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Abstract: The application of cardiac magnetic resonance (CMR) imaging in clinical practice has
grown due to technological advancements and expanded clinical indications, highlighting its su-
perior capabilities when compared to echocardiography for the assessment of myocardial tissue.
Similarly, the utilization of implantable cardiac electronic devices (CIEDs) has significantly increased
in cardiac arrhythmia management, and the requirements of CMR examinations in patients with
CIEDs has become more common. However, this type of exam often presents challenges due to
safety concerns and image artifacts. Until a few years ago, the presence of CIED was considered an
absolute contraindication to CMR. To address these challenges, various technical improvements in
CIED technology, like the reduction of the ferromagnetic components, and in CMR examinations,
such as the introduction of new sequences, have been developed. Moreover, a rigorous protocol
involving multidisciplinary collaboration is recommended for safe CMR examinations in patients
with CIEDs, emphasizing risk assessment, careful monitoring during CMR, and post-scan device
evaluation. Alternative methods to CMR, such as computed tomography coronary angiography with
tissue characterization techniques like dual-energy and photon-counting, offer alternative potential
solutions, although their diagnostic accuracy and availability do limit their use. Despite technological
advancements, close collaboration and specialized staff training remain crucial for obtaining safe
diagnostic CMR images in patients with CIEDs, thus justifying the presence of specialized centers
that are equipped to handle these type of exams.

Keywords: cardiac magnetic resonance; cardiac implantable electronic device; pacemaker;
implantable cardiac defibrillator; loop recorder; safety; artifacts

1. Introduction

The use of cardiac magnetic resonance (CMR) in clinical practice has significantly
increased in recent years due to technological advancements, increased availability, and
expanded clinical indications [1–3]. Compared to echocardiography, CMR allows for the
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identification of myocardial tissue alterations, such as edema and fibrosis [4–6]. Addition-
ally, it represents the gold standard method for evaluating cardiac morpho-functionality.
To achieve this purpose, cine steady-state free procession (SSFP) sequences, T1-weighted
and T2-weighted black-blook (T1-BB and T2-BB) sequences, T1 and T2 mapping, and
late gadolinium enhancement (LGE) sequences are used. Identifying these alterations is
essential for the diagnosis, prognosis, and management of major cardiac pathologies such
as ischemic heart disease, non-ischemic cardiomyopathies, and myocarditis [7–9].

Meanwhile, in the field of cardiology, there has been a rapid increase in the use of
implantable electronic devices (CIEDs) such as pacemakers (PKMs), implantable cardiac
defibrillators (ICDs), and implantable loop-recorders (ILRs). These devices have signif-
icantly contributed to improvements in diagnosing and treating patients with cardiac
rhythm disorders, consequently reducing morbidity and mortality [10,11]. Additionally,
since one of the main causes of arrhythmia is cardiac fibrosis, it is estimated that 50–70%
of patients with CIEDs require CMR during their lifetime. CMR imaging can be used in
patients with CIED in various clinical scenarios, such as evaluating the causes of heart
failure, studying the etiology of cardiomyopathies, and in cases of acute inflammatory
conditions such as myo-pericarditis. Indeed, when compared to other imaging techniques
such as computed tomography, this method provides much greater diagnostic accuracy
through a high signal-to-noise ratio and contrast-to-noise ratio [12,13].

Until a few years ago, the presence of CIEDs was considered an absolute contraindica-
tion to performing CMR due to the significant safety concerns related to the interaction
between the magnetic field and the electronic device. Moreover, they caused significant
artifacts in the MRI image. However, in recent years, technological innovation has greatly
reduced these issues. Nevertheless, there are still limitations in performing these exams,
and while an increasing number of patients with CIEDs require CMR, the presence of
these devices often raises concerns and skepticism among radiologists and cardiologists
when performing CMR. Therefore, this topic is frequently debated within the scientific
community [14,15].

This work aims to provide a brief overview of CRM and CIED, as well as to review
the scientific literature, identifying issues related to the interaction of CIEDs with CMR,
both in terms of safety and image degradation, providing possible solutions, proposing
a protocol for the management and execution of these exams, and suggesting alternative
radiological methods for cardiac tissue characterization.

2. Brief Overview of Cardiac Magnetic Resonance

CMR plays a leading role in the morpho-functional and tissue evaluation of the heart.
Cine SSFP sequences are T1/T2-weighted sequences that use short repetition and echo
times. They allow for the evaluation of wall thickness, cardiac mass, chamber volumes,
and segmental and global contractile functions. In addition, they enable the anatomical
and functional evaluation of heart valves, identifying pathological alterations such as
insufficiency and stenosis [16,17].

