reviews and systematic reviews, conference papers, investigations
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involving animals and in vitro studies were excluded. In addition, studies focusing on Al
applications outside the direct scope of periodontology or reporting outcomes not relevant
to clinical practice and patient care were also not considered. Finally, studies published in
languages other than English were not included in this review.

Characteristics and Results of Sources of Evidence

A summary of the Al applications in periodontology is shown in Table 2. This table
summarizes the applications of Al in periodontology, categorizing them into seven topics.
Each category highlights the specific Al application focus, the key Al methodologies
and models used, and the main findings or outcomes. The Al applications range from
radiographic assessment using CNNs to detect bone loss, to employing deep learning for
detecting bone defects and gingivitis, and for automated detection of biofilm and calculus.
Al is also used for periodontitis detection and staging, enhancing dental diagnostics, and
other diverse applications like predicting tooth extraction. Overall, the table demonstrates
the broad utility of Al in periodontology, with AI models showing potential for accurate

detection, classification, and prediction of various periodontal conditions.

Table 2. Summary of artificial intelligence (Al) applications in periodontology.

Topic AT Application Focus Key AI Methodologies/Models Key Findings/Outcomes
CNNs (VGG16, GoogLeNet - AI'models show potential for accurate bone loss
Al and Radiographic . S s S00gLENE detection and classification.
Assessment 0% All:i/eolar Alveolar 1_3‘?“9- ,LOSS Detection  InceptionV3), Mask R-CNN, - Performance varies with CNN architecture, image
Bone Loss and Classification Cascade R-CNN, YOLOVS5, U-Net, type (panoramic vs. periapical), and task complexity.

Ensemble Models

Some models outperform clinicians in specific tasks.

Deep Learning for Intrabony
and Furcation Defects

Detection and Classification
of Bone Defects

YOLOVS, SVM, U-Net, CNNs
(InceptionV3, ResNet), Vision
Transformer (ViT)

AI'models can identify and classify intrabony defects
and furcation involvements.

ViT shows promise for furcation

involvement classification.

Choice of Al model and imaging modality is crucial.

Automated Gingivitis Diagnosis

Gingival Inflammation
Detection and Grading

ANN, Faster R-CNN, ELM,
ConvNets (ResNet, GoogLeNet),
Multi-Task Learning CNN,
DenseNet, Oral-Mamba

AlI'models can accurately detect and grade gingivitis
from intraoral images.

Multi-Task Learning CNN’s can detect multiple
conditions (gingivitis, plaque, calculus).
Smartphone-based tools show potential for
accessible screening.

Automated Detection of Biofilm,
Calculus, and
Gingival Inflammation

Detection and Quantification
of Dental Biofilm, Calculus,
and Gingival Inflammation

U-Net, YOLO, SAM, DeepPlaq,
AutoML, Hybrid
CNNs, GC-U-Net

AI'models can effectively detect and quantify biofilm,
calculus, and gingival inflammation.

Advanced imaging techniques (fluorescence,
hyperspectral) enhance detection.

Al tools can aid in caries screening and gingival
inflammation assessment.

Deep Learning and Machine
Learning for Periodontal
Disease Detection and Staging

Periodontitis Detection,
Staging, and Prediction

Deep Learning Frameworks,
Machine Learning (Decision Tree,
SVM, KNN), YOLOvS, Ensemble
Models, AD-GRU, ANN

Al'models can accurately classify periodontitis stages
and predict disease progression.

Both radiographic data and clinical data are used.
Performance often comparable to or

exceeding clinicians.

Harnessing Al for Enhanced
Dental Diagnostics and
Patient Communication

Automated Gum Tissue
Analysis and
Feature Identification

CNNs (ResNet50), YOLOv5x

Al can accurately detect and measure keratinized
gingiva.

Al can identify and segment various features in
intraoral photographs.

Other Applications

Diverse Applications

GANSs, Super-Resolution
Algorithms, ResNet50, ANN,
CNNs5s, Mask R-CNN

Al can assist in CAL prediction, image enhancement,
tooth extraction prediction, and periodontitis

risk assessment.

Al can segment periodontal ligaments and aid in
patient monitoring.

3.2. Synthesis of Results
3.2.1. Deep Learning Models for Radiographic Assessment of Alveolar Bone Loss

Accurate assessment of alveolar bone loss from radiographs is crucial for diagnosing
and managing periodontal disease, but traditional methods can be time-consuming and
subjective. To address these challenges, researchers have explored the use of Al, especially
convolutional neural networks (CNNs), to automate and improve the analysis of dental
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radiographs. This section summarizes studies investigating the application of Al in radio-
graphic bone loss assessment, highlighting both advancements and remaining limitations.

A study by Alotaibi et al. explored the use of a CNN named VGG16 to detect alveolar
bone loss from periapical radiographs [25]. The researchers aimed to develop a computer-
assisted detection system and evaluate its accuracy in identifying and categorizing the
severity of bone loss due to periodontal disease. The CNN model was trained and tested on
a dataset of 1724 periapical images. The results indicated that the CNN algorithm was useful
in detecting alveolar bone loss, with a diagnostic accuracy of 73.0% for classifying normal
versus disease and 59% for classifying the severity of bone loss. Another study introduced a
web-based Al software, DiagnoCat, designed to detect periodontal bone loss in panoramic
radiographs [26]. The Al software used two separate models: one for tooth detection,
segmentation, and numbering, and the other for periodontal bone loss prediction. The tooth
detection model was developed with Mask R-CNN, using ResNet101, while the bone loss
prediction model was based on Cascade R-CNN architecture. The study’s findings suggest
that DiagnoCat can effectively detect periodontal bone loss on panoramic radiographs.
The Al performance, when compared to the consensus of clinicians, showed high F score,
accuracy, and Cohen’s kappa coefficients for both tooth conditions and bone loss detection
in binary and multi-class results. A study that utilized panoramic radiographs evaluated a
total of 2276 images including 1137 bone loss cases and 1139 periodontally healthy cases [27].
A pretrained GoogLeNet InceptionV3 CNN was used, and the datasets were trained using
transfer learning. The CNN system detected 99 of 105 cases with bone loss, with sensitivity,
specificity, precision, accuracy, and F1 score of 0.94, 0.88, 0.89, 0.91, and 0.91, respectively.
The study concluded that the CNN system can successfully determine periodontal bone loss
and may help oral physicians with diagnosis and treatment planning in the future. A study
that developed a machine learning model to automate the measurement of periodontal
bone loss in panoramic radiographs and compared its performance to dentists consisted of
three components: statistical inference to find probability functions, CNN to extract visual
information, and an algorithm to calculate periodontal bone loss percentage and stage [28].
The model was tested against two radiologists, two periodontists, and one general dentist.
The results showed that the model had acceptable performance for diagnosing slight to
moderate bone loss but struggled with severe bone loss.

The preparation of dental panoramic radiographs and the deep learning approach for
detecting and classifying periodontal bone loss were reported in a study by Chang et al. [29].
Radiographs were collected, anonymized, and divided into training, validation, and testing
sets, with data augmentation. Periodontal bone level and cementoenamel junction level
were annotated, and a modified Mask R-CNN model was used for segmentation. The
classification process involved determining the principal axis of teeth/implants, calculating
radiographic bone loss percentage, and staging periodontitis. Detection accuracy was
assessed using the Jaccard index, pixel accuracy, and dice coefficient and the results showed
high accuracy. For classification of periodontal bone loss, the automatic method showed
minimal differences from radiologists” diagnoses and correlation analysis confirmed a
strong agreement between the CNN and radiologists. Similar results were reported when a
dataset of 236 patients’ full-mouth radiographs was analyzed, with each tooth categorized
by three periodontists [30]. Pre-processing and data augmentation were applied before
using a multitasking InceptionV3 model and it achieved an average accuracy of 0.87 £ 0.01
in distinguishing mild (<15%) and severe (>15%) bone loss, with sensitivity and specificity
around 0.86-0.88. Using deidentified data from 270 patients, a deep learning ensemble
model based on CNN was trained on 8000 periapical radiographs containing 27,964 teeth
aiming to predict tooth position, detect shape, interproximal bone level, and radiographic
bone loss [31]. The Al system, incorporating YOLOv5, VGG16, and U-Net architectures,
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was compared to clinicians’ assessments. The results showed high accuracy, with 92.61%
for periodontal bone level detection, and 97.0% for RBL detection—outperforming dentists’
accuracy (76-78%).

