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Abstract: Objectives and Background: To present a novel technique of treatment for a patient with
basilar invagination. Basilar invagination (BI) is a congenital condition that can compress the
cervicomedullary junction, leading to neurological deficits. Severe cases require surgical intervention,
but there is debate over the choice of approach. The anterior approach allows direct decompression
but carries high complication rates, while the posterior approach provides indirect decompression
and offers good stability with fewer complications. Materials and Methods: A 15-year-old boy with
severe myelopathy presented to our hospital with neck pain, bilateral upper limb muscle weakness,
and hand numbness persisting for 4 years. Additionally, he experienced increased numbness and gait
disturbance three months before his visit. On examination, he exhibited hyperreflexia in both upper
and lower limbs, muscle weakness in the bilateral upper limbs (MMT 4), bilateral hypoesthesia below
the elbow and in both legs, mild urinary and bowel incontinence, and a spastic gait. Radiographs
revealed severe basilar invagination (BI). Preoperative images showed severe BI and that the spinal
cord was severely compressed with odontoid process. Results: The patient underwent posterior
surgery with the C-arm free technique. All screws including occipital screws were inserted into
the adequate position under navigation guidance. Reduction was achieved with skull rotation and
distraction. A follow-up at one year showed the following results: Manual muscle testing results and
sensory function tests showed almost full recovery, with bilateral arm recovery (MMT 5) and smooth
walking. The cervical Japanese Orthopedic Association score of the patient improved from 9/17 to
16/17. Postoperative images showed excellent spinal cord decompression, and no major or severe
complications had occurred. Conclusions: Basilar invagination alongside Klippel–Feil syndrome
represents a relatively uncommon condition. Utilizing a posterior approach for treating reducible BI
with a C-arm-free technique proved to be a safe method in addressing severe myelopathy. This novel
navigation technique yields excellent outcomes for patients with BI.

Keywords: basilar invagination; Klippel–Feil syndrome; navigation; C-arm free; novel technique

1. Introduction

Klippel–Feil Syndrome (KFS) is an abnormal fusion of two or more vertebrae in
the cervical spine caused by a failure in division or normal segmentation in early fetal
development. It is believed that KFS occurs in 1 out of 42,000 births [1]. The clinical triad of
KFS consists of a shortened neck leading to facial asymmetry, a low hairline, and restricted
neck mobility. These characteristics were first described by Andre Klippel and Maurice Feil
in 1912 [2]. Patients with KFS may have spinal stenosis, neurologic deficit, cervical spinal
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deformity, and instability. Patients with KFS are sometimes asymptomatic, however this
instability may potentially lead to death [3].

Basilar impression was first reported by Ackermann in 1790 [4]. Basilar impression
is characterized by odontoid displacement of the axis inwards towards the foramen mag-
num due to acquired softening of bones at the base of the skull, which can compress
the cervicomedullary junction, causing neurologic deficit [5]. On the other hand, basilar
invagination (BI) is defined as congenital upward displacement of vertebral elements into
a normal foramen magnum with normal bone. The primary cause of BI is believed to be
the presence of microtraumas resulting from repetitive lesions caused by instability [6].
In 1911, Schuller reported the radiological criteria for BI [7]. Diagnosis is currently made
by observing protrusion of the odontoid over McGregor’s line [8] or McRae’s line [9].
McGregor’s line is defined as a line connecting the posterior edge of the hard palate to the
most caudal point of the occipital curve. The diagnosis of BI is established when the tip of
the dens lies more than 4.5 mm above this line [8]. McRae’s line, on the other hand, is a
radiographic line drawn on a lateral skull radiograph. BI is diagnosed when the tip crosses
this line [9] (Figure 1). The symptoms of BI are headache and/or neck pain, cranial nerve
dysfunction, and quadriplegia [10].
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Figure 1. McGregor’s line [8] and McRae’s line [9].

The authors present the technical notes of a case involving a 15-year-old boy exhibiting
symptoms attributed to basilar impression associated with Klippel–Feil syndrome. This
study received approval from the ethics committee of our institute (No. 480), and necessary
consents were obtained from the patient and his parents.