Besides morpho-functional assessment, cardiac tissue characterization represents
the true added value of CMR comparatively to echocardiography. Sequences used for
this purpose include T1-BB, T2-BB, T1 mapping, T2 mapping, and LGE sequences. T1-
BB and T2-BB sequences are inversion recovery sequences that allow for the anatomical
evaluation and identification of myocardial edema, which are present in cases of myo-
pericarditis. T1 and T2 mapping sequences allow for the calculation of native T1 and T2
values, identifying diffuse fibrosis, adipose infiltration, and myocardial edema occurring in
numerous pathologies such as sarcoidosis, amyloidosis, cardiomyopathies, myocarditis,
and Anderson–Fabry disease [18–20].

The LGE sequence is one of the most important sequences in CMR. It consists of
inversion recovery T1-weighted gradient echo sequences, performed 8–10 min after con-
trast agent administration, allowing the identification of focal fibrosis, which may be a
consequence of ischemic heart disease, or may be a part of the pathological process of nu-
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merous cardiomyopathies, such as hypertrophic cardiomyopathy, dilated cardiomyopathy,
infiltrative cardiomyopathy, and arrhythmogenic cardiomyopathy, or may be a result of
inflammatory pathologies, such as myocarditis [21–24].

Understanding the tissue alterations of cardiac pathologies and the possibility of
visualization via non-invasive CMR imaging allows, on the one hand, to reduce the number
of cardiac biopsies for diagnosis and, on the other hand, better patient management, paving
the way for personalized treatments [5,25,26].

3. Brief Overview of Cardiac Implantable Electronic Devices

PKMs are CIEDs that regulate or restore cardiac activity by generating electrical
impulses with durations ranging from 0.5 to 2.5 milliseconds and voltages ranging from
0.1 to 15 volts, occurring up to 300 times per minute. PKMs are equipped with pulse
generators, electrocatheters, and sensing circuits. The electrodes are positioned in the
cephalic vein or subclavian vein via an incision under the clavicle, and are subsequently
connected to the generator implanted in a pre-pectoral pocket.

PMKs are classified as single-chambered and dual-chambered. Single-chambered
PKMs stimulate the atrium or ventricle, while dual-chambered PKMs coordinate the
activity of both cardiac chambers. There are also PKMs that involve placing electrodes
in the right atrium, right ventricle, and coronary sinus branches; this is to stimulate the
infero-lateral wall of the left ventricle in case of cardiac resynchronization therapy (CRT).

The two most common indications for PKM implantation are atrioventricular block
(AVB) and sick sinus syndrome (SSS), which cause excessively slow heartbeats. SSS is
a group of cardiac arrhythmias that includes sinus node dysfunction, sinus arrest, sinus
bradycardia, and atrial tachyarrhythmias alternating with bradycardia (tachy-brady syn-
drome). CRT is indicated in symptomatic patients who are clinically refractory to New York
Heart Association (NYHA) class III/IV heart failure therapy, with a wide QRS complex,
with left bundle branch block morphology and ejection fraction falling below 35% [27,28].

The main complications that may occur during PKM implantation are pocket and elec-
trocatheter infections, the displacement of the PMK, pneumothorax, hematoma formation,
thromboembolism, and sepsis.

The most significant innovations in PKMs include the introduction of X-ray identifiable
generators and the use of leadless PKMs that combine a generator and electrode catheter
with direct implantation into the cardiac chamber, which are both indicated in cases of
problematic traditional PKM implantation, such as subclavian vein obstruction, pocket
infection, and electrode catheter fracture [29–31].

Figure 1 shows a patient with a dual-chamber PMK.
An ICD is a CIED which is capable of detecting and treating irregular heart rhythms,

including severe arrhythmias such as ventricular tachycardia and ventricular fibrillation.
The ICD is equipped with a generator, capacitor to store and distribute shocks, micro-
processor for data collection and control, and electrocatheters for sensing, stimulation,
and defibrillation.

An ICD is indicated for primary prevention in patients at risk of developing poten-
tially fatal sustained ventricular arrhythmias, such as in cases of ischemic heart disease,
hypertrophic cardiomyopathy, and long QT syndrome, or for secondary prevention in
patients with previous cardiac arrest or sustained ventricular arrhythmias. Finally, ICDs
may be indicated in cases of heart failure, especially with reduced ejection fraction.

The main complications of ICDs can arise from inappropriate shocks, infections,
thrombotic events, perforations, and severe bleeding.

Subcutaneous ICDs (S-ICDs) have been developed and are frequently used in younger
patients without the need of pacing, and with problematic venous access, secondary to
the presence of dialysis or complex cardiac architecture, as well as in cases of previous
device infection. Moreover, the generator is in the left-lateral thoracic wall, and is larger
than transvenous ICDs [30,32]. Figures 2 and 3 show patients with a dual-chamber ICD
and an S-ICD, respectively.