A deep learning model integrating a CNN with a classification algorithm to enhance
the efficiency and accuracy of periodontitis diagnosis for dentists was developed using
periapical radiographs and clinical data [32]. Periapical radiographs and CNN models such
as AlexNet and random forest classifications demonstrated strong diagnostic performance
and may support dental professionals efficiently in identifying periodontitis stages. A
deep learning system with an hourglass architecture was developed to automatically
locate dental landmarks in X-rays, enabling the estimation of periodontal bone loss and
disease severity for single, double, and triple-rooted teeth [33]. The model, enhanced with
a modified data augmentation technique, achieved strong landmark detection accuracy
(83.3%) and reasonably accurate periodontal bone level estimation (10.69% average error)
and disease staging (58% accuracy, comparable to clinician variability). Vision transformer
networks (ViT-base/ViT-large from Google, BEiT-base/BEiT-large from Microsoft, DeiT-
base from Facebook/Meta) may increase the diagnostic performance and support the
clinical use of such Al-based models [34].

A study that aimed to evaluate the accuracy of deep learning for classifying periodon-
tal bone loss stages (healthy, Stage 1/2, Stage 3/4) using panoramic radiographs used
three pre-trained CNN models (ResNet50, DenseNet121, InceptionV3) [35]. A dataset of
2533 panoramic radiographs was used showing that a new model combining DenseNet121
features extracted using global average pooling (GAP), followed by the minimum redun-
dancy maximum relevance (mRMR) for feature reduction, and classified with a support
vector machine achieved the highest performance in classifying periodontal bone loss. This
method effectively identified relevant features from the images without requiring manual
feature selection, demonstrating its potential for improved diagnostic accuracy compared
to existing methods. Another study investigated the potential of five different CNNs
(ResNet18, MobileNetV2, ConvNeXT/small, ConvNeXT/base, and ConvNeXT/large) to
automatically detect periodontal bone loss on dental radiographs [36]. Researchers trained
the CNNs using a large dataset of anonymized periapical radiographs categorized by
dentists into no, mild, moderate, or severe periodontal bone loss. The performance of the
CNNs was similar, with overall accuracy ranging from 82.0% to 84.8%, high sensitivity
(88.8-90.7%), moderate specificity (66.2-71.2%), and a strong ability to discriminate between
classes (AUC 0.884-0.913). However, the accuracy varied depending on the location in
the mouth, with the best results for the mandibular anterior teeth and the poorest for the
maxillary posterior teeth. The study concluded that while automatic PBL assessment is
feasible, the diagnostic accuracy is location-dependent, highlighting the need for future
research to enhance performance across all tooth groups.

A two-stage deep learning model combining U-Net and YOLOv4 to first locate teeth
and key points and then calculate the percentage of periodontal bone loss for staging
periodontitis was reported by Jiang et al. [37]. The model achieved an overall classification
accuracy of 0.77, with varying performance across different tooth positions and severity
levels. Importantly, the Al model generally outperformed general dental practitioners in
classifying periodontal bone loss. An Al model using YOLOvVS to automatically assess
periodontal bone loss and predict tooth prognoses from panoramic X-rays achieved high
accuracy in segmenting teeth (97%) and in identifying key landmarks like the CEJ and bone
level (98%) [38]. This Al-driven approach offers a faster and more accurate alternative to
manual methods for periodontal diagnosis and prognosis. Another deep learning method
(DeNTNet) that utilizes CNNs was tested for the detection of periodontal bone loss using
panoramic dental radiographs [39]. Trained and validated on 11,379 annotated radiographs
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and tested on 800, DeNTNet achieved an F1 score of 0.75 on the test set, outperform-
ing the average F1 score of dental clinicians, which was 0.69. The study highlighted the
potential of DeNTNet as an automated diagnostic support system for periodontal bone
loss. Another two-stage periodontitis detection convolutional neural network (PDCNN)
was designed to improve the accuracy and implementation of automated image analysis
for periodontal disease utilizing an anchor-free encoding for faster and more accurate
predictions [40]. According to the findings, PDCNN achieved a radiographic bone loss
classification accuracy of 0.762, outperforming state-of-the-art detectors like Faster R-CNN
and YOLOv4. The impact of various image resolution improvement methods including
traditional interpolation techniques and deep learning-based Super-Resolution CNN (SR-
CNN) as well as Super-Resolution GAN (SRGAN) on periodontal disease assessment in
oral imaging was examined [41]. The findings revealed that while deep learning methods
significantly improved the visual quality of the low-resolution images, this improvement
did not consistently translate to better performance in the CNN classifiers for periodontal
disease assessment.

In summary, a multitude of studies have explored the application of deep learning,
predominantly using CNNs to automate the detection and classification of periodontal
bone loss from both periapical and panoramic dental radiographs. These investigations
have showcased the potential of various CNN architectures and methodologies to achieve
high accuracy in identifying bone loss, categorizing its severity, and even predicting tooth
prognoses, often demonstrating performance comparable to or even surpassing that of
dental professionals. While challenges remain, such as variations in accuracy across tooth
locations and difficulties with severe cases, the collective findings strongly suggest that
Al-powered systems hold significant promise as valuable tools for enhancing the efficiency
and accuracy of periodontal disease diagnosis and treatment planning in dentistry. Figure 2
demonstrates the deep learning models for radiographic assessment of alveolar bone loss.

DEEP LEARNING MODELS FOR
RADIOGRAPHIC ASSESSMENT OF
ALVEOLAR BONE LOSS

‘. InceptionV3 Mask
R-CNN

« Accuracy of
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Figure 2. Deep learning models for radiographic assessment of alveolar bone loss.

3.2.2. Deep Learning Approaches to Detect Intrabony and Furcation Defects in
Periodontal Disease

Studies have evaluated the efficacy of models ranging from traditional machine learn-
ing algorithms to advanced CNNs and novel architectures like the Vision Transformer
(ViT) in detecting and classifying a spectrum of periodontal bone loss patterns, including
intrabony defects and furcation involvements, across different radiographic modalities. A
study introduced an innovative approach using deep learning and image processing to help
dentists assess periodontal disease by analyzing radiographic defect angles in intrabony



Medicina 2025, 61, 1066

10 of 30

defects [42]. The study classified intrabony defects as severe (greater than 37 degrees) or
mild (less than 37 degrees) based on the radiographic defect angle and employed image
enhancement techniques to improve diagnostic accuracy of the subsequent CNN analysis
which used the YOLOv8 model. The CNN then classified the severity of periodontal
lesions based on the radiographic defect angle. Another study explored the use of machine
learning to classify periodontal defects in 2D periapical images [43]. Researchers compared
human observation against evaluations from a radiomics platform, using support vector
machine analysis. While both human observers and the machine learning model differed
from the “gold standard,” the latter model performed similarly to human observers in
detecting defects. The study suggested that machine learning can predict periodontal
defects by analyzing specific radiomic features and image variables, potentially aiding
clinical practitioners and even replacing human evaluations in the future.

A retrospective study developed a deep learning algorithm to interpret panoramic
radiographs and detect periodontal bone loss and bone loss patterns [44]. The study used
1121 panoramic radiographs. Bone loss in the maxilla and mandible, interdental bone loss,
and furcation defects were labeled using the segmentation method. Interdental bone loss
was further categorized into horizontal and vertical. A CNN-based Al system was devel-
oped using U-Net architecture, and its performance was evaluated using the confusion
matrix and ROC curve analysis. The Al system demonstrated the highest diagnostic perfor-
mance in detecting total alveolar bone losses (AUC = 0.951) and the lowest in detecting
vertical bone losses (AUC = 0.733). The study concluded that Al systems show promise in
identifying periodontal bone loss patterns and furcation defects from dental radiographs.
The authors suggested that CNN algorithms could be used to provide more detailed in-
formation, like automatic determination of periodontal disease severity and treatment
planning. Another radiographic-based study introduced a deep learning approach using
CNN to detect furcation defects in periapical radiographs with a reported accuracy of
95% [45]. The research utilized a dataset of 300 periapical radiographs and employed image
preprocessing and masking techniques to enhance the visibility of furcation defects. The
proposed segmentation algorithm achieved an overall accuracy of 94.97%, outperforming
conventional methods, and the CNN model demonstrated identification rates of furcation
involvement ranging from 92.96% to 94.97%. The authors suggested that this Al-assisted
approach has the potential to improve the accuracy and efficiency of dental diagnosis,
leading to better periodontal diagnosis, treatment planning, and patient outcomes.