2. Case Presentation
2.1. Patient History

A 15-year-old boy with severe myelopathy was referred to our hospital. He had been
experiencing neck pain, muscle weakness in both upper limbs, and numbness in both
hands for 4 years. Increased numbness and gait disturbance emerged 3 months before
his visit to our hospital. He is unable to run and has recently experienced dropping a cup
several times.

2.2. Physical Examination

During the examination, he exhibited hyperreflexia in both upper and lower limbs
and muscle weakness in both arms (MMT 4). Hypoesthesia was observed bilaterally below
the elbows and in both legs. Additionally, he demonstrated clumsiness in both hands, mild
urinary and bowel incontinence, and a spastic gait. His 10 s grip and release test yielded a
score of 16 in both hands, with grip power measured at 20 kg in the right hand and 17 kg in
the left. The cervical Japanese Orthopedic Association (JOA) score of the patient was 9/17.
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2.3. Preoperative Imaging

Preoperative cervical radiographs revealed a short neck and a C2/3 fusion anomaly.
Dens protrusion into the foramen magnum measured 9.4 mm above McGregor’s line and
4.2 mm above McRae’s line, with an anteroposterior (AP) diameter of the foramen magnum
measuring 10.7 mm (Figure 2). Preoperative magnetic resonance imaging (MRI) depicted
severe compression of the cervicomedullary cord by the dens, with a cervicomedullary
angle (CMA) measuring 116 degrees (Figure 3).
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(C) Lateral extension radiogram. (B,C) show a C2/3 fusion anomaly. A dens protrusion into the
foramen magnum measured 9.4 mm above McGregor’s line and 4.2 mm above McRae’s line.

Medicina 2024, 60, x FOR PEER REVIEW 3 of 13 
 

 

2.3. Preoperative Imaging 
Preoperative cervical radiographs revealed a short neck and a C2/3 fusion anomaly. 

Dens protrusion into the foramen magnum measured 9.4 mm above McGregor’s line and 
4.2 mm above McRae’s line, with an anteroposterior (AP) diameter of the foramen 
magnum measuring 10.7 mm (Figure 2). Preoperative magnetic resonance imaging (MRI) 
depicted severe compression of the cervicomedullary cord by the dens, with a 
cervicomedullary angle (CMA) measuring 116 degrees (Figure 3).  

 
Figure 2. Preoperative radiograms, (A) Antero-posterior radiogram, (B) Lateral flexion radiogram, 
(C) Lateral extension radiogram. (B,C) show a C2/3 fusion anomaly. A dens protrusion into the 
foramen magnum measured 9.4 mm above McGregor’s line and 4.2 mm above McRae’s line. 

 
Figure 3. Preoperative MR imaging, (A) T1 weighted mid-sagittal MR imaging, (B) T2 weighted 
mid-sagittal MR imaging, (C) T2 weighted axial MR imaging at C1, (D) T2 weighted axial MR 
imaging at C1-2, (E) T2 weighted axial MR imaging at C2, (F) T2 weighted axial MR imaging at C3. 
The spinal cord was compressed severely due to basilar invagination. The red arrows show severe 
compression of the cervicomedullary cord by the dens. 

The CT scan clearly depicted the C2/3 fusion anomaly (Figure 4), while the 3D-CT 
scan revealed an abnormal course of the vertebral artery (Figure 5). 

Figure 3. Preoperative MR imaging, (A) T1 weighted mid-sagittal MR imaging, (B) T2 weighted
mid-sagittal MR imaging, (C) T2 weighted axial MR imaging at C1, (D) T2 weighted axial MR imaging
at C1-2, (E) T2 weighted axial MR imaging at C2, (F) T2 weighted axial MR imaging at C3. The spinal
cord was compressed severely due to basilar invagination. The red arrows show severe compression
of the cervicomedullary cord by the dens.

The CT scan clearly depicted the C2/3 fusion anomaly (Figure 4), while the 3D-CT
scan revealed an abnormal course of the vertebral artery (Figure 5).
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3D CT, (C) Lateral view 3D-CT angiogram, (D) Posterior view 3D CT angiogram.

2.4. Surgery

The patient underwent posterior reduction with cervical pedicle screw fixation under
the guidance of O-arm navigation, without a C-arm. The patient was positioned prone,
with the neck in a neutral position on a Jackson frame equipped with a full carbon skull
clamp to facilitate the O-arm scan. The procedure was conducted under neuromonitoring.
The occiput and C1–5 were exposed with a 10 cm posterior midline incision. Initially, a
reference frame was attached to the C2 spinous process (Figure 6).
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Subsequently, the O-arm was positioned, and three-dimensional (3-D) reconstruction
images were obtained. Following the verification of each navigated mapped spinal in-
strument, bilateral C2 laminar screws (Figure 7) and C4–5 pedicle screws (Figure 8) were
inserted under navigation. Pedicle screws were not inserted into the C2 vertebra because
of bony anomaly and vertebral arteries course.
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Then, under navigation guidance, the thickest portion for occiput screws was identi-
fied, and a total of 6 occipital screws were inserted using a navigated high-speed burr and
pointer (Figure 9). The Mayfield skull clamp was loosened and the skull was rotated for-
ward, with traction under neuromonitoring (Figures 10 and 11). Finally, two cobalt–chrome
rods were connected to the screw head and more distraction was performed with screw
distraction for adequate reduction (Figure 12).

Medicina 2024, 60, x FOR PEER REVIEW 5 of 13 
 

 

instrument, bilateral C2 laminar screws (Figure 7) and C4–5 pedicle screws (Figure 8) were 
inserted under navigation. Pedicle screws were not inserted into the C2 vertebra because 
of bony anomaly and vertebral arteries course. 

 
Figure 7. Bilateral C2 laminar screw, (A) sagittal view, (B) Axial view, (C) Oblique view. 

 
Figure 8. Pedicle screw fixation, (A) sagittal view, (B) Axial view, (C) Oblique view. 

Then, under navigation guidance, the thickest portion for occiput screws was 
identified, and a total of 6 occipital screws were inserted using a navigated high-speed 
burr and pointer (Figure 9). The Mayfield skull clamp was loosened and the skull was 
rotated forward, with traction under neuromonitoring (Figures 10 and 11). Finally, two 
cobalt–chrome rods were connected to the screw head and more distraction was 
performed with screw distraction for adequate reduction (Figure 12).  

 
Figure 9. Occipital screwing, (A) sagittal view, (B) Axial view, (C) 3D view. The adequate screw 
point is indicated by the navigated pointer. 

Figure 9. Occipital screwing, (A) sagittal view, (B) Axial view, (C) 3D view. The adequate screw point
is indicated by the navigated pointer.



Medicina 2024, 60, 616 6 of 12
Medicina 2024, 60, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 10. Reduction maneuver, (A) Before reduction, (B) Rotational reduction with Mayfield skull 
cramp rotation, (C) Distraction with screws and rods, (D) After reduction. 

 
Figure 11. Neuromonitoring, (A) Intraoperative Neuromonitoring Systems (NIM™ 3.0), (B) Monitor 
image. Intraoperative neuromonitoring was used to prevent neurological deterioration during the 
reduction maneuver. 

 
Figure 12. Intraoperative images, (A) Occipital screwing, (B) Rod insertion. 

  

Figure 10. Reduction maneuver, (A) Before reduction, (B) Rotational reduction with Mayfield skull
cramp rotation, (C) Distraction with screws and rods, (D) After reduction.

Medicina 2024, 60, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 10. Reduction maneuver, (A) Before reduction, (B) Rotational reduction with Mayfield skull 
cramp rotation, (C) Distraction with screws and rods, (D) After reduction. 

 
Figure 11. Neuromonitoring, (A) Intraoperative Neuromonitoring Systems (NIM™ 3.0), (B) Monitor 
image. Intraoperative neuromonitoring was used to prevent neurological deterioration during the 
reduction maneuver. 

 
Figure 12. Intraoperative images, (A) Occipital screwing, (B) Rod insertion. 

  

Figure 11. Neuromonitoring, (A) Intraoperative Neuromonitoring Systems (NIM™ 3.0), (B) Monitor
image. Intraoperative neuromonitoring was used to prevent neurological deterioration during the
reduction maneuver.

Medicina 2024, 60, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 10. Reduction maneuver, (A) Before reduction, (B) Rotational reduction with Mayfield skull 
cramp rotation, (C) Distraction with screws and rods, (D) After reduction. 

 
Figure 11. Neuromonitoring, (A) Intraoperative Neuromonitoring Systems (NIM™ 3.0), (B) Monitor 
image. Intraoperative neuromonitoring was used to prevent neurological deterioration during the 
reduction maneuver. 

 
Figure 12. Intraoperative images, (A) Occipital screwing, (B) Rod insertion. 

  

Figure 12. Intraoperative images, (A) Occipital screwing, (B) Rod insertion.

2.5. Postoperative Imaging

Postoperative radiographs and CT scans demonstrated successful reduction, realign-
ment, and appropriate screw positioning. The tip of the dens now measured 6.3 mm above
McGregor’s line and 2.5 mm below McRae’s line, with the cervicomedullary angle (CMA)
measuring 130 degrees. Additionally, the anteroposterior (AP) diameter of the foramen
magnum increased to 19.3 mm (Figures 13 and 14).
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2.6. One Year Follow-Up

Postoperative MRI indicated excellent spinal cord decompression (Figure 15).
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3. Results

Surgically, the patient was successfully treated, with a surgical time of 139 min and
an estimated blood loss of 180 mL. During the one-year follow-up, manual muscle testing
results and sensory function tests indicated almost full recovery in both bilateral arms
(MMT 5). The patient is now walking smoothly without any gait disturbance, and the
cervical Japanese Orthopedic Association score improved from 9/17 to 16/17. Postoperative
radiographs demonstrated excellent spinal cord decompression, with no loss of reduction or
malalignment. The cervicomedullary angle (CMA) postoperatively measured 130 degrees.
Furthermore, there were no major or severe complications reported.

4. Discussion

Klippel–Feil syndrome is a complex condition mainly characterized by congenital
malformation of the cervical spine where two or more vertebrae are fused. Patients typ-
ically present with radiculopathy and myelopathy, although instances of quadriparesis
are infrequent [11,12]. These neurological symptoms are usually caused by spondylosis
or instability of the adjacent segments to the fused vertebrae or by radicular compression
within frequently undersized neuroforamina. Feil categorized Klippel–Feil Syndrome (KFS)
into three types: Type 1 entails extensive fusion affecting multiple vertebrae, Type 2 entails
fusion of two vertebrae, and Type 3 encompasses either of the other types combined with
anomalies in the thoracic or lumbar spine [13]. The clinical presentation varies based on
the extent and levels of fusion. Typically, fusions involving the cranio-cervical junction or
extensive fusions are associated with earlier onset due to cosmetic deformity, pain, and
delayed developmental milestones. Manifestation of lower cervical fusion often occurs
later in life [14]. Type 2 patterns may typically be asymptomatic and reported as incidental
findings on radiographic imaging, or when subaxial instability occurs, potentially leading
to basilar impression, as observed in our patient’s case.

Basilar invagination (BI) refers to the migration or displacement of the odontoid in
an upward direction, resulting in compression of the spinomedullary cord. The lower
brain stem can be significantly affected by the dens, as it is positioned abnormally through
the foramen magnum and into the posterior fossa [15]. Congenital basilar invagination
may coincide with other abnormalities, such as atlanto-occipital fusion, atlas hypopla-
sia, hemirings of C1 with lateral mass spreading, odontoid abnormalities, Klippel–Feil
Syndrome (KFS), and achondroplasia [16]. Suspecting basilar invagination is warranted
when the C1–2 facet complex cannot be sufficiently visualized on a standard open-mouth
anteroposterior view of the upper cervical spine [9]. Despite the wide use of plain radio-
graphs with dynamic views as screening methods, MRI is still the best imaging modality
for diagnosis because it shows how much neural impingement there is and the degree of
cord compression [17]. CT angiography (CTA) is strongly advised preoperatively to detect
any anomalous variations of the carotid and vertebral arteries, aiming to reduce the risk of
intraoperative injury [18–20].