Medicina 2024, 60, 522 4 of 18Medicina 2024, 60, 522 4 of 20 
 

 

 
Figure 1. X-ray of a 68-year-old patient with a dual-chamber pacemaker. The figure shows the chest 
X-ray of a patient with a dual-chamber pacemaker in posteroanterior (A) and lateral (B) views, with 
the generator located in the left pre-pectoral pocket (white arrow) and electrocatheters located in 
the right atrial appendage and right ventricle apex (dotted arrow). 
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Figure 1. X-ray of a 68-year-old patient with a dual-chamber pacemaker. The figure shows the chest
X-ray of a patient with a dual-chamber pacemaker in posteroanterior (A) and lateral (B) views, with
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right atrial appendage and right ventricle apex (dotted arrow).
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Figure 2. An X-ray of a 73-year-old patient with a dual-chamber implantable cardiac defibrillator. 
The figure shows the chest X-ray of a patient with a dual-chamber implantable cardiac defibrillator 
in posteroanterior (A) and lateral (B) views, with the generator located in the left pre-pectoral pocket 
(white arrow) and the defibrillator electrocatheter located in the right ventricle (dotted arrow). 

 
Figure 3. An X-ray of a 65-year-old patient with a subcutaneous implantable cardiac defibrillator. 
The figure shows the chest X-ray of a patient with a subcutaneous implantable cardiac defibrillator 
in a posteroanterior view, with the large generator located in the left lateral wall (white arrow) and 
the subcutaneous defibrillator electrocatheter located in the left parasternal position (dotted arrow). 

Figure 2. An X-ray of a 73-year-old patient with a dual-chamber implantable cardiac defibrillator.
The figure shows the chest X-ray of a patient with a dual-chamber implantable cardiac defibrillator in
posteroanterior (A) and lateral (B) views, with the generator located in the left pre-pectoral pocket
(white arrow) and the defibrillator electrocatheter located in the right ventricle (dotted arrow).
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Figure 3. An X-ray of a 65-year-old patient with a subcutaneous implantable cardiac defibrillator. 
The figure shows the chest X-ray of a patient with a subcutaneous implantable cardiac defibrillator 
in a posteroanterior view, with the large generator located in the left lateral wall (white arrow) and 
the subcutaneous defibrillator electrocatheter located in the left parasternal position (dotted arrow). 

Figure 3. An X-ray of a 65-year-old patient with a subcutaneous implantable cardiac defibrillator.
The figure shows the chest X-ray of a patient with a subcutaneous implantable cardiac defibrillator in
a posteroanterior view, with the large generator located in the left lateral wall (white arrow) and the
subcutaneous defibrillator electrocatheter located in the left parasternal position (dotted arrow).

The ILR is a rectangular-shaped CIED without wires, which allows for prolonged
electrocardiogram (ECG) monitoring for up to three years. The LR contains a pair of sensing
electrodes at each end and stores a bipolar ECG. The storage capacity is limited to 49 min,
during which the LR records ECGs by deleting previous recordings, hence the name ILR. It
can be activated automatically with a preset criterion, or by the patient themselves when
symptoms occur. The ILR is inserted subcutaneously in the left parasternal region above
the fourth intercostal space under local anesthesia.

Compared to 24 h ECGs, the ILR has the advantage of identifying recurrent and
infrequent cardiac arrhythmias. In fact, the PICTURE study reported that the ILR identified
cardiac arrhythmias in 78% of patients with unexplained syncope [33]. Therefore, the
main indications for ILR implantation are recurrent symptomatic arrhythmias, unexplained
syncope, risk stratification following myocardial infarction, the evaluation of cryptogenic
strokes, and the management of patients with atrial fibrillation [34,35].

There are different types of ILRs, and the smallest available system measures
44.8 mm × 7.2 mm.

Possible complications include pain at the implant site, a local skin reaction, implant
site infection, and device migration [36,37].

Figure 4 shows a patient with an ILR.
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Figure 4. An X-ray of a 60-year-old patient with a loop recorder. Figure 4 shows the chest X-ray of a
patient in posteroanterior (A) and lateral (B) views, with a subcutaneous loop recorder located in the
anterior chest wall (white arrow).

4. Safety Considerations

It is necessary to know the safety considerations for MRIs in patients with CIEDs.
“MRI Safe” items are non-conductive, non-metallic, and non-magnetic materials that pose
no known hazards in MRI environments. Historically, CIEDs were considered an absolute
contraindication to MRIs due to the presence of ferromagnetic materials. Currently, there are
no PMKs or ICDs that have been declared “MRI safe” by the Food and Drug Administration.