In addition, a study investigated the use of deep learning, specifically CNN models,
to automatically classify three-wall intrabony defects on intraoral dental X-rays [46]. Re-
searchers trained six different CNN models (InceptionV3, InceptionResNetV2, ResNet50V2,
MobileNetV3Large, EfficientNetV2B1, and VGG19) using a dataset of 1369 radiographs
from 556 patients who had undergone periodontal surgery. The radiographs were cate-
gorized based on the presence or absence of three-wall defects. The performance of the
models was evaluated using various metrics, with an AUC of 0.7 or higher considered
acceptable. The results showed that when excluding circumferential defects from bite-wing
radiographs, several models achieved acceptable AUC values (0.70-0.77), with the VGG19
model demonstrating the best performance (accuracy: 0.75, precision: 0.78, recall: 0.82,
specificity: 0.67, NPV: 0.88, F1 score: 0.75). The study concluded that CNN models have
the potential for clinical application in periodontal examination, diagnosis, and treatment
planning for periodontal surgery by assisting in the identification of three-wall intrabony
defects on intraoral radiographs. Another study investigated the accuracy of a deep learn-
ing model (ResNet101V2) in detecting furcation involvements, using axial Cone-Beam
Computed Tomography (CBCT) images [47]. The researchers started with a dataset of
285 CBCT images (143 normal, 142 with furcation involvement) and used data augmenta-
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tion to expand the training dataset to 600 images. The model was then tested on a separate
set of 85 images. The results showed high performance with a training accuracy of 98%,
validation accuracy of 97%, and a test accuracy of 91%. The model also achieved a precision
and F1 score of 0.98, and an AUC of 0.98. The test loss was 0.2170. The study concluded
that the ResNet101V2 deep learning model can accurately detect furcation involvement in
axial CBCT images. However, the authors noted that this was a preliminary study with a
relatively small dataset and suggested that future research with a larger dataset is needed
to further confirm the accuracy of deep learning models for this purpose.

Classification of furcation involvement in mandibular molars using periapical radio-
graphs was attempted in another investigation [48]. Researchers screened full mouth X-ray
series and selected diagnostic-quality periapical radiographs of mandibular premolars and
molars, categorizing the molar images as either “healthy” or having “furcation defects.”
These images were divided into training, validation, and testing datasets and preprocessed.
A CNN model, ResNet18, was trained and refined using the PyTorch framework. The
model’s performance was evaluated using various metrics, including accuracy, sensitiv-
ity, specificity, and the area under the ROC curve. The results showed that the trained
ResNet18 algorithm achieved a high accuracy of 96.47% in classifying healthy versus fur-
cation involved molars in the testing set. The study concluded that this deep learning
algorithm showed significant promise as a supplementary tool for detecting and managing
periodontal diseases by accurately identifying mandibular molar furcation involvement
on periapical radiographs. Finally, a study compared the performance of a novel deep
learning model, the Vision Transformer (ViT), with traditional deep learning models (MLP,
VGGNet, GoogLeNet) in classifying molars with or without furcation involvement using
panoramic radiographs [49]. The researchers used a database of 1568 tooth images from
506 panoramic radiographs to train and evaluate the models. The results showed that
the ViT model outperformed all other models, achieving the highest precision (0.98), re-
call (0.92), F1 score (0.95), and accuracy (92%), along with the lowest cross-entropy loss
(0.27) and the highest AUC of 98%. The superior performance of ViT was statistically
significant (p < 0.05). Gradient-weighted class activation mapping (Grad-CAM) analysis
highlighted the relevant image areas that the ViT model focused on for its predictions. The
study concluded that deep learning algorithms, particularly the ViT model, can effectively
and automatically classify furcation involvement using readily available panoramic radio-
graphs, potentially reducing the need for higher-cost and higher-radiation CBCT scans
while improving diagnostic accuracy.

In conclusion, the current evidence strongly indicates the growing potential of Al,
especially deep learning methodologies, to revolutionize periodontal disease diagnosis
and assessment. By leveraging image processing and machine learning algorithms, these
studies demonstrate the feasibility of automatically identifying and classifying various pe-
riodontal defects, including intrabony lesions and furcation involvements, across different
radiographic modalities. While some studies highlighted the comparable performance of
machine learning models to human observers, others showcased the superior accuracy and
efficiency of advanced deep learning architectures like CNNs and the novel Vision Trans-
former. These Al-driven approaches offer the prospect of improved diagnostic accuracy,
enhanced treatment planning, and potentially more efficient clinical workflows. However,
the authors of several studies also acknowledge the need for further research with larger
and more diverse datasets to validate these findings and facilitate their seamless integration
into routine dental practice. As these technologies continue to evolve, Al-assisted tools
are poised to become valuable assets for dental professionals in their efforts to combat
periodontal disease and improve patient outcomes. Figure 3 shows the deep learning
approaches to detect intrabony and furcation defects in periodontal disease.
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Intrabony and Furcation Defects in Periodontal
Disease

Methods Findings Prospects

e Improved
diagnostic
CNNs accuracy

“‘ Intrabony Furcation "',‘ e Enhanced
defects  defects

Yo L0v8 CNN o ;g‘:ﬁ"i"neg"t
bt IQI EEE
mEEm Ll e More efficient
Vision Transformer U-Net Vision workflows

CNN transformer

Figure 3. Deep learning approaches to detect intrabony and furcation defects in periodontal disease.

3.2.3. Automated Gingivitis Diagnosis

Gingivitis, a prevalent inflammatory condition of the gingiva, poses a significant threat
to oral health and can progress to more severe periodontal diseases if left unaddressed.
Traditional diagnostic methods often rely on subjective clinical assessments and manual
record-keeping, which can be time-consuming and prone to variability. In response to these
limitations, the application of Al, particularly deep learning techniques, has emerged as
a promising avenue for enhancing the accuracy, efficiency, and accessibility of gingivitis
detection and diagnosis. The following compilation summarizes several recent studies that
explore diverse deep learning approaches, leveraging intraoral imaging and advanced com-
putational models, to automatically identify, classify, and even grade gingival inflammation
in various populations and clinical settings. These investigations highlight the potential
of Al-driven solutions to revolutionize dental diagnostics, offering opportunities for early
intervention, improved patient care, and broader public health impact.

A study aimed to develop and improve a classification model for diagnosing gingivitis
by building a model using an artificial neural network and optimized it using fuzzy logic
and multiple linear regression [50]. Fuzzy logic was used to create detection rules, while
multiple linear regression was employed to measure analysis patterns and ensure optimal
results. The study found that the optimization using fuzzy logic (generating 40 rules) and
multiple linear regression (showing a significant correlation with an average value of 94.2%)
produced excellent results. The researchers concluded that this optimized analysis model
effectively enhances the gingivitis diagnosis process. Another study focused on using
deep learning to automatically detect gingivitis in orthodontic patients through intraoral
images [51]. Researchers developed two Faster R-CNN models using ResNet50. The first
model accurately detected teeth (100% accuracy, precision, and mAP), identifying the region
of interest. The second model detected gingival inflammation, achieving 77.12% accuracy,
88.02% precision, 41.75% recall, and 68.19% mAP. The study concluded that deep learning
models show promise for detecting gingivitis in intraoral images, potentially aiding in early,
non-invasive diagnosis and reducing the global impact of periodontal disease. A study
presented a new automated method for diagnosing gingivitis using image processing and
machine learning [52]. The method involves applying contrast-limited adaptive histogram
equalization (CLAHE) to enhance the oral images, extracting features using the gray-level
co-occurrence matrix (GLCM), and then classifying the images using an extreme learning
machine (ELM). The researchers tested their method on a dataset of 93 images (58 gingivitis,
35 healthy) and reported an average sensitivity of 75%, specificity of 73%, precision of 74%,
and accuracy of 74%. The study concluded that this new method is more accurate and
sensitive compared to three other existing approaches for gingivitis diagnosis.
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In addition, an investigation by Li et al. evaluated the effectiveness of several advanced
deep convolutional neural network (ConvNet) models (AlexNet, VGG, GoogLeNet, ResNet)
using ensemble learning to identify chronic gingivitis from oral screening images [53].
Researchers used a database of 683 intraoral images from 134 volunteers. The performance
of the models was assessed by comparing their accuracy and sensitivity in recognizing
gingivitis. The ResNet model achieved the highest AUC of 97%, followed by GoogLeNet
(94%), AlexNet (92%), and VGG (89%). While ResNet and GoogLeNet performed best
overall, there was no significant difference in sensitivity between ResNet, GoogLeNet, and
AlexNet. However, the VGG sensitivity was significantly lower. The study concluded that
ResNet and GoogLeNet show strong potential for efficiently diagnosing chronic gingivitis
from images, which could aid doctors or even patients through self-examination. The
same research group introduced a new Multi-Task Learning CNN model to screen for
gingivitis, plaque accumulation, and calculus deposits from oral photos [54]. The goal was
to provide a cost-effective and widely accessible solution for early detection, especially
in areas with limited dental resources or for low-income populations, as routine dental
visits can be unavailable or costly. The model was trained and evaluated on data from
625 patients, achieving classification AUC scores of 87.11% for gingivitis, 80.11% for dental
calculus, and 78.57% for plaque accumulation. Importantly, the model could also localize
these findings on the images with moderate accuracy, providing explainability to the
screening results. Compared to general-purpose CNNSs, the proposed Multi-Task Learning
model showed significantly better performance in both classification and localization. It
was ultimately shown that deep learning has strong potential for enabling widespread
screening of dental diseases.

A deep learning network for automatically assessing the grade of gingival inflamma-
tion was developed by Wen et al. [55]. The researchers introduced a novel feature extraction
method using T-distributed Stochastic Neighbor Embedding (t-SNE) for dimensionality
reduction and built a CNN based on DenseNet for identifying and grading inflammation.
To improve performance, they implemented a new teeth removal algorithm. They also
used Grad-CAM++ to generate heatmaps for visualizing the model’s attention. The model
achieved a mean intersection-over-union (MIoU) of 0.727 for gingivitis identification, and
accuracy rates for five inflammation grades ranging from 73.68% to 79.22%. The area under
the ROC values for the grades ranged from 0.80 to 0.84. The teeth removal algorithm
significantly increased the model’s attention towards the gingival tissue and specifically the
area near the gingival margin. The study concluded that the proposed deep learning model
with the novel feature extraction method offers high accuracy and sensitivity for both
identifying and grading gingival inflammation. Another study developed and evaluated a
deep learning system called Oral-Mamba for segmenting intraoral photographic images
to detect dental caries, dental calculus, and gingivitis, and to assess the severity of dental
calculus [56]. Investigators collected 3365 intraoral images, which were labeled and divided
into training, validation, and testing datasets. Oral-Mamba, a segmentation method based
on Mamba architecture, demonstrated high accuracy in segmenting gingivitis (0.83), dental
caries (0.83), and dental calculus (0.81). Notably, Oral-Mamba outperformed the U-Net
model in IoU, accuracy, and recall, while also being 25% faster. Additionally, an intelli-
gent evaluation model achieved 85% accuracy in classifying the degree of dental calculus.
The authors demonstrated that this system offers a practical, intuitive, time-efficient, and
cost-effective tool for assisting in the oral screening of dental caries, dental calculus, and
gingivitis using intraoral camera images.

The use of Al to automatically provide visual plaque control advice by detecting gin-
givitis from intraoral photographs was explored in another investigation [57]. Researchers
collected and labeled a dataset of intraoral frontal view images, categorizing gingival
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margin sites as healthy, diseased, or questionable. This data was split into training and
validation sets and used to train a novel Al system. The Al performance in detecting
gingivitis was then evaluated on the validation set, measuring sensitivity, specificity, and
mean intersection-over-union (mIOU). The Al system demonstrated high sensitivity (0.92)
and specificity (0.94) in correctly identifying healthy and diseased pixels. The mIOU of
0.60 was also above the acceptable threshold. The study concluded that Al can accurately
identify specific sites with and without gingival inflammation, performing comparably to
a visual examination by a dentist. This suggests that such a system could be valuable for
monitoring the effectiveness of patients” plaque control efforts. The same research team
evaluated GumAl, a new smartphone-based Al tool for detecting gingivitis in older adults
at community day-care centers [58]. Researchers compared the GumAlI assessments of
intraoral photos to those of a panel of dental professionals. GumAI showed high sensitiv-
ity (0.93), positive predictive value (0.90), accuracy (0.85), and F1 score (0.91), but lower
specificity (0.50) and negative predictive value (0.56). Importantly, all participating older
adults reported high acceptance of the tool and the personalized oral hygiene instructions
it provided. The study showed that GumAI has strong potential for improving gingivitis
detection and oral health management in community settings, despite needing further im-
provements in specificity and validation of usability measures. This research suggests that
mHealth tools like GumAI could help expand oral healthcare access and reduce disparities.

Collectively, these studies underscore the significant strides being made in the applica-
tion of deep learning for the automated detection and diagnosis of gingivitis. Utilizing a
range of sophisticated architectures, including Faster R-CNN, Artificial Neural Networks
optimized with fuzzy logic and MRL, novel CNNs with multi-task learning capabilities,
and advanced segmentation models like Oral-Mamba and GC-U-Net, researchers have
demonstrated the potential for achieving high levels of accuracy, sensitivity, and specificity
in identifying gingival inflammation from intraoral images. Furthermore, the development
of tools like GumAI for smartphone-based screening and systems capable of grading in-
flammation severity or localizing plaque and calculus highlights the versatility and clinical
relevance of these Al-powered approaches. While some studies point to areas for further
refinement, such as improving specificity or validating usability in broader contexts, the
overall body of work strongly suggests that deep learning technologies hold considerable
promise for transforming dental diagnostics, enabling more efficient, objective, and accessi-
ble methods for combating gingivitis and promoting oral health on a wider scale. Table 3
summarizes the Al models for automated gingivitis diagnosis.

3.2.4. Automated Detection of Dental Biofilm, Calculus, and Gingival Inflammation Using
Deep Learning

A number of studies have explored the capabilities of diverse Al models, including
CNNs like U-Net and YOLO, as well as platforms like Google Cloud’s Vertex Al AutoML,
in addressing critical aspects of dental health. These studies investigated the automated
identification and quantification of dental biofilm (plaque), calculus, and gingival inflam-
mation using various imaging modalities such as intraoral photographs, bite-wing X-rays,
fluorescence imaging, and intraoral scans. By evaluating the performance of these Al-
driven approaches against expert clinical assessments, these investigations collectively
aim to demonstrate the potential of Al to enhance diagnostic accuracy, streamline clin-
ical workflows, facilitate early detection, and ultimately improve patient outcomes in
dental care.
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Table 3. Al models for automated gingivitis diagnosis.

AI Model/Approach Primary Application Performance
ANN with Fuzzy Logic Enhanced diagnosis 94.2% correlation
Faster R-CNN Detecting gingivitis in orthodontic patients 77:12% afccu}‘ acy 88'02./0 precision
or inflammation
ELM (Image Processing) Automated diagnosis 74% accuracy, 75% sensitivity
ResNet/GoogLeNet Chronic gingivitis identification ResNet AUC 97% (highest)
Multi-Task Learning CNN Screening for gingivitis, plaque, calculus Gingivitis AUC 87.11%
DenseNet CNN (Grading) Assessing inflammation grade 73.68-79.22% accuracy for 5 grades
Oral-Mamba Segmenting for caries, calculus, gingivitis 0.83 accuracy for gingivitis segmentation
Al System (Plaque Control) Visual plaque control advice 0.92 sensitivity, 0.94 specificity
GumAI (Smartphone-based) Gingivitis detection in community settings 0.85 accuracy, 0.93 sensitivity

A study by Andrade et al. investigated the ability of a U-Net neural network to
automatically detect dental biofilm on tooth images. Researchers used two datasets of
intraoral photographs [59]. The first dataset (96 photos with and without disclosing agents)
validated the expert’s biofilm labeling. The second, larger dataset (480 photos with and
without orthodontic appliances, without disclosing agents) was used to train the U-Net
model to segment biofilm, with the dentist’s labels serving as the ground truth. The model’s
performance was evaluated using accuracy, F1 score, sensitivity, and specificity. The U-Net
model achieved an overall accuracy of 91.8%, F1 score of 60.6%, specificity of 94.4%, and
sensitivity of 67.2%. Notably, the accuracy was slightly higher (92.6%) in images with
orthodontic appliances. The study showed that using a U-Net for visually segmenting
dental biofilm is a feasible approach that could potentially aid professionals and patients
in identifying biofilm, thereby promoting better oral hygiene and health. CNN models
for assessing dental plaque indices were validated in another study [60]. Researchers
collected 210 intraoral images (frontal and lateral views) of plaque-disclosed teeth from
70 healthy adults. A three-stage method was employed: first, the YOLOv8 model detected
teeth; second, the Segment Anything Model (SAM) segmented the detected teeth, creating
a single-tooth dataset of 1400 images. Finally, a multi-class classification model called
DeepPlaq was trained to index dental plaque based on the Quigley-Hein Index (QHI). The
performance was evaluated using accuracy, recall, precision, and F1 score. The YOLOvS8
teeth detector achieved a high accuracy (mAP of 0.941 £ 0.005). DeepPlaq demonstrated
a maximum accuracy of 0.84 (probability of matching expert scores) and a small average
scoring error of less than 0.25 on the QHI scale (0-5). The study concluded that the three-
stage approach was excellent for detecting and segmenting teeth, and the DeepPlaq model
showed strong potential for accurately assessing dental plaque indices.

The feasibility of using Google Cloud’s Vertex AI AutoML to automatically detect
plaque levels on undyed photographs of permanent teeth was explored in another investi-
gation, aiming to overcome the limitations of manual assessment and plaque-disclosing
dyes [61]. Researchers collected undyed and corresponding dyed images of upper anterior
teeth from 100 dental students. Plaque levels on dyed images were manually classified
as mild (<30%), moderate (30-60%), or heavy (>60%) based on the stained surface area,
serving as the ground truth for the undyed images. Two AutoML models were developed
using the undyed images: a three-class model (mild, moderate, heavy) and a two-class
model (acceptable vs. unacceptable). The models were evaluated using precision, recall,
and F1 score. The three-class model achieved an average precision of 0.907, with the best
performance in the heavy plaque category. The two-class model showed improved results
with an average precision of 0.964 and an F1 score of 0.931. Overall, Vertex AI AutoML
showed potential for non-invasive dental plaque detection, with the two-class model show-
ing particular promise for clinical application. However, the authors recommended further
research with larger datasets to improve the models’ generalization and real-world usability.
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Another study explored the ability of the advanced YOLO AI models (v9, v10, v11) to
automatically identify three stages of dental plaque (new, mature, and over-mature) in
order to improve early detection of plaque-related oral diseases [62]. Researchers collected
531 color images from 177 people using different smartphones after applying a disclosing
gel. The images were then adjusted for consistent lighting and color. The YOLO models
were trained to recognize the plaque stages, and their performance was evaluated. The
YOLOv11lm model performed best, especially in detecting older plaque. The study also
found that newer plaque was harder to detect as it can look similar to gum tissue. The
O’Leary index showed that most participants had significant plaque. In summary, the
YOLO models showed promise for automatically detecting plaque in various real-world
conditions, which could lead to better clinical efficiency, earlier diagnoses, and reduced
oral health problems, particularly in areas with limited resources.

Wang et al. developed an automated, low-cost, and portable tool for early dental
caries and calculus screening using fluorescence sub-band imaging and deep learning [63].
The method involved two steps: first, capturing six-channel fluorescence images of teeth
by collecting imaging information under different fluorescence spectral bands. Second,
a specialized 2D-3D hybrid convolutional neural network with an attention mechanism
was used to classify and diagnose caries and calculus. Experimental results showed that
this method performed competitively with existing approaches and this technology can
be implemented on different smartphones, highlighting its potential for accurate, low-
cost, and portable caries detection in community and home settings. The same research
group used hyperspectral fluorescence imaging on 122 dental surfaces labeled by dentists,
combined with machine learning algorithms [64]. The developed model fused features
from spectra, textures, and colors using an integrated learning algorithm, resulting in high
performance and strong generalization. The experimental results demonstrated that the
diagnostic model achieved an accuracy of 98.6%, sensitivity of 98.4%, and specificity of
99.6% in identifying four different caries stages and calculus. The study concluded that
this method can evaluate the entire tooth surface at the pixel level, offering enhanced
discrimination and quantitative parameters, making it a promising new approach for early
caries diagnosis. Another study aimed to create an automated method for objectively
identifying gingival inflammation using intraoral scanning (IOS) and deep learning [65].
Researchers collected IOS images and periodontal probing data from 120 periodontitis
patients. They used a deep learning model called GC-U-Net to automatically segment
and identify inflamed gingival regions. The model achieved high accuracy, with a Dice
coefficient of 77.8%, an IoU of 65.4%, and a pixel accuracy of 93.7%. Furthermore, the
model’s identification performance showed a strong positive correlation with the sulcus
bleeding index (SBI), a moderate positive correlation with the bleeding index (BI), and
a negative correlation with probe depth (PD). Therefore, the authors displayed that this
automated method provides a standardized and accurate auxiliary tool for clinical gingival
inflammation examination, reducing subjective judgment and improving the reliability of
diagnosis and treatment planning.

In pediatric dentistry, an AI model using a CNN was examined to automatically detect
plaque on primary teeth [66]. The statistical analysis revealed no significant difference
in diagnostic accuracy between the Al model and the pediatric dentist demonstrating
clinically acceptable performance and suggesting its potential to aid in improving pediatric
oral health. A similar study used images of 168 teeth from 20 patients, taken before
and after plaque disclosing agent application [67]. Photos with disclosed plaque were
used to train the Al to recognize non-disclosed plaque, with 140 teeth for training and
28 for testing. A dentist also reviewed the non-disclosed plaque images, and the Al
performance was compared to the dentist’s using precision, sensitivity, F1 score, accuracy,
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specificity, AUC, and IoU. The Al system demonstrated higher performance with 82%
precision, 84% sensitivity, 83% F1 score, 87% accuracy, 89% specificity, an AUC of 0.922,
and an IoU of 76%. The dentist’s IoU was 0.71 and AUC was 0.833. The Al model’s
performance was statistically significantly better than the dentist’s (p < 0.05). The study
concluded that the developed Al algorithm shows promising and clinically acceptable
results in detecting dental plaque compared to a dentist. Finally, a study introduced a
new system for detecting dental calculus in bite-wing images using YOLOVS for accurate
tooth identification [68]. The researchers proposed a novel image-enhancement algorithm
that combines a median and a bilateral filter to improve the accuracy of convolutional
neural networks in classifying dental calculus by enhancing interdental edges. Before
enhancement, the accuracy using GoogLeNet was 75.00%, which significantly increased to
96.11% after applying the enhancement algorithm. It was therefore demonstrated that this
system has the potential to streamline dental consultations and improve the efficiency of
dental services. Diagnocat Al software has also shown high sensitivity (above 0.8) for the
detection of dental calculus on panoramic radiographs [69].

In summary, these studies provide compelling evidence for the growing utility of Alin
the automated detection and assessment of key indicators of oral health, including dental
biofilm, calculus, and gingival inflammation. Utilizing a range of deep learning architec-
tures and imaging techniques, the research consistently demonstrates the potential for Al
models to achieve high levels of accuracy, sensitivity, and specificity, often comparable to
or even exceeding the performance of experienced dental professionals. From segmenting
biofilm on tooth surfaces using U-Net to indexing plaque severity with DeepPlaq and
identifying calculus in X-rays with enhanced YOLO models, these investigations highlight
the versatility of Al in analyzing diverse dental imaging data. Furthermore, the exploration
of accessible platforms like Vertex AI AutoML and the development of low-cost, portable
tools based on fluorescence imaging suggest a future where Al-powered dental diagnostics
can be more widely implemented, even in resource-limited settings. While acknowledging
the need for further research with larger and more diverse datasets to ensure robust general-
ization and real-world applicability, the collective findings strongly support the integration
of Al technologies into dental practice. This advancement promises to aid professionals in
making more informed decisions, empower patients with a better understanding of their
oral health, and ultimately contribute to improved preventative and therapeutic strategies
for a range of common dental conditions. Table 4 summarizes the Al models for automated
oral health detection.

Table 4. Al models for automated oral health detection.

Oral Health Indicator

AI Models/Methods Used Key Findings/Impact

Dental Biofilm (Plaque)

U-Net, YOLOVS, DeepPlaq, Vertex Al High accuracy in detection, segmentation, and indexing;
AutoML, YOLOv9/v10/v11, CNNs potential for non-invasive and early detection.

Dental Calculus

Fluorescence imaging with 2D-3D hybrid  High accuracy in detection across various imaging types
CNN, YOLOVS, Diagnocat Al (X-rays, fluorescence); enhances efficiency.

Gingival Inflammation

Faster R-CNN, ELM, ResNet, GoogLeNet,
Multi-Task CNN, DenseNet CNN,
Oral-Mamba, GumAI, GC-U-Net

High accuracy in detection, classification, grading, and
localization; comparable to or exceeding human experts.

3.2.5. Deep Learning and Machine Learning for Periodontal Disease Detection and Staging

Studies have explored diverse approaches employing machine learning and deep
learning techniques to analyze dental radiographic images and clinical data for the detec-
tion, staging, and prediction of periodontitis. These investigations utilize various imaging
modalities, including panoramic and bite-wing radiographs, and employ a range of Al
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architectures, from convolutional neural networks and recurrent units to support vector ma-
chines and decision trees, all aimed at enhancing the accuracy and efficiency of periodontal
disease assessment.

A study by Shon et al. developed a deep learning framework to automatically classify
periodontitis stages in individual teeth using dental panoramic X-rays [70]. The model
identified bone loss and the cementoenamel junction from patient data, and tooth number
and length from the AIHub database. This integrated information was used to classify
periodontitis into four stages based on the 2018 classification of periodontal diseases. Com-
pared to dental specialists, the framework achieved a high accuracy (0.929), recall (0.807),
and precision (0.724) and the authors claimed that this tool can aid dentists in diagnosis and
treatment planning, with plans for a future application to support periodontal disease man-
agement. Similarly, Ertas et al. aimed to develop a machine learning-based decision system
to simplify the staging and grading of periodontitis according to the 2018 classification [71].
Researchers used clinical data from 144 individuals to train various machine learning
models, achieving high accuracy in staging with Decision Tree (97.2%), random forest,
and k-nearest neighbor (98.6%) algorithms. Additionally, they explored using panoramic
radiographic images processed with deep learning, with a hybrid ResNet50 and support
vector machine model reaching 88.2% accuracy in staging. However, radiographic images
were less successful in accurately modeling the grading of periodontitis. The study con-
cluded that the developed decision system shows promise in aiding periodontal diagnoses,
although further optimization is needed to improve results. Furthermore, another study
explored the use of the YOLOVS deep learning model to automatically stage periodontal
bone loss based on bite-wing X-ray images [72]. A dataset of 1752 bite-wing images, classi-
fied into four stages of bone loss (healthy, mild, moderate, severe), was used to train and
test the model using five-fold cross-validation. The model achieved a training accuracy
of 86.10%, precision of 84.79%, recall of 82.35%, and F1 score of 84.41%. Therefore, it was
concluded that the deep learning model showed successful results in staging periodontal
bone loss in bite-wing images, with higher classification scores for healthy and severe cases
due to their more distinct visual characteristics. Researchers trained and tested another
deep CNN algorithm on a dataset of periapical radiographic images and showed that the
diagnostic accuracy for periodontal compromised teeth was 81.0% for premolars and 76.7%
for molars [73]. When predicting the extraction of clinically diagnosed severe periodontal
destruction, the accuracy was 82.8% for premolars and 73.4% for molars.