The use of traction with external fixation is considered in the treatment of BI, but this
technique may benefit only a few patients without any neurological deficits [21]. Sekir
recommended the utilization of traction. For the minority of patients without neurological
disturbances, preoperative traction, both clinically and radiologically, for disease progres-
sion has been proposed as a viable alternative to operative stabilization [21,22]. In a case
series by Goel et al., 82 patients without any associated Chiari malformation underwent
cervical traction, leading to quick clinical improvement in 82% of these individuals after
traction application [23]. Given that the patients included in the aforementioned studies
exhibited mild neurological symptoms, this method may not be dependable for patients with
severe basilar invagination and accompanying neurological deficits. Nonetheless, external
fixation methods such as the halo vest pose several challenges, including pin loosening and
infection risks, incomplete cervical spine fixation, inability to prevent progressive deformity,
and the potential for serious complications like pin over penetration [24]. Following the ap-
proach outlined by Abumi et al., we opted not to undertake traction and manual reduction
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preoperatively to mitigate the risk of complications associated with external fixation. Surgical
intervention was determined as the appropriate course of action for the patient [25].

Surgical treatment options for basilar invagination (BI) encompass various approaches
and techniques, yet ongoing debate surrounds the optimal timing and choice of ap-
proach [26]. Historically, Chamberlain reported suboccipital craniectomy with cervical
laminectomy and dural opening in 1939 [27]. His concept was based on relieving the
compression on the cervicomedullary junction. However, the morbidity and mortality
in these patients with this technique remained high [28]. The treatment algorithm for
craniocervical junction abnormalities is divided into reducible and irreducible groups [26].
For reducible ones, posterior fixation is recommended. Irreducible pathologies are further
divided on the basis of site of compression. For ventral stable pathologies, a transoral direst
decompression is recommended. For ventral unstable ones, a transoral decompression
followed by posterior occipitocervical fixation is ideal [29]. Another classification of BI was
proposed by Goel et al. in 1998 [30]. He divided basilar invagination into two groups on
the basis of presence or absence of Chiari malformation. In group 1, there is invagination
of the odontoid process into the foramen magnum and it indents into the brainstem. In
group 2, the assembly of the odontoid process, anterior arch of the atlas, and superior clivus
migration in unison results in a reduction of the posterior cranial fossa volume.

The anterior approach is typically favored in cases where the protrusion of the odon-
toid process is irreducible and brainstem compression is severe [26,31]. The anterior
approach is notably demanding, involving a complex technique with significant complica-
tions such as a higher incidence of postoperative infection and respiratory tract disorders.
Additionally, it entails increased invasiveness and poses challenges in achieving primary
fixation, often necessitating posterior instrumentation in subsequent cases [32]. Further-
more, the learning curve of anterior decompression is very steep. Decompression and
instrumentation after acceptable reduction with the posterior approach is feasible in many
cases, where the lesion can be managed with less complications related to the anterior
approach [33]. Recently, a new endonasal endoscopic approach to pathologies of the ante-
rior craniocervical junction was reported [34]. This technique is supported by preliminary
anatomical and clinical studies exploring the feasibility and usefulness of approaching
many ventral pathologies of the craniocervical junction.

The posterior approach generally provides stable fixation without requiring supportive
external fixation or secondary stabilization. Unlike the anterior approach, this allows
for early mobilization [35]. One of the most severe complications for occipito-cervical
(O-C) fusion is postoperative dysphagia/dysphonia [36]. Reintubation after OC fusion is
sometimes very difficult and requires tracheotomy [37]. To prevent this complication, Izeki
recommended that the OC2 angle should be fixed at least at more than the preoperative
O-C2 angle in the neutral position [38]. Neuromonitoring is mandatory for performing
posterior indirect decompression because intraoperative OC alignment change may cause
neurological deterioration. In irreducible cases, additional anterior surgery is necessary
alongside posterior fixation [26].