Since 2008, manufacturers have developed “MRI-conditional” CIEDs with a reduced
ferromagnetic material, improved lead design, and specific programming modes to mitigate
risks. MRI-conditional labeling requires the use of generators and leads from the same
manufacturer. The manufacturer defines approved magnetic field strengths and SARs for
scanning. The first “MRI conditional” CIED was approved by the FDA in 2011 [38,39].

All currently available CIEDs are “MRI conditional”, meaning that, under specific
conditions, they are proven to pose no known hazards in the MRI. The conditions for
most devices are as follows: scanning at 1.5 or 3.0 Tesla; SAR < 2.0 W/kg; gradient slew
rate of <200 T/m/s; patient assistant (handheld activator) must not be taken into the
MRI-controlled room (MRI unsafe); and the minimization of the sequence length and
number [5,40].

CIEDs that do not meet MRI conditionality criteria are labeled as “MRI non-conditional”
or “MRI unsafe”. Indeed, there are some absolute contraindications of MRI in patients
with CIEDs. Additional non-conditional components include epicardial leads; abandoned
leads; fractured leads; lead adapters or extenders; devices implanted in non-thoracic lo-
cations; a CIED system with leads from different manufactures, even if those leads have
been approved as part of another MR-conditional system; and temporary transvenous
PMKs, because these are more prone to spontaneous dislodgement and heating during MRI.
Moreover, relative contraindications of MRI in patients with CIEDs include lead implanted
in six weeks before the MRI, as well as whether the field of view of the exam overlaps
with the region of the CIED. Understanding the potential effects of MRIs on CIEDs while
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adhering to safety guidelines is crucial to ensure the well-being of patients during these
procedures [41].

5. Issue: Safety

Safety issues relating to CIEDs with CMR mainly arise from the device’s interaction
with the magnetic field. Indeed, during CMR, there are three main magnetic fields: a static
magnetic field (measured in Tesla), which in clinical practice can be 1.5 T or 3.0 T, and
two dynamic magnetic fields, secondary to the activation of gradients and radiofrequency
pulses [42].

The static magnetic field can cause CIED movement, caused by the attraction of the
magnetic field forces to the device’s ferromagnetic components present in the battery and
reed switch, a magnetically activated switch that allows the device to be placed in “magnet
mode”. Moreover, device dislodgement is related to the strength of the magnetic field,
its spatial gradient, the device’s mass and shape, and its magnetic susceptibility. Modern
CIED components limit the use of ferromagnetic materials, which has reduced the risk of
mechanical effects. In ICDs, the amount of ferromagnetic components is generally higher
when compared to PMKs. To account for potential issues, CMR scans should be avoided
for up to six weeks following implantation. However, the movements induced by these
forces are negligible for magnetic fields up to 1.5 T [43].

The magnetic fields resulting from the activation of gradients and radiofrequency
pulses are dynamic, and can induce electrical currents in the device. This can poten-
tially cause irregularities in the ECG, with possible altered recordings, cancellations, or
modifications of previous recordings, leading to incorrect diagnoses.

To manage the electromagnetic effects, electrophysiologists manually reprogram
CIEDs both before and after MRI scans. Reed switch activation can reprogram the PMK
and ICD to a “magnet mode” when exposed to a strong magnetic field, such as during a
CMR. This mode allows for the PMK to be set to asynchronous pacing (AOO, VOO, or
DOO), where the device paces the ventricle at a continuously programmed heart rate, or in
a sensing only mode (ODO), based on the patient’s characteristics. Theoretically, program-
ming pacing to an asynchronous mode could be problematic because it might compete
with the heart’s intrinsic rhythm; therefore, pacing is often set at a high heart rate [42].
Additionally, the reed switch allows for the suspension of anti-tachycardia therapies in
ICDs. Indeed, ICDs can experience malfunctions if not properly programmed before an
MRI exam, leading to the incorrect detection of ventricular arrhythmias, anti-tachycardia
pacing, or shocks. In patients with ICDs, anti-tachycardia therapy is turned off during the
MRI, being reactivated afterward.

Continuous monitoring of the patient during the MRI is essential, with external
defibrillation pads ready for use. If a severe brady/tachy arrhythmia occurs, the CMR
examination must be interrupted, and the patient must be treated promptly. Moreover,
CIED can undergo a power-on reset (POR) phenomenon. The POR acts as a protective
mode, resetting the device’s default settings when it detects damage or issues, or when the
battery falls below a critical level. Therefore, it is necessary to download the data stored in
the CIED prior to the scan, reevaluate the recordings following the imaging process, and
delete any altered recorded data [44,45].