In addition, a study developed a novel deep learning ensemble model based on CNNs
to automatically analyze dental panoramic radiographs for tooth position detection, tooth
outline and tissue segmentation, periodontal bone loss assessment, and periodontitis stage
prediction [74]. The model, incorporating YOLOvS, Mask R-CNN, and TransUNet, was
trained and evaluated on radiographs from 320 patients (8462 teeth). The deep learning
method showed a periodontal bone loss degree deviation of 5.28% compared to expert
annotations. The Pearson Correlation Coefficient between the deep learning method and
periodontists” diagnoses was 0.832 (p < 0.001), and the Intraclass Correlation Coefficient
was 0.806 (p < 0.001). The overall diagnostic accuracy of the DL method was 89.45%. The
study concluded that the proposed DL ensemble model demonstrates high accuracy and
efficiency in radiographic detection, serving as a valuable tool for periodontal diagnosis,
potentially enhancing clinical performance, preventing medical negligence, and acting as
a learning resource for dental professionals. Similarly, 558 panoramic radiographs were
cropped into 7359 individual tooth images and the model achieved an overall accuracy of
0.72, precision of 0.76, recall of 0.64, F1 score of 0.68, and a micro-average AUC of 0.79 in
radiographic bone loss stage classification demonstrating reliability in assisting with the
staging of radiographic bone loss [75]. Panoramic dental X-rays from 456 patients were
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utilized to evaluate the diagnostic accuracy of a radiographic-based periodontal bone loss
method as a screening tool for periodontitis [76]. The results indicated that the method,
when aligned with the 2018 case definition, is a reliable tool for screening periodontitis
based on radiographic bone loss and the authors emphasized that it is a valuable screening
tool that cannot replace comprehensive clinical evaluation. Researchers created a dataset of
238 panoramic images with annotations for teeth, alveolar bone contours, and cementoe-
namel junctions [77]. They employed a Mask R-CNN model for tooth segmentation and a
U-Net model for segmenting alveolar bone and cementoenamel junctions. By analyzing
the segmented teeth and bone structures and calculating the proportion of alveolar bone
loss along the dental long axis (determined using the principal component analysis), the
study evaluated its approach on 20 panoramic images (496 teeth) and achieved an accuracy
rate of 90.73% in staging periodontitis.

A study by Vigil et al. proposed a new deep learning model called Adaptive DenseNet
with Gated Recurrent Unit (AD-GRU), optimized by the Refined Red Kite Optimization
Algorithm (RRKOA), to detect early periodontal bone loss from dental images [78]. The
method involved segmenting teeth using DenseUNet++ and then feeding these segmented
images to the optimized AD-GRU for bone loss detection, which is further used to deter-
mine the periodontitis stage. The proposed approach achieved a high accuracy of 94.45%,
outperforming other models like LSTM, DenseNet, GRU, and DenseNet-GRU. An inves-
tigation by Ozden et al. focused on developing and comparing three machine learning
algorithms—Support Vector Machine, Decision Tree, and Artificial Neural Networks—for
the classification of periodontal diseases [79]. Using risk factors, periodontal measurements,
and radiographic bone loss data from 150 patients, the researchers trained and tested these
models to categorize individuals into six distinct periodontal conditions. The Decision Tree
and Support Vector Machine algorithms demonstrated superior performance in disease
classification, both achieving 98% accuracy, while the Artificial Neural Network showed
significantly lower accuracy. The use of Al algorithms to diagnose periodontal disease from
intraoral images of 60 patients with varying degrees of the condition was tested in another
study [80]. The Al achieved an overall accuracy of 87%, with a sensitivity of 90% and speci-
ficity of 84%. These results were comparable to the clinical diagnoses made by experienced
periodontal specialists (86% accuracy), with no statistically significant difference between
the two methods. The study concluded that AI algorithms show promising potential for
diagnosing periodontal disease using intraoral image analysis.

In summary, it has become quite obvious the considerable potential of Al-driven
solutions in revolutionizing periodontal disease diagnosis and management. While each
study employs unique methodologies and achieves varying degrees of success, the over-
arching trend indicates that machine learning and deep learning models can effectively
analyze dental images and clinical data to detect bone loss, classify periodontitis stages,
and even predict disease progression with promising accuracy, often comparable to or even
exceeding the performance of human specialists. These advancements pave the way for
the development of valuable computer-assisted tools that can aid dental professionals in
early detection, treatment planning, and ultimately improving patient outcomes in the
fight against periodontal diseases, although further research and optimization are often
warranted for seamless clinical integration. Table 5 summarizes the Al applications in
periodontal disease detection and staging.
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Table 5. Al application in periodontal disease detection and staging.

AI Model/Approach

Data Used

Key Application

Performance Highlights

Deep Learning Framework

Panoramic X-rays

Classify periodontitis stages
(2018 classification)

92.9% accuracy, 80.7% recall, 72.4% precision

ML Algorithms (Decision Tree,
Random Forest, k-NN,

Clinical data, Panoramic X-rays

Simplify periodontitis staging /grading

Decision Tree and k-NN: 98.6% accuracy
(staging clinical data); ResNet50 + SVM:

ResNet50 + SVM) 88.2% accuracy (staging radiographic)

. . . 86.10% accuracy, 84.79% precision,
YOLOvV8 Bite-wing X-rays Stage periodontal bone loss 82.35% recall
Deep CNN algorithm Periapical radiographs Diagnose periodontal compromised 81.0% accuracy (premolars), 76.7% (molars)

teeth; predict extraction

for diagnosis

Deep Learning Ensemble

Tooth position, tissue segmentation,

89.45% overall diagnostic accuracy; 0.832

(YOLOv8, Mask R-CNN, Panoramic radiographs bone loss, periodontitis stage prediction ~ Pearson Correlation with expert diagnosis
TransUNet)
Mask R-CNN, U-Net Panoramic images {’enodontltl? staging (bone 90.73% accuracy in staging
0ss proportion)
Adaptive DenseNet with GRU Dental images Detect early periodontal bone loss, 94.45% accuracy

(AD-GRU) optimized by RRKOA

determine periodontitis stage

SVM, Decision Tree, ANN

Risk factors, periodontal

measurements, radiographic bone loss Classify periodontal diseases

SVM and Decision Tree: 98% accuracy

AT Algorithms (unspecified)

87% accuracy, 90% sensitivity, 84%

Intraoral images specificity (comparable to specialists)

Diagnose periodontal disease

3.2.6. Harnessing Artificial Intelligence for Enhanced Dental Diagnostics and
Patient Communication

Innovative applications of Al and machine learning in modern dentistry focus on
enhancing diagnostic capabilities and patient communication. From automated gingival
tissue analysis to comprehensive feature identification in intraoral images, these investiga-
tions highlight the transformative potential of Al in the dental field. A study investigated
the use of CNNs in deep learning to automatically detect and measure keratinized gingiva
in intraoral photographs [81]. Researchers compared the segmentation performance of
different CNN architectures using 600 photographs. The ResNet50 model achieved the
highest accuracy (91.4%) in identifying keratinized gingiva. Measurements of keratinized
gingiva width taken by the ResNet50 model were in excellent agreement with measure-
ments taken by clinicians, particularly when considering the bone and gingival phenotype.
While there were some statistically significant differences in measurements based on who
performed the measurement and the jaw being examined, the study concluded that the
automated segmentation using the ResNet50 model is a promising and feasible method
to assist dental professionals in evaluating keratinized gingiva, potentially saving time
and reducing the need for extensive experience. A user-friendly software was created for
dentists to visualize potential gingival recession in individual patients using 3D mouth
models generated from intraoral scans of 1057 volunteers [82]. The software allows dentists
to predict and simulate recession, including a slider for gradual demonstration, aiming to
improve patients’ understanding and motivation for better oral hygiene. Another study
developed and evaluated an Al model using the YOLOv5x architecture to automatically
identify and segment various features in intraoral photographs [83]. These features in-
cluded individual teeth with FDI numbering, frenulum attachments, gingival overgrowth
areas, and signs of gingival inflammation. The model was trained on 654 labeled intraoral
photographs, with a significant number of labels for each feature. The performance of the
Al model was statistically evaluated using sensitivity, precision, F1 score, and AUC. The
results showed high performance for tooth numbering (F1 score: 0.875, AUC: 0.989) and
frenulum attachment detection (F1 score: 0.830, AUC: 0.827), with moderate performance
for gingival overgrowth areas (F1 score: 0.714, AUC: 0.774) and gingival inflammation
signs (F1 score: 0.777, AUC: 0.802). The study concluded that Al systems can effectively
interpret intraoral photographs for automatic identification of anatomical structures and
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dental conditions, suggesting their potential to significantly advance digital dentistry in
both clinical and academic settings.