In our novel technique, we demonstrate the effectiveness of a C-arm-free approach
utilizing the O-arm with navigation via the posterior approach, allowing for reduction,
decompression, and fixation of C0, C2, C4, and C5. Postoperatively, follow-up revealed
successful reduction and rigid fixation with smooth recovery, without any serious compli-
cations occurring. The advantages of our new technique are: (1) Occipital screws can be
inserted the thickest part of the skull very precisely under navigation guidance; (2) Pedicle
screws can be inserted even in congenial anomaly vertebrae; (3) The most important
point is that there is no radiation hazard to the surgeons and surgical staff. It has been
reported that the accuracy of screw placement in the cervical spine is enhanced by the
O-arm [39]. Additionally, the safe performance of atlantoaxial fixation using the O-arm
has been demonstrated by Wada et al. [40]. Changes in navigation accuracy may occur
during surgery, particularly if the position of the reference frame is inadvertently altered,
potentially impacting the procedure’s accuracy. Reviewing the literature (Table 1) [41–44],
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the main technique used for screw insertion is the free hand technique using C-arm fluo-
roscopy, though there is still a risk of mal-insertion or violating important vital structures
using this technique [45–47]; although, to our knowledge, no other study has addressed
occipital screw fixation under navigation. Van de Kelft et al. (2012) reported a pedicle
screw violation rate of 2.5% using navigation in the cervical spine [47]. In contrast, free-
hand and fluoroscopy-assisted techniques have been linked to significantly higher rates of
incorrect pedicle screw placement, ranging from 15% to 40% [48,49]. Another drawback
of the C-arm technique is the increased radiation exposure for both the surgical team
and the patient compared to our C-arm-free approach, which minimizes exposure for all
parties involved [50].

Table 1. Cranial screw position, lengths, and diameters.

Author Safe Permissible Sagittal Plane
Angulation (Degrees)

Medial Plane Angulation
(Degrees)

Screw Length
(mm)

Screw Diameter
(mm)

La Marca et al. [41] 30 caudal 10 medial 22 (intraosseous) 3.5
Uribe et al. [42] Zero to 5 cranial 15 medial 20 (intraosseous) 3.5

El-Gaidi et al. [43] 4 ± 6.2 caudad angulation (range,
from 5 cranially to 12 caudally)

30 ± 6.7
(range, 20–40) medial

22 ± 3.1
(intraosseous) 3.5

Bosco et al. [44] From 0 to 5 cranial 23–38 medial 19.9 ± 2.3
(intraosseous) 3.5

Positioning occipital screws in occipitocervical instability poses a significant chal-
lenge, particularly to precision. It is crucial to accurately identify the thickest part of the
lower occiput to safely insert the screws without risking injury to surrounding anatomical
structures or the dura, which could lead to cerebrospinal fluid (CSF) leakage (Figure 7).
Successful placement of occipital screws necessitates a thorough understanding of bone
anatomy and its relationship with neurovascular structures, the spinal canal, hypoglossal
canal, vertebral arteries, and the jugular foramen [44]. Using our technique, utilizing a
navigation-mapped high-speed burr and probe, we achieved precise insertion of occipital
screws with optimal length by directly visualizing and identifying the thickest part of the
occiput. This approach, guided by navigation, ensures high accuracy and enhances screw
purchase and strength.

This study has several limitations, including a small sample size, short follow-up
duration, lack of a control group, and the need for statistical assessment of patient outcomes
and complications with a larger population. A comparative study comparing navigational
support to current methods of treating BI is warranted to further evaluate the efficacy of
this technique.

5. Conclusions

Basilar invagination (BI) occurring alongside Klippel–Feil syndrome is a relatively
uncommon occurrence. Utilizing a C-arm-free navigation technique for posterior reduction,
indirect decompression, and fusion under neuromonitoring proves to be a safe approach
in addressing this condition. The OC2 angle should be fixed at least at more than the
preoperative O-C2 angle in the neutral position. This innovative method yields favorable
outcomes for individuals with BI and a reducible odontoid.
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