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Abstract: Glaucoma is one of the leading causes of irreversible blindness in the world. Early diagnosis
and treatment increase the chances of preserving vision. However, despite advances in techniques for
the functional and structural assessment of the retina, specialists still encounter many challenges, in
part due to the different presentations of the standard optic nerve head (ONH) in the population, the
lack of explicit references that define the limits of glaucomatous optic neuropathy (GON), specialist
experience, and the quality of patients’ responses to some ancillary exams. Computer vision uses deep
learning (DL) methodologies, successfully applied to assist in the diagnosis and progression of GON,
with the potential to provide objective references for classification, avoiding possible biases in experts’
decisions. To this end, studies have used color fundus photographs (CFPs), functional exams such as
visual field (VF), and structural exams such as optical coherence tomography (OCT). However, it is
still necessary to know the minimum limits of detection of GON characteristics performed through
these methodologies. This study analyzes the use of deep learning (DL) methodologies in the various
stages of glaucoma screening compared to the clinic to reduce the costs of GON assessment and the
work carried out by specialists, to improve the speed of diagnosis, and to homogenize opinions. It
concludes that the DL methodologies used in automated glaucoma screening can bring more robust
results closer to reality.

Keywords: early manifest glaucoma trial; pre-perimetric glaucoma screening; glaucoma screening
cost; glaucoma screening by photos; glaucoma screening by teleophthalmology

1. Introduction

With the growth and aging of the population, the demand for ophthalmological services
for age-related diseases such as glaucoma, cataracts, diabetic eye disease, and macular de-
generation increases and brings increasing logistical difficulties in meeting these demands,
especially in locations far from large centers. On the other hand, it drives the development
and improvement of new techniques for the population screening of these diseases.

Glaucoma is one of the leading causes of irreversible blindness globally [1]. It is
estimated that at least 2.2 billion people worