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Abstract: Background and Objectives: Sepsis still represents a syndrome with a high mortality.
A timely sepsis diagnosis and an early intervention are crucial for the disease outcomes.
Sepsis-associated acute kidney injury (SA-AKI) is highly prevalent but often diagnosed
late. We aimed to investigate whether serum interleukin-6 (IL-6) and leukocyte cell popula-
tion data (CPD) could be adequate biomarkers for the prediction of survival and SA-AKI
development. Materials and Methods: We conducted a prospective observational study in
a medical intensive care unit of a tertiary hospital centre in Zagreb, Croatia from June
2020 to October 2023. Adult patients with newly diagnosed sepsis were included and
classified as immunocompetent or immunocompromised. Blood samples were collected
upon admission. Results: A total of 150 patients were included in the study. Ninety-six
(64%) patients were immunocompetent and fifty-four (36%) were immunocompromised.
The median SOFA score was 8 (6–11). SA-AKI was diagnosed in 108 (72%) patients. ICU
and hospital mortality was 27.3% and 37.3%, with no significant difference between groups.
Significantly higher serum IL-6 levels were noted in the immunocompromised group, while
neutrophil granularity intensity was higher in the immunocompetent group. According
to logistic regression analyses, elevated IL-6 levels predicted a lethal ICU outcome, while
elevated IL-6 levels and neutrophil reactivity intensity were predictors of SA-AKI develop-
ment. A cluster analysis revealed two patient groups with different IL-6 concentrations,
and further studies indicated that the group with higher IL-6 values had significantly
higher SA-AKI occurrence and increased lethal outcomes. Conclusions: An early serum
IL-6 measurement regardless of the patients’ immune status indicates disease severity.
Its measurement in the early phase of disease presentation, potentially in the emergency
department, might facilitate ICU admission. Further research is warranted in the field of
leukocyte CDP application.
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intensity; neutrophil granularity intensity; sepsis-associated acute kidney injury; immuno-
compromised patient; biomarkers

Medicina 2025, 61, 468 https://doi.org/10.3390/medicina61030468

https://doi.org/10.3390/medicina61030468
https://doi.org/10.3390/medicina61030468
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/medicina
https://www.mdpi.com
https://orcid.org/0000-0002-0113-9982
https://orcid.org/0000-0002-1342-8722
https://orcid.org/0000-0002-3147-9160
https://orcid.org/0000-0002-9374-429X
https://doi.org/10.3390/medicina61030468
https://www.mdpi.com/article/10.3390/medicina61030468?type=check_update&version=1


Medicina 2025, 61, 468 2 of 13

1. Introduction
Sepsis is still a syndrome that carries a large mortality rate worldwide [1–4], con-

tributing to 19.7% of all global deaths [1]. Sepsis mortality is approximately 27% for all
hospitalized patients and increases to up to 42% when sepsis is treated in the intensive care
unit (ICU) [2]. The “Third International Consensus Definitions for Sepsis and Septic Shock”
from 2016 defined sepsis as a life-threatening state due to a dysregulated host response to
infection [5]. Time of sepsis diagnosis, type of infection, and patient comorbidities all play
a role in survival. Sepsis-induced organ failure is common, but can be overlooked. In the
critically ill, sepsis is the most common cause of acute kidney injury (AKI) [6–9]. The 28th
Acute Disease Quality Initiative (ADQI) workgroup defined sepsis-associated acute kidney
injury (SA-AKI) as the presence of both sepsis [5] and AKI criteria [6] occurring within
seven days of sepsis diagnosis [7]. SA-AKI is probably a result of multiple deleterious
events that occur during sepsis [10]. The reported prevalence of SA-AKI varies from <1%
to 66% [8].

Interleukin-6 (IL-6) has been studied as an early marker of sepsis and AKI. High values
of IL-6 might serve as a good predictor of sepsis mortality [11,12]. Also, in patients with
AKI regardless of etiology, higher IL-6 levels at ICU admission predicted worse short-term
renal function and an increased mortality [13]. The results of the PROWESS study showed
that increased levels of IL-6 were a risk factor for AKI in patients with sepsis, emphasizing
the role of inflammation in its development [14]. IL-6 measurement is more accessible after
the recent COVID-19 pandemic [15–18]. Also, the emergence of chimeric antigen receptor
(CAR) T-cell therapy and other forms of modern immunotherapy that can result in cytokine
release syndrome made the idea of quick point-of-care IL-6 measurements a little more
feasible [19].