Radiofrequency pulses cause energy absorption via tissues in the form of a specific
absorption rate, measured in watts per kilogram. Device overheating is mainly due to the
pulsed radiofrequency field, creating a local energy concentration via the “antenna effect”.
Overheating can lead to tissue damage, increased pacing thresholds, and arrhythmias. The
“antenna effect” is influenced by the duration, power, and spatial proximity of the pulsed
radiofrequency field, and is more significant with epicardial electrocatheters. To minimize
the heating risks, new lead designs have been developed to reduce the current induction.
Moreover, abandoned electrocatheters generally carry a higher risk of heating, making MRI
scans a contraindication in such cases [46,47].
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Finally, the radiofrequency pulses can cause rapid depletion of the CIED’s battery.
Premature battery depletion can be a concern, particularly for patients with low battery
levels at the time of the MRI. This depletion can be due to increased impedance, threshold
changes, or excessive sensing, but it may also be an apparent issue caused by POR. In most
cases, battery depletion is transient, and normal values are restored within approximately
three to six months following the CMR. However, potential risks should be evaluated
before imaging, especially for pacemaker-dependent patients or those with low battery
voltages [48]. Table 1 summarizes safety issues between CMR and CIED interactions.

Table 1. Safety issues between cardiac magnetic resonance and cardiac implantable electronic
device interactions.

Safety Issue Cause Risk Factors Dangers Minimize the Risk

Device
dislodgement

MF’s attraction forces to
CIED’s ferromagnetic
components

MF’s strength;
CIED mass, shape, and
magnetic susceptibility

Cutaneous and
subcutaneous
lesions

Reduce CIED’s ferromagnetic components
Avoided CMR up to six weeks following
CIED implantation
Prefer 1.5 T

ECG
recordings’
modifications
and deletions

Electrical currents induced
by gradients and
radiofrequency pulses

Duration, power, and spatial
proximity of gradient field
and radiofrequency field

Incorrect
diagnoses,
inappropriate
shocks

Reed switch activation
Cease ICD anti-tachycardia therapy
Download the data stored before the scan,
reevaluate, and delete altered recordings
after the MRI

Device
overheating

Local energy concentration
created by the
radiofrequency

Duration, power, and spatial
proximity of the
radiofrequency pulses
Epicardial or abandoned
electrocatheter

Myocardial tissue
damage Increased
pacing thresholds
Arrhythmias

New lead designs
Avoid MRI with epicardial or with
abandoned lead

Premature
battery
depletion

Radiofrequency pulses
causes increased impedance,
threshold changes, and
excessive sensing

Duration, power, and spatial
proximity of the
radiofrequency pulses
Low battery before the MRI

Battery depletion Battery depletion is usually transient
POR phenomenon

Abbreviations—ECG: electrocardiogram; MF: magnetic field; CIED: cardiac implantable electronic device;
MRI: magnetic resonance imaging; ICD: implantable cardiac device; POR: power-on reset.

6. Issue: Artifact

Artifacts on the CMR image are another issue relating to the presence of CIEDs. The
extent of the artifacts cannot be predicted in advance. Several factors influence artifact
formation, including device characteristics (composition, size, shape, and orientation),
position, the magnetic susceptibility of the CIED, the distance from the region of interest,
MRI sequences used, and magnetic field strength [49].

The larger the size of the CIED, the more pronounced the artifacts in the image.
Regarding the position, CMR is particularly susceptible to CIED artifacts because it is
positioned near the heart, and the closer the generator is to the apex of the left ventricle,
the greater the artifacts. Additionally, the stronger the magnetic field, the greater the
artifacts [50,51].

The MRI sequences most vulnerable to artifacts are cine SSFP and LGE sequences; this
is because they require a homogeneous magnetic field to adequately balance gradients.
Magnetic susceptibility is due to the ferromagnetic components of the CIED, which cause
static magnetic field inhomogeneity, resulting in signal loss and hyperintensity artifacts [15].
According to the Heart Rhythm Society (HRS) expert consensus statement published in
2017, when using fast gradient echo (FGE) sequences for cine imaging as well as wide-
band sequences for LGE imaging, image quality may be improved where artifacts are
present [48,52].

Signal loss artifacts create dark bands within 5–12 cm around the device, mainly
affecting the anterior cardiac wall. To reduce this artifact, sequences such as fast gradient
echo (FGE) with shorter echo and repetition times are used, which are more stable to
magnetic field inhomogeneity, and can be used as alternatives to cine SSFP sequences.
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Other methods include using a frequency-scout method before cine imaging and acquisition
planes perpendicular to the CIED [53].