Collectively, these studies demonstrate the significant strides being made in leveraging
Al to improve the accuracy, efficiency, and patient-centeredness of dental practice. The
promising results suggest a future where Al-powered tools are seamlessly integrated into
clinical workflows, ultimately leading to better oral health outcomes.

3.2.7. Other Applications

Al-powered solutions, such as image inpainting and super-resolution, automated
diagnostic support for periodontal disease and tooth extraction, and risk assessment tools,
hold considerable promise for improving clinical practice. A study addressed the challenge
of limited field-of-view in bite-wing X-rays for deep learning algorithms predicting clinical
attachment levels (CALs) [84]. The researchers developed an inpainting algorithm using
generative adversarial networks (GANs) coupled with partial convolutions to predict the
missing out-of-view anatomical information. Using a large dataset of bite-wing and peri-
apical radiographs with corresponding clinician-recorded CAL, they trained and validated
their model. The results demonstrated a statistically significant improvement in CAL
prediction accuracy with the inpainting method (MAE of 1.04 mm) compared to methods
without inpainting (MAE of 1.50 mm). The study concluded that using this GAN-based
inpainting technique enhances the accuracy of CAL prediction from limited-view dental X-
rays, bringing Al-based CAL assessment closer to the 1 mm clinical measurement standard.
This suggests its potential as a valuable tool in assisting with periodontal disease diag-
nosis. A super-resolution algorithm using convolutional layers and ReLU activation was
developed to enhance the quality of dental X-ray images for improved periodontal disease
prediction [85]. The researchers trained the algorithm using 1500 dental X-ray images and
evaluated its performance quantitatively using root mean square error (RMSE) and struc-
tural similarity (SSIM) to compare the enhanced images with higher-resolution originals.
Additionally, they used no-reference image quality evaluators. The results demonstrated
that the proposed super-resolution method significantly improved image similarity and
no-reference quality scores by 1.86 and 2.14 times, respectively, compared to a standard
bicubic upsampling technique. The study concluded that this super-resolution algorithm is
effective for enhancing dental X-ray images and holds significant potential for improving
early diagnosis and prediction accuracy of periodontal disease in various applications.

In addition, AI models may assist in the decision-making process for tooth extraction
by providing an “extractability score” based on panoramic radiographs [86]. Researchers
trained a ResNet50 deep learning network using 26,956 individual tooth images extracted
from 1184 panoramic X-rays, classifying them as either “extraction-worthy” or “preserv-
able.” The Al model’s performance was evaluated against dentists on a separate test dataset.
The results showed that the best AI model achieved a significantly higher ROC-AUC of
0.901 in identifying preservable teeth compared to the average ROC-AUC of 0.797 for
dentists. Similarly, the AI model outperformed dentists in Precision-Recall AUC. The study
concluded that Al models can outperform dentists when predicting tooth extraction based
solely on X-ray images, and that providing more contextual information to the Al improves
its performance. The authors suggested that Al could be a valuable tool for monitoring
at-risk teeth and reducing errors in extraction decisions. Another study investigated the use
of an ANN to assess the grade (progression risk) of periodontitis in patients [87]. The ANN
was trained using data from patients, including gender, age, smoking status, approximal
plaque index, bleeding on probing, clinical attachment loss, and pocket depth. The ANN
assessment of periodontitis grade showed no statistically significant difference compared to
clinical periodontal assessments. The ANN demonstrated a sensitivity of 85.7% (correctly
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identified disease) and a specificity of 80.0% (correctly excluded disease). The overall accu-
racy of the ANN in correctly classifying patients according to their periodontitis grade was
84.2% in the training set, with 15.8% of patients being incorrectly classified. The authors
concluded that ANNSs have the potential to be a useful tool in dental practice for assessing
periodontitis progression risk, but further research is necessary to validate these findings.

Deep learning models, particularly CNNs, may also automatically and accurately
identify the cementoenamel junction (CEJ) in dental ultrasound images offering potential
for chairside periodontal assessment and improved dental care efficiency [88]. A deep
learning algorithm using Mask R-CNN has also successfully been created to automatically
segment periodontal ligaments (PDLs) in CBCT images by defining them as the overlap
between teeth and alveolar bone [89]. The model demonstrated high PDL segmentation
accuracy across most tooth types in qualitative analysis and achieved good quantitative
performance with an mloU of 0.667 and mDSC of 0.799. This Al-driven method for
automatic PDL segmentation in CBCT images holds promise for chair-side measurements,
potentially enhancing the efficiency and accuracy of diagnosis and treatment planning in
various dental specialties. Finally, Al-assisted dental monitoring can effectively remind
patients to maintain oral hygiene at home, leading to improved periodontal health and
long-term oral health quality of life, with the addition of health counseling providing
further benefits [90].

4. Discussion

This scoping review aimed to synthesize the current body of literature concerning the
application of Al in clinical periodontology. Our findings revealed a significant and rapidly
growing interest in leveraging Al, particularly deep learning methodologies, to address
various challenges in the diagnosis, treatment planning, and management of periodontal
diseases. The reviewed studies explored a diverse range of clinical applications, including
the detection and classification of alveolar bone loss, intrabony defects, furcation involve-
ments, gingivitis, dental biofilm, and calculus. Furthermore, Al has been investigated for its
potential in periodontal disease staging, risk assessment, prediction of tooth extractability,
identification of anatomical landmarks, and even in enhancing patient communication and
adherence to oral hygiene practices.

The studies extensively utilized CNN architectures for image analysis, demonstrating
their effectiveness in extracting relevant features from dental radiographs and intraoral pho-
tographs. Various established CNN models, such as VGG16, ResNet (including ResNet18,
ResNet50, ResNet101, ResNet50V2), Inception (including InceptionV3), DenseNet (includ-
ing DenseNet121), MobileNet, EfficientNet, and YOLO (including YOLOv4, YOLOVS,
YOLOvVS, YOLOvV11), were employed and often adapted or combined with other deep
learning techniques like Mask R-CNN, U-Net, Recurrent Neural Networks (e.g., GRU), and
even more recent architectures like Vision Transformers (ViTs). These models have shown
promising results in tasks ranging from binary classification (e.g., healthy vs. diseased) to
multi-class classification (e.g., different stages of periodontitis) and segmentation of peri-
odontal structures. The reported diagnostic accuracies, sensitivities, and specificities often
reached levels comparable to or even exceeding those of experienced dental professionals,
highlighting the potential of Al to augment clinical decision-making.

Comparing the findings across studies focusing on alveolar bone loss detection re-
veals a trend towards higher performance with more advanced CNN architectures and
the use of panoramic radiographs. While the earlier VGG16 model on periapical images
achieved moderate accuracy [25], studies employing architectures like Mask R-CNN, Cas-
cade R-CNN (in DiagnoCat), and pretrained networks like GoogLeNet InceptionV3 on
panoramic images demonstrated superior results, often surpassing the diagnostic capabili-
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ties of clinicians [26,27]. This suggests that the wider field-of-view and potentially richer
contextual information in panoramic radiographs, combined with the enhanced feature
extraction of more sophisticated models and transfer learning, contribute to improved
bone loss detection. Furthermore, ensemble models and those incorporating specific fea-
ture selection techniques, like the DenseNet121-mRMR-SVM combination, also showed
promising outcomes [28]. However, some studies indicated limitations in accurately as-
sessing severe bone loss and highlighted the dependency of accuracy on the tooth location,
suggesting that further refinement is needed to ensure consistent performance across
all clinical scenarios [28,36]. Interestingly, simply enhancing image resolution through
super-resolution techniques did not guarantee improved performance in downstream
classification tasks [34].