Morphological changes in activated leukocytes depicted through leukocyte cell pop-
ulation data (CPD) could be viewed as an even earlier biomarker than the biochemical
early biomarkers of sepsis such as IL-6. When our body encounters a certain pathogen, the
innate cellular immunity is promptly activated. Neutrophils and monocytes change their
morphology and function in an attempt to localize the infection. Nowadays, hematology
analyzers can provide information about a specific white blood cell’s size, fluorescence
(cell’s metabolic activity), and internal structure summarized in numerical data. This addi-
tional information is readily available, without the need for more blood sampling, or for
the manual revision of blood smears [20]. In the past decade, we witnessed an increase in
researchers’ interest in the clinical implementation of leukocyte CPD [21–35]. The results are
diverse, with some authors acknowledging the usefulness of these data for detecting early
sepsis or for distinguishing infection from malignant disease [20,21,26], while others found
that it did not aid in assessing disease severity or predicting outcomes [24,25,34]. Currently,
a lack of standardization is a significant downfall to this interesting diagnostic niche [20].
Given the two technologies currently in use (Coulter and Sysmex), CPD parameters can-
not be used interchangeably. Additionally, the lack of harmonization among different
instruments and laboratories, as well as less analytical quality specifications, are notable
limitations [20]. However, given the potential of these parameters, efforts have been made
toward CPD harmonization between Sysmex XN modules, as demonstrated by Seghezzi
et al. [36]. Nonetheless, further improvement and research in this field is warranted.

Nowadays, the number of immunocompromised patients is increasing. These patients
are at a higher risk of a complicated course of infection [37,38]. We are facing a challenge
distinguishing the patients who would benefit from an earlier ICU admission from those
who would never need it. Azoulay et al. demonstrated a significant survival benefit from
early ICU admission for patients with hematologic malignancies [39]. A comprehensive
physical examination combined with a thorough patient history remains a cornerstone in



Medicina 2025, 61, 468 3 of 13

the decision-making process, but laboratory findings such as lactate levels, biomarkers
of inflammation, and specific organ dysfunction add to the overall clinician’s impression
of the patient’s disease severity. Considering the limited capacities of ICUs, incorporat-
ing additional data that would help clinicians identify which patients could benefit more
from ICU settings in the early course of sepsis could somewhat ease the decision. The
value of IL-6 in immunocompromised patients with sepsis has been studied to some de-
gree [40], with recent research mainly focused on the pediatric population [41–43]. In the
adult population with sepsis, immunocompromised patients accounted for a small pro-
portion of the included population [12,44,45]. Moreover, leukocyte CPD studies involving
immunocompromised patients with sepsis are scant [46,47].

Our work aimed to investigate whether serum IL-6 or leukocyte CPD could be ade-
quate biomarkers for survival prediction and SA-AKI development in immunocompetent
and immunocompromised patients with newly diagnosed sepsis admitted to the ICU and,
therefore, aid the clinicians’ assessment of sepsis severity.

2. Materials and Methods
2.1. Study Design

We conducted a prospective observational study in a medical ICU of the University
Hospital Centre Zagreb, Croatia, from June 2020 to October 2023.

Adult patients hospitalized in the ICU because of newly diagnosed sepsis were con-
sidered for inclusion. Only the patients who gave their informed consent were included
(if the patients were not able to give their consent, it was attained from their legal repre-
sentatives). Exclusion criteria were pregnancy, administration of more than one dose of
an empirical antibiotic before ICU admission, and chronic therapy with IL-6 inhibitors.
COVID-19-positive patients were also excluded from the study.

Sepsis was defined according to the “Third International Consensus Definitions for
Sepsis and Septic Shock” as a suspected infection and an acute rise in patients’ SOFA score
(Sequential Organ Failure Assessment), by 2 points or more [5]. The AKI diagnosis was
made according to KDIGO guidelines, including both serum creatinine and/or urine output
criteria [6]. SA-AKI was defined according to the ADQI 28 Workgroup definition as the
presence of both sepsis and AKI criteria occurring within seven days of sepsis diagnosis [7].

Patients were divided into two groups according to their immunological status (im-
munocompetent and immunocompromised) before the indexed hospitalization. A patient
was considered immunocompromised if they had one or more of the following: neutropenia
(neutrophil count < 1 × 109/L), human immunodeficiency virus (HIV) infection, glucocorti-
coid therapy (>0.5 mg/kg > 30 days) and/or immunosuppressive and/or cytotoxic therapy,
recipient of solid organ or hematopoietic stem cell transplant (allogenic or autologous),
active malignant disease (hematological or other) [48]. Patients were considered cured of
malignant disease after five or more years of remission.

Patients’ demographic data and comorbidities were gathered at admission to the
medical ICU. Disease severity scores (SOFA, Acute Physiology and Chronic Health Evalua-
tion II (APACHE II), and Simplified Acute Physiology Score II (SAPS II)) were calculated
at admission. Blood samples were collected within the first 24 h after admission to the
ICU. A complete blood count including leukocyte CPD (immature granulocytes (IG), total
reactive lymphocytes (RE-LYMP), antibody-synthesizing lymphocytes (AS-LYMP), neu-
trophil granularity intensity (NEUT-GI), neutrophil reactivity intensity (NEUT-RI)), routine
biochemistry parameters (glucose, bilirubin, urea, creatinine, C-reactive protein (CRP),
procalcitonin (PCT)), lactate and IL-6 levels were determined for all included patients.
The complete blood count and leukocyte CPD analysis were performed using the Sys-
mex XN-3000 hematology analyzer. Blood samples for IL-6 level determination were
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promptly transported to the laboratory, centrifuged at 3500 rpm for 15 min, separated into
two aliquots, and stored at a temperature of −20 ◦C until analysis. Biochemical parame-
ters (glucose, bilirubin, urea, creatinine, CRP, PCT) and IL-6 values were assessed using
Roche Hitachi Cobas cee6000 (Roche, Mannheim, Germany). IL-6 levels were obtained
using an electrochemiluminescence method. Blood lactate levels were obtained using a
point-of-care blood gas analyzer Gem Premier 3500 (Instrumentation Laboratory, Bedford,
MA, USA). All laboratory data, except for IL-6 levels, were immediately available for the
attending physicians.

2.2. Statistical Analysis

A statistical analysis was performed using the IBM SPSS Statistics 29.0.1.0. software.
A normality analysis was carried out using the Shapiro–Wilk test, while the homogeneity
of variances between groups was tested using Levene’s test. Appropriate parametric
or nonparametric tests were performed. Numerical variables with normal distribution
are presented as mean and standard deviation (SD), and those that did not demonstrate
normal distribution as median and interquartile range (IQR). Categorical variables are
presented through frequency distributions, while their comparison between two patient
groups was carried out using the chi-square test. Numerical variables were compared
between the two groups using the Student’s t-test or Mann–Whiney U-test. A binary
logistic regression was used to determine predictors of patients’ outcomes: ICU mortality
and SA-AKI development. The usual prerequisites for binary logistic regression analysis
were met. A p value < 0.05 was considered statistically significant. A power analysis for
a binary logistic regression analysis indicated that the minimum sample size to yield a
statistical power of 0.90 with an alpha level of 0.05 and an odds ratio of 1.91 (H0 = 0.3,
H1 = 0.45) is 146. This analysis was carried out using G*Power for Windows, version 3.1.9.7.
This study was approved by the Ethics Committee of the University Hospital Centre Zagreb,
Croatia (Class: 8.1-20/25-2 Number: 02/21 AG, date of approval: 24 February 2020) and
conducted according to the guidelines of the Declaration of Helsinki.

3. Results
3.1. Patients’ Characteristics and Outcomes

A total of 150 consecutive patients with sepsis were included, 79 (52.7%) male and
71 (47.3%) female, with a median age of 68.5 years (IQR 56–77). Arterial hypertension,
diabetes mellitus, and coronary artery disease were the most frequent comorbidities. The
median SOFA score was 8 (6–11). Ninety-six (64%) patients were immunocompetent, while
the remaining fifty-four (36%) were immunocompromised (Table 1).

Table 1. Patients’ characteristics with a comparison regarding their immunological status.

Total Population
(N = 150)

Immunocompetent
Group (N = 96)

Immunocompromised
Group (N = 54) p Value

Age (median, IQR) 68.5 (56–77) 70 (55.3–78.8) 65 (57.8–74) 0.91
Male, N (%) 79 (52.7) 48 (50.0) 31 (57.4) 0.48

Arterial hypertension, N (%) 84 (56) 53 (55.2) 31 (57.4) 0.93
Diabetes mellitus, N (%) 44 (29.3) 31 (32.3) 13 (24.1) 0.38

CAD, N (%) 32 (21.3) 15 (15.6) 17 (31.5) 0.04 *
SOFA (median, IQR) 8 (6–11) 8 (5–12) 8 (6–11) 0.85

APACHE II (median, IQR) 22 (17–28) 22 (15–27) 23 (18–29) 0.17
SAPS II (median, IQR) 44 (35–60) 43 (32–57) 50 (38–64) 0.05

CRP (mg/L) (median, IQR) 203 (106–294) 208 (109–310) 197 (103–286) 0.38
PCT (µg/L) (median, IQR) 15.5 (2.1–53.2) 16.5 (2.3–60.8) 6.3 (1.9–39.8) 0.15
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Table 1. Cont.

Total Population
(N = 150)

Immunocompetent
Group (N = 96)

Immunocompromised
Group (N = 54) p Value

IL-6 (pg/mL) (median, IQR) 552 (99–4847) 387 (79–1370) 1796 (180–5001) 0.02 *
IG (%) (median, IQR) 1.4 (0.7–3.6) 1.5 (0.8–3.8) 1.0 (0.5–3.4) 0.29

NEUT-GI (SI) (mean, SD) 154 (±4.9) 154 (±4.9) 152 (±4.6) 0.03 *
NEUT-RI (FI) (median, IQR) 55.5 (50.2–63.6) 56.6 (51.9–64.4) 51.7 (48.8–63.6) 0.07

Legend: CAD coronary artery disease, SOFA Sequential Organ Failure Assessment, APACHE II Acute Physi-
ology and Chronic Health Evaluation II, SAPS II Simplified Acute Physiology Score II, CRP C-reactive protein,
PCT procalcitonin, IG Immature Granulocytes, NEUT-GI Neutrophil Granularity Intensity, SI Scatter Inten-
sity, NEUT-RI Neutrophil Reactivity Intensity, FI Fluorescence Intensity, IQR interquartile range, * statistically
significant p < 0.05.

A difference was found in the levels of serum IL-6, which was significantly higher in
the immunocompromised group (p = 0.02). The NEUT-GI was higher in immunocompetent
patients (p = 0.03). The immunocompromised patients had more coronary artery diseases
(p = 0.04), while other demographic data and comorbidities were similar (Table 1).

The immunocompromised group was heterogeneous. The causes of their immuno-
compromised state are presented in Table 2.

Table 2. Immunocompromised patient group (N = 54) and the causes of the immunocompro-
mised state.

Cause Prevalence, N (%)

Chronic corticosteroid therapy 28 (52)
Malignant disease (solid organ) 24 (44)

Hematologic malignancy 16 (30)
Solid organ transplantation 4 (7)

Hematopoietic stem cell transplantation * 5 (9)
Autoimmune disease ** 10 (19)

Legend: * Hematopoietic stem cell transplantation included autologous (2 (4%)) and allogenic (3 (6%)) transplan-
tation. ** Autoimmune diseases included: 4 (7%) patients with rheumatoid arthritis, 2 (4%) with ANCA positive
vasculitis, 1 (2%) with HLA-B27 positive arthritis, 1 (2%) with juvenile arthritis, 1 (2%) with myasthenia gravis
and 1 (2%) with Crohn’s disease.

SA-AKI was diagnosed in 108 (72%) patients, while acute renal replacement therapy
was needed in 27 (18%) patients. The development of SA-AKI, the need for acute renal
replacement therapy, the ICU or hospital length of stay, and the hospital or ICU mortality
did not differ between groups (Table 3).

Table 3. Patients’ clinical outcomes with comparison regarding immunological status.

Total Population
(N = 150)

Immunocompetent
Group (N = 96)

Immunocompromised
Group (N = 54) p Value

SA-AKI, N (%) 108 (72) 69 (71.9) 39 (72.2) 1.0
Acute RRT, N (%) 27 (18) 20 (20.8) 7 (13) 0.33

ICU mortality, N (%) 41 (27.3) 21 (21.9) 20 (37) 0.07
Hospital mortality, N (%) 56 (37.3) 31 (32.3) 25 (46.3) 0.139
ICU length of stay, days,

median (IQR) 6 (3–11) 7 (3–11) 5 (2.75–8.5) 0.058

Hospital length of stay,
days, median (IQR) 13 (7–23.5) 13 (8–22) 10.5 (4–26.5) 0.419

Legend: SA-AKI sepsis-associated acute kidney injury, RRT renal replacement therapy.

As to microbiology findings, hemoculture-positive sepsis accounted for 77 (51.3%)
cases (Gram-negative sepsis in 39 (26%) patients, Gram-positive sepsis in 31 (20.7%) patients,
polymicrobial sepsis in 5 (3.3%) and fungal sepsis in 2 (1.3%)). Hemoculture-negative sepsis
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accounted for the remaining 73 (48.7%) patients. The most common pathogens were
Escherichia coli and Klebsiella pneumoniae followed by Staphylococcus aureus. There was no
significant difference between the immunocompetent and immunocompromised patient
groups regarding the type of sepsis (hemoculture-positive sepsis or hemoculture-negative
sepsis) (p = 0.179). Also, ICU and hospital mortality did not differ between patients who
had hemoculture-positive and those who had hemoculture-negative sepsis (p = 0.969;
p = 1).

3.2. Logistic Regression Models and Cluster Analysis

In a logistic regression model in which lethal outcome in the ICU was the depen-
dent variable, while the predictor variables were NEUT-GI, NEUT-RI, IG, IL-6, and the
immunological status of the patient was a categorical variable, we found that IL-6 val-
ues are a statistically significant predictor of outcome (b = 0.000, SE = 0.000, p = 0.000,
OR = 1.000), which would mean that a unit change in IL-6 value does enhance the odds of
a lethal outcome to a slight extent (Table 4).

Table 4. Logistic regression and odds ratio (OR) in predicting ICU mortality.

b SE z p OR 95% CI

(Intercept) 3.792 5.124 0.740 0.459 44.326 0.002–1,088,750.744
NEUT-GI −0.045 0.034 −1.350 0.177 0.956 0.894–1.020
NEUT-RI 0.020 0.013 1.590 0.112 1.021 0.995–1.048

IG −0.016 0.033 −0.488 0.626 0.984 0.915–1.044
IL-6 0.000 0.000 3.813 0.000 * 1.000 1.000–1.001

Immunocompromised patient 0.420 0.355 1.185 0.236 1.522 0.752–3.037

Legend: NEUT-GI Neutrophil Granularity Intensity, NEUT-RI Neutrophil Reactivity Intensity, IG Immature
Granulocytes (%), IL-6 Interleukin-6, SE Standard Error, OR Odds Ratio, 95% CI 95% Confidence Interval,
* statistically significant p < 0.05.

In a logistic regression model, in which SA-AKI development in the ICU was the
dependent variable, while the predictor variables were NEUT-GI, NEUT-RI, IG, IL-6, and
the immunological status of the patient was a categorical variable, we found that IL-6
values are a statistically significant predictor of outcome (b = 0.000, SE = 0.000, p = 0.004,
OR = 1.000), which would mean that a unit change in IL-6 value enhances the odds of
SA-AKI development in the ICU discretely. We also found that NEUT-RI is a statistically
significant predictor of SA-AKI development (b = 0.059, SE = 0.022, p = 0.007, OR = 1.061),
which would mean that a unit change in NEUT-RI would slightly enhance the odds of
SA-AKI development (Table 5).

Table 5. Logistic regression and odds ratio (OR) in predicting SA-AKI development.

b SE z p OR 95% CI

(Intercept) 4.577 4.510 1.015 0.310 97.252 0.015–753,888.447
NEUT-GI −0.048 0.030 −1.590 0.112 0.954 0.898–1.010
NEUT-RI 0.059 0.022 2.703 0.007 * 1.061 1.020–1.111

IG −0.022 0.031 −0.690 0.490 0.979 0.922–1.046
IL-6 0.000 0.000 2.907 0.004 * 1.000 1.000–1.001

Immunocompromised
patient −0.212 0.329 −0.644 0.520 0.809 0.426–1.552

Legend: NEUT-GI Neutrophil Granularity Intensity, NEUT-RI Neutrophil Reactivity Intensity, IG Immature
Granulocytes (%), IL-6 Interleukin-6, SE Standard Error, OR Odds Ratio, 95% CI 95% Confidence Interval,
* statistically significant p < 0.05.

Following the results of the logistic regression analyses, we carried out a cluster
analysis which resulted in two groups of patients divided according to their IL-6 serum
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levels (Table 6). A chi-square test was then performed for the IL-6 clusters and SA-AKI
development (chi-square = 12.07, df = 1, p < 0.001), and for the IL-6 clusters and ICU
mortality (chi-square = 12.59, df = 1, p < 0.001). These results implicate that high IL-6 values
are strongly associated with SA-AKI development and a lethal ICU outcome.

Table 6. Descriptive statistics for the two clusters based on the measured serum IL-6 values.

Cluster N Median IQR

1 41 4972.07 4946.79–4994.83
2 92 180.04 70.14–557.3

Legend: N number of patients in a cluster, IQR interquartile range.

4. Discussion
Our study prospectively included 150 patients with newly diagnosed sepsis. The

immunocompetent and immunocompromised groups were well matched according to
gender, age, disease severity, and standard inflammatory markers such as CRP and PCT. We
observed three major differences between the two groups of patients: the level of IL-6 and
NEUT-GI at ICU admission and the presence of coronary artery disease in patients’ history.
The patients were severely ill at admission according to the severity scores. The overall
ICU mortality was 27.3%, being somewhat higher in the immunocompromised group of
patients, but without a significant difference in comparison to the immunocompetent group
of patients.

The logistic regression analyses showed that elevated IL-6 levels are a predictor of ICU
mortality and SA-AKI development, with high values vastly implying the development
of both outcomes according to the additional cluster analyses. IL-6 has, up till now, been
researched in both sepsis and acute kidney injury, in various in vitro, animal, and human
studies, in children and adults. Numerous studies showed that IL-6 measurements have
a place in survival prediction for patients with serious infections [11,12]. Greenhill et al.
provided a possible explanation of the relationship between the increased production of
IL-6 and sepsis mortality. They demonstrated, in a genetically modified mouse model of
Gram-negative septic shock (lipopolysaccharide/Toll-like receptor 4 (LPS/TLR4) medi-
ated septic shock), that IL-6 trans-signalling (involving the soluble sIL-6Rα) exacerbates
TLR4-dependent inflammatory responses. These genetically modified mice demonstrated
hyperresponsiveness to LPS due to a specific upregulation of IL-6 in a gp130/STAT3- and
TLR/Mal-dependent manner, indicating that both pathways promote the production of
IL-6 in response to LPS [49]. Experimental animal models also suggest that IL-6 could play
an integral part in the development of AKI, as shown by Chen et al., as the TLR4 (−/−)
mice did not develop AKI after an ischemic insult compared to TLR4 (+/+) wild-type
mice. Only TLR4 (+/+) leukocytes after infiltrating the injured kidney produced IL-6 due
to their interaction with high-mobility group protein B1 (HMGB1) released from injured
renal cells [50]. IL-6 seems to play a role not just in the kidney, but also in a multiorgan
perspective, acting directly or through mediators; for example, in lung injury that develops
after AKI [51,52]. In pediatric postcardiac surgery patients, IL-6 levels were higher in
patients who developed AKI and high levels were associated with a prolonged period of
mechanical ventilation [53]. Urinary IL-6 also seems to be able to distinguish acute from
chronic kidney disease, albeit this is a conclusion based on a study carried out in dogs [54].
Our results might contribute to the notion that serum IL-6 measurements, maybe already
in the emergency department, could help differentiate the patients who could benefit from
earlier ICU admittance and hopefully enhance sepsis survival.

Our research indicated a high incidence of SA-AKI, reaching 72%. Such a high ob-
served incidence of SA-AKI could be mostly explained either by dehydration in the early
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course of sepsis and the initial low urine output, or accentuated vigilance in the ICU for
this organ dysfunction. However, a decreased urine output, especially in the early course of
sepsis, may just be a response to sepsis and not necessarily a marker of kidney injury [55].
In the studied population the need for acute renal replacement therapy was rather low
(only 18%). This could implicate that we are dealing with different mechanisms of injury on
differently capacitated patients, with specific phenotypes, subphenotypes, and endotypes
of SA-AKI [7]. Timely preventive strategies for AKI progression were also applied. Some
injuries resolve with the restoration of adequate tissue perfusion, others with adequate
antimicrobial therapy, discontinuation of nephrotoxic therapy, etc. [56]. As our results
showed, serum IL-6 is a predictor of SA-AKI development regardless of the patients’ im-
mune status, which could indicate the direction in which more attention should be pointed
towards—recognizing kidney dysfunction and diminishing the risk with preventive mea-
sures, such as implementing nephrotoxic stewardship, obtaining adequate volume status,
tissue perfusion, etc. [56,57].

Interestingly, only one parameter of the leukocyte CPD was significantly different
between the two groups. NEUT-GI, a morphological sign of cell activity, was higher in the
immunocompetent group. NEUT-RI, neutrophil reactivity intensity, was also higher in the
immunocompetent group, though not statistically significant. This could be interpreted as
a sign of an adequate host response to infection. On the other hand, extremely elevated
IL-6 levels could point to a maladaptive host response which is more common in the im-
munocompromised group. Studies in patients with various malignant diseases have shown
that high serum IL-6 levels are associated with a poor prognosis and survival rate [58].
However, NEUT-RI was a significant predictor for SA-AKI development regardless of the
immune status of the patient. This could indicate that a genetic predisposition for kidney
injury could determine whether elevated levels of circulating activated neutrophils cause
kidney injury, which could be similar to the conclusions from the earlier studies with TLR
(+/+) mice and IL-6 [50]. The pathophysiology of these findings is beyond the scope of this
research. Further research regarding cell morphology changes and cytokine production
is needed to elucidate the connection between leukocyte activation (specific cell type and
specific morphological change), elevated levels of IL-6, and organ-specific damage.

The notion that immunocompromised patients had coronary artery disease more
frequently might be explained by chronic corticosteroid use (52% of the immunocompro-
mised patients). Studies from Wei et al. and Souverein et al. indicate that cardiovascular
disease is more prevalent in corticosteroid users [59,60]. Specific autoimmune diseases like
rheumatoid arthritis and systemic lupus erythematosus are associated with an increased
cardiovascular risk [61–63]. Moreover, kidney transplant recipients also have an increased
cardiovascular risk due to chronic kidney disease [64]. As a possible limitation of this
finding, it must be emphasized that immunocompromised patients undergo a thorough
cardiological examination before cardiotoxic chemotherapy or major surgery. As patients
from the immunocompetent group do not undergo this screening process, they could be
underdiagnosed regarding coronary artery disease.

The strength of our study is the relatively large number of included patients with
sepsis who were admitted to the ICU early in the course of their disease, together with a
prospective study design. Additionally, we included a significant proportion of immuno-
compromised patients in our study population. Our results could help fill the gap in the
current understanding of IL-6 and leukocyte CPD application in the early course of sepsis
in both immunocompetent and immunocompromised patients.

The limitations of this study include a heterogeneous population of immunocompro-
mised patients, whose immunocompromised status was determined according to their
medical history and chronic therapy but was not based on a specific laboratory finding.
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Further larger cohort studies are warranted, with emphasis on multi-centre studies, to
adequately assess and navigate the clinical implementation of IL-6 and leukocyte CPD in
septic patients.

5. Conclusions
Sepsis continues to carry a high mortality rate and SA-AKI is its well-known, but

often overlooked, companion. Our results demonstrated that the early measurement of
serum IL-6 and leukocyte CPD (especially neutrophil-related parameters) are an additional
indicator of disease severity, regardless of the patients’ immune state. High IL-6 values were
strongly associated with an increased ICU mortality and SA-AKI development. Therefore,
an initial measurement of IL-6 in the emergency department could facilitate timely ICU
admission for patients with sepsis. Further research is warranted in the field of leukocyte
CDP application.
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