Hyperintensity artifacts cause increased signal intensity in the anterior wall of the
left ventricle in LGE sequences. This artifact occurs because the inversion pulse used in
LGE sequences has a spectral bandwidth of approximately 1 kHz, but in the presence
of a CIED, regions of the heart as far as 5–10 cm may undergo a frequency shift beyond
this bandwidth (2–4 kHz), resulting in the incomplete nulling of signals and persistent
hyperintensity. To address this, wider bandwidth LGE sequences (up to 3.8 kHz) have been
developed to ensure the proper inversion of the myocardium and to eliminate hyperinten-
sity artifacts [39,54–56]. The disadvantage of wideband LGE sequences is the increase in
SAR, which is considered acceptable up to 2 W/kg. Studies have shown the effectiveness
of wideband inversion recovery LGE techniques in reducing device-related hyperintense
artifacts, thus resulting in improved image quality [38,57]. It is important to note that, while
wideband techniques reduce some artifacts, they may not eliminate geometric distortions
or signal voids caused by off-resonance. Localized shimming can help address these issues.
Figures 5 and 6 show examples of the CMR’s artifacts.
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free processing sequences in both long-axis (white arrow, (A)) and short-axis (white arrow, (B)) views,
and hyperintensity artifacts in late gadolinium enhancement sequences in four-chamber (white
arrow, (C)) and short-axis (white arrow, (D)) views. The presence of hyperintensity artifacts may
make it difficult to distinguish the diffuse transmural septal and right ventricular late gadolinium
enhancement (dotted arrow, (C,D)).
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Figure 6. Cardiac magnetic resonance of a 67-year-old patient with a dual-chamber pacemaker. The
figure shows signal loss artifacts characterized by dark bands around the device in cine steady-
state free processing sequences (white arrow, (A)) and hyperintensity artifacts in late gadolinium
enhancement sequences (white arrow, (B)), both in a short-axis view. Both artifacts do not involve the
myocardium because the generator is smaller and located in a lateral subpectoral pocket, allowing
for the detection of subendocardial circumferential late gadolinium enhancement (dotted arrow).

Another possible solution is to use smaller CIEDs. For example, smaller LR models,
such as type LINQ, produce fewer artifacts (Figure 7).

Additionally, certain techniques can help reduce artifacts; these include scanning
during inspiration to increase the distance between the heart and the cardiac device,
correlating different sequences, elevating the patient’s arm on the side of the CIED generator
during the MRI scan to increase the distance between the heart and the device, and right-
sided CIED implantation. Furthermore, the presence of an S-ICD with a large generator
placed at the lateral chest wall causes more artifacts on the cardiac imaging when compared
to the dual-chamber ICD [58]. Figures 8 and 9 show examples of patients with a dual-
chamber ICD and an S-ICD.



Medicina 2024, 60, 522 11 of 18

Medicina 2024, 60, 522 11 of 20 
 

 

 
Figure 6. Cardiac magnetic resonance of a 67-year-old patient with a dual-chamber pacemaker. The 
figure shows signal loss artifacts characterized by dark bands around the device in cine steady-state 
free processing sequences (white arrow, (A)) and hyperintensity artifacts in late gadolinium en-
hancement sequences (white arrow, (B)), both in a short-axis view. Both artifacts do not involve the 
myocardium because the generator is smaller and located in a lateral subpectoral pocket, allowing 
for the detection of subendocardial circumferential late gadolinium enhancement (dotted arrow). 

Another possible solution is to use smaller CIEDs. For example, smaller LR models, 
such as type LINQ, produce fewer artifacts (Figure 7).  

 
Figure 7. CMR of a 65-year-old patient with a loop-recorder. The figure shows signal loss artifacts 
(white arrow) in cine SSFP sequences, not involving the anterior cardiac wall due to the small size 
of the loop-recorder. 

Figure 7. CMR of a 65-year-old patient with a loop-recorder. The figure shows signal loss artifacts
(white arrow) in cine SSFP sequences, not involving the anterior cardiac wall due to the small size of
the loop-recorder.

Medicina 2024, 60, 522 12 of 20 
 

 

Additionally, certain techniques can help reduce artifacts; these include scanning 
during inspiration to increase the distance between the heart and the cardiac device, cor-
relating different sequences, elevating the patient�s arm on the side of the CIED generator 
during the MRI scan to increase the distance between the heart and the device, and right-
sided CIED implantation. Furthermore, the presence of an S-ICD with a large generator 
placed at the lateral chest wall causes more artifacts on the cardiac imaging when com-
pared to the dual-chamber ICD [58]. Figures 8 and 9 show examples of patients with a 
dual-chamber ICD and an S-ICD.  