Comparing the findings for intrabony and furcation defect detection reveals that
the choice of imaging modality and Al architecture significantly impacts performance.
While YOLOvS8 demonstrated utility in classifying intrabony defect severity based on
radiographic angles, traditional machine learning with SVM on radiomic features achieved
comparable results to human observers in general defect detection [42,43]. The U-Net
architecture showed strong capability in detecting overall alveolar bone loss but struggled
with the more specific tasks of identifying vertical defects and furcation involvements on
panoramic radiographs [44]. In contrast, CNNs specifically designed for furcation defect
detection on periapical radiographs achieved high accuracy [45]. When evaluating various
CNN:s for three-wall intrabony defects on intraoral radiographs, VGG19 emerged as the top
performer [46]. Notably, ResNet architectures also demonstrated high accuracy in detecting
furcation involvement, particularly ResNet101V2 on CBCT images and ResNet18 on peri-
apical radiographs of mandibular molars [47,48]. Interestingly, the Vision Transformer (ViT)
outperformed conventional CNNs for furcation involvement classification on panoramic
radiographs, suggesting the potential of this newer architecture for specific periodontal
tasks [49]. These findings highlight the importance of tailoring both the Al model and the
imaging technique to the specific type of periodontal defect being investigated to achieve
optimal diagnostic accuracy.

Studies on automated gingivitis detection reveal a variety of successful approaches
utilizing different Al models and image analysis techniques. While an optimized artificial
neural network combined with fuzzy logic and multiple linear regression demonstrated
excellent potential, deep learning models, particularly CNNs, have shown robust perfor-
mance in analyzing intraoral images [50-52]. Faster R-CNN achieved promising accuracy
in gingival inflammation detection alongside perfect tooth detection, highlighting its ob-
ject detection capabilities [50-52]. Comparative studies of various ConvNets indicated
that ResNet and GoogLeNet architectures achieved the highest performance in chronic
gingivitis identification based on AUC [53]. More recent architectures like DenseNet, cou-
pled with novel feature extraction methods, and the Mamba-based Oral-Mamba model,
which outperformed U-Net in segmentation tasks including gingivitis, showcase the con-
tinuous evolution and increasing sophistication of Al in this domain [55,56]. Finally, Al
systems applied to intraoral photographs have demonstrated high sensitivity and speci-
ficity in detecting gingivitis, paving the way for accessible smartphone-based tools for
self-assessment and remote monitoring, although some platforms may require further
refinement to improve specificity [57,58].

Studies on the automated detection of biofilm, calculus, and gingival inflammation re-
veal the effectiveness of various Al approaches across different imaging modalities. U-Net
architectures demonstrate feasibility for biofilm detection [59], while multi-stage meth-
ods incorporating YOLOvS8 and SAM show promise for detailed plaque assessment [60].
AutoML platforms and advanced YOLO models also indicate potential for non-invasive
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plaque identification and staging [61]. Furthermore, specialized CNNs combined with
advanced imaging techniques like fluorescence and hyperspectral imaging achieve very
high accuracy in detecting both caries and calculus, and models like GC-U-Net excel in
segmenting gingival inflammation from intraoral scans [63-65].

Studies on periodontal disease detection and staging demonstrate that deep learning
frameworks, particularly those utilizing panoramic radiographs and advanced architec-
tures like ensemble models and Adaptive DenseNets with GRUs, achieve high accuracy,
often comparable to or even exceeding the performance of specialists [60-78]. While radio-
graphic analysis with hybrid CNN-SVM models shows promise, machine learning models
leveraging clinical data, such as decision trees and SVMs, can also achieve remarkably high
accuracy in staging periodontal disease [70-73]. Furthermore, YOLOvV8 shows success in
staging bone loss on bite-wing images, and ANNSs analyzing intraoral images offer diag-
nostic accuracy on par with experienced clinicians, highlighting the potential of diverse Al
approaches across various data types and imaging modalities [74-77].

A systematic review by Macri et al. (2024) explored the role and applications of Al in
dental implant planning, highlighting its potential to enhance precision and efficiency [91].
The review, based on searches in PubMed and Scopus, indicated a growing interest in Al for
implant planning, with evidence suggesting improvements in precision and predictability
compared to traditional methods. Key Al applications identified include the automated
detection of bones, maxillary sinus, neuronal structures, and teeth, signifying the latest
advancements in the field. Despite these promising prospects for optimizing clinical out-
comes and patient management, the authors also identified challenges such as the necessity
for high-quality training data and a lack of standardization in protocols, concluding that
further research is crucial to fully realize the Al potential and address implementation
hurdles in clinical practice. A scoping review by Mohammad-Rahimi et al. (2022) examined
the burgeoning application of deep learning in periodontology and oral implantology, iden-
tifying 47 relevant studies [92]. The review found that deep learning is being utilized for
diverse tasks, including the detection of periodontal conditions and bone loss, classification
of dental implant systems, and prediction of treatment outcomes, often demonstrating high
performance. However, significant heterogeneity in study designs, inconsistent reporting,
and a high risk of bias across most studies severely limit the comparability of findings
and the overall robustness of the evidence, underscoring the need for more rigorous and
standardized research in this promising field. While both reviews recognize the promising
prospects of Al for improving clinical outcomes and patient management, they consis-
tently emphasized critical limitations: the need for high-quality training data, a lack of
standardized protocols, and the pervasive methodological weaknesses in existing research,
all of which necessitate further rigorous investigation to fully harness the Al capabilities in
clinical practice.

Al is rapidly transforming dentistry, as highlighted by two recent reviews that un-
derscore its foundational principles and diverse applications [93,94]. A descriptive review
emphasized the Al role in enhancing diagnostic accuracy through the analysis of radio-
graphs and 3D scans, personalizing treatment plans, and streamlining workflows, with
specific uses in detecting oral lesions, mapping caries, and classifying teeth. It also noted
the AI utility in patient management via virtual assistants for consultations and scheduling,
and in dental education through VR simulations. Furthermore, this review detailed the Al
specialized applications across various dental fields, from pediatric dentistry to forensic
odontology, while acknowledging challenges like implementation costs and data privacy.
Complementing this, another comprehensive review traced the AI historical development,
classified it into weak and strong Al, and detailed its widespread diagnostic applications,
particularly with radiographic and optical images. This latter review also explored the
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synergy between Evidence-based Dentistry and Machine Learning, recommending the MI-
CLAIM checklist for transparency, and ultimately summarized the Al critical contributions
to dental diagnosis, decision-making, treatment planning, and outcome prediction.

4.1. Strengths and Limitations

This review benefits from its comprehensive approach, encompassing a wide spectrum
of Al applications in periodontology and providing an overview of the various deep learn-
ing models and methodologies employed. By synthesizing the findings across numerous
studies, we have identified key trends and promising areas of research. However, this
review is not without limitations. The included studies exhibit heterogeneity in terms of
datasets (size, source, imaging modality), methodologies, and evaluation metrics, which
makes direct comparison challenging. Furthermore, the majority of the reviewed studies
are retrospective and primarily focus on radiographic analysis. There is a relative paucity of
research on the integration of Al with clinical examination data and its real-time application
in clinical settings. The generalizability of the findings might also be limited by the specific
populations and settings in which the studies were conducted. While a systematic review
offers a rigorous approach to synthesizing evidence, the inherent heterogeneity in study
designs, interventions, and outcome measures across the included literature necessitated
a scoping review. The wide range of topics investigated within the application of Al in
periodontology precluded a strict adherence to systematic review methodology and its
associated quantitative synthesis. Therefore, this scoping review provides a broad overview
and critical discussion of the available evidence.

4.2. Future Research

Future research should focus on addressing these limitations. Larger, multi-center
studies utilizing diverse patient populations and incorporating both radiographic and
clinical data are needed to validate the performance and generalizability of Al models.
Prospective studies evaluating the impact of Al-powered tools on clinical workflow, treat-
ment outcomes, and patient satisfaction would be invaluable. Further investigation into the
interpretability and explainability of Al models in periodontology is crucial for building
trust and facilitating their adoption by clinicians. Exploring the integration of Al into
chairside diagnostic tools and patient education platforms also represents a promising
direction. Finally, research focusing on the ethical considerations, data privacy, and reg-
ulatory aspects of implementing Al in periodontal practice is essential for responsible
innovation in this field.

5. Conclusions

In conclusion, this review highlighted the prominent role of CNNs and their variants
as the dominant Al architecture for analyzing dental images across various periodontology
applications including enhanced diagnosis, treatment planning, and patient management.
While panoramic radiographs are frequently utilized for broad assessments, periapical
and bite-wing images remain crucial for detailed evaluations. The performance of Al
models varies depending on the complexity of the task and the specific tooth location being
analyzed, generally achieving higher accuracy in simpler detection tasks. Notably, Al often
demonstrates performance comparable to or even exceeding that of clinicians in specific
image analysis tasks. The development of ensemble models and task-specific architectures
holds significant promise for further performance improvements, underscoring the critical
importance of high-quality, accurately annotated training data for the success of all Al-
driven approaches in this field.
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