Table 2 summarizes the issues related to CMR�s artifacts with CIEDs. 

Table 2. Issues related to CMR�s artifacts with CIEDs. 

Types of Artifacts 
Factors that Influence Ar-
tifacts High Artifact Low Artifact 

Signal loss artifact 
Hyperintensity artifact 

CIED�s dimension Large device Small device 
CIED�s position Left-sided implantation Right-sided implantation 

Magnetic susceptibility 
High ferromagnetic com-
ponent 

Low ferromagnetic compo-
nents 

High static MF Low static MF 
Distance from the region 
of interest Proximity to the heart Elevate the patient�s arm 

MRI sequences used 
Cine SSFP SGE sequences 
LGE sequence with a 
bandwidth of about 1 kHz 

LGE sequence with a wide 
bandwidth 

Abbreviations—CIED: cardiac implantable electronic device; MF: magnetic field; SSFP: steady-
state free precession; LGE: late gadolinium enhancement; SGE: spoiled gradient echo. 

 
Figure 8. Cardiac magnetic resonance of a 71-year-old patient with a dual-chamber implantable car-
diac device. The figure shows signal loss artifacts characterized by dark bands around the device in 
cine steady-state free processing sequences involving the anterior cardiac wall in a short-axis view 

Figure 8. Cardiac magnetic resonance of a 71-year-old patient with a dual-chamber implantable
cardiac device. The figure shows signal loss artifacts characterized by dark bands around the device
in cine steady-state free processing sequences involving the anterior cardiac wall in a short-axis
view (white arrow, (A)), and hyperintensity artifacts in late gadolinium enhancement sequence not
involving the myocardium in a short-axis view (white arrow, (B)).
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Figure 9. Cardiac magnetic resonance of a 75-year-old patient with a subcutaneous implantable
cardiac device. Figure 9 shows signal loss artifacts characterized by dark bands around the device in
cine steady-state free processing sequences in short-axis (white arrow, (A)) and four-chamber (white
arrow, (B)) views, as well as hyperintensity artifacts in late gadolinium enhancement sequences in
short-axis (white arrow, (C)) and four-chamber (white arrow, (D)) views. The presence of hyperin-
tensity artifacts represents a possible differential diagnosis with intramyocardial late gadolinium
enhancement at the antero-basal septum (dotted arrow, (C)).

Table 2 summarizes the issues related to CMR’s artifacts with CIEDs.
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Table 2. Issues related to CMR’s artifacts with CIEDs.

Types of Artifacts Factors that Influence Artifacts High Artifact Low Artifact

Signal loss artifact
Hyperintensity artifact

CIED’s dimension Large device Small device

CIED’s position Left-sided implantation Right-sided implantation

Magnetic susceptibility
High ferromagnetic
component

Low ferromagnetic
components

High static MF Low static MF

Distance from the region of interest Proximity to the heart Elevate the patient’s arm

MRI sequences used

Cine SSFP SGE sequences

LGE sequence with a
bandwidth of about 1 kHz

LGE sequence with a wide
bandwidth

Abbreviations—CIED: cardiac implantable electronic device; MF: magnetic field; SSFP: steady-state free precession;
LGE: late gadolinium enhancement; SGE: spoiled gradient echo.

7. Clinical Protocol for Patients with CIEDs Undergoing CMR

To perform an MRI examination in a patient with a CIED “MRI-conditional”, it is
recommended to follow a rigorous protocol involving the interaction of different multi-
disciplinary physicians. Indeed, under the guidelines of the Heart Rhythm Society, the
performance of MRIs in patients with CIEDs is a Class I (strong) recommendation, only
with a standardized institutional workflow [59].

The protocol should include at least three steps to conduct a safe examination in
patients with CIEDs [60–62].

The first step is carried out prior to the examination. The first element to evaluate is
the risk/benefit ratio of the examination via an interaction between the radiologist and
the colleague requesting the examination. It is always advisable to consider the possibility
of an alternative method, equally capable of performing the diagnostic. Once the clinical
necessity of the examination is established, a thorough analysis of the device characteristics
(name, serial number, model, implantation date) is necessary. It may be useful to know
the type of device, which can be achieved by performing a chest X-ray to identify specific
radiopaque markers from the manufacturer. The specifications of the device must be sent
to the medical physicist expert at the site where the examination will be conducted; this
is to assess whether the device’s characteristics and the CIED’s conditions are compatible
with the MRI used. Additionally, it is recommended to wait at least six weeks after
device implantation to ensure adequate healing of the wound and to minimize the risk of
movement. Before performing the MRI, the device parameters, battery status, and all stored
data must be checked, and CIEDs must be switched in terms MRI modality. Furthermore,
obtaining informed consent from the patient regarding the risks associated with the type of
examination they are undergoing is essential. It is imperative to inform the patient that if
they experience any sensations of movement from the CIED, discomfort, or heat during
the examination, they should promptly alert the medical staff to immediately stop the
examination [39,63].

The second step is monitoring during the CMR. It is necessary to carefully monitor the
patient’s vital signs, have all resuscitation and advanced life support equipment available,
and ensure that the staff are prepared and ready if necessary. Visual and verbal contact
with the patient throughout the examination is necessary. The duration of the CMR should
be minimized, aiming not to exceed 30 min, and it should be promptly stopped if the
patient experiences dangerous symptoms or if there are alterations in the patient’s vital
parameters [64]. All possible techniques to reduce the number and extent of MRI image
artifacts should be used [65].

The third step occurs following the scan. Once the patient has completed the exami-
nation and left the MRI room, it is important to interrogate the CIED in order to identify
any artifact-related arrhythmias that may have occurred during the MRI examination,
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deleting them if found. It is important to perform a second evaluation of the device to
compare the parameters with the pre-MRI values, scheduling a check-up 3 and 6 months
from the examination. Moreover, it should be noted that the HRS statement suggests an
earlier follow-up (before 3 months) when there is a more than a 1 V capture-threshold
increase, a more than 50% decrease in P-wave or R-wave amplitude, or changes in pacing
or shock impedance [48]. By integrating these points into the protocol, it could be possible
to further improve the safety and effectiveness of MRI examinations in patients with “MRI
conditional” implantable devices. Moreover, this protocol could also be applied in other
cases where there may be safety concerns for patients with CIEDs, such as those undergoing
radiotherapy (RT) for malignancies. In these cases, it is advisable to perform a complete
evaluation of the CIED before the RT, minimize any direct exposure of the CIED to radia-
tion, monitor the patient during RT, check the CIED at the conclusion of treatment, and
schedule follow-up appointments 1 and 6 months after the treatment [31,60–62]. Figure 10
summarizes the proposed protocol for MRI examinations in patients with CIED.
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8. Alternative Imaging Modalities to CMR

Computed tomography coronary angiography (CCTA) can be considered as an alterna-
tive method to CMR for the morpho-functional evaluation and tissue characterization of the
myocardium in patients with CIEDs [65]. Using a retrospective protocol, CCTA can assess
the wall thickness, dimensions of the cardiac chambers, volume, and ventricular contractile
function. This allows for the anatomical evaluation of the heart valves, in addition to its
well-known coronary assessment capability [66]. In recent years, technological advances
have introduced CT techniques into clinical practice that enable tissue characterization,
including dual-energy CT (DECT) and photon-counting (PC) techniques [67].

DECT involves images acquisition at two different kilovoltages, allowing for the
spectral separation of imaging and material identification. Specifically, it can assess cardiac
perfusion using iodine maps, myocardial extracellular volume, and cardiac fibrosis via
the assessment of late iodine enhancement, identifying the accumulation of iodine-based
contrast medium in delayed scans, similar to what occurs in CMR [68–70].

The PC technique relies on the ability of CT detectors to discriminate the energy of
individual photons and potentially distinguish multiple materials within the same voxel.
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For this reason, it can evaluate myocardial iodine perfusion maps and myocardial fibrosis
due to the late accumulation of the iodine contrast medium [67,71]. The limitations of the
use of these techniques are mainly due to their limited availability and the lack of adequate
literature supporting their diagnostic accuracy, especially for the PC technique, although
more studies are emerging in support of this method. Additionally, CT involves the use
of ionizing radiation, although significant technological advances have greatly reduced
radiation doses [72–74]. Finally, it must be considered that the presence of CIEDs may
induce image artifacts, such as photon starvation/beam hardening, which can reduce the
late iodine enhancement detection [65].

9. Conclusions

In conclusion, technological advances in CMR and CIEDs have, under certain con-
ditions and with appropriate protocols, significantly improved patient safety, as well as
allowed for the obtaining of diagnostic CMR images. Although technological development
will enable a greater use of alternative methods for MRI, the increase in the number of
patients with CIEDs will lead to an increase in the number of CMR examinations in the pres-
ence of implantable devices. Close collaboration among various specialized figures, and
the adequate preparation of both medical and technical staff in managing the examination
and any issues that arise are necessary when performing these examinations. In addition,
it may be useful to limit this type of examination to certain centers where dedicated and
adequately trained personnel are available. These strategies collectively aim to enhance the
safety of MRI procedures for patients with CIEDs, while providing medical professionals
with the appropriate tools and guidelines to minimize potential risks.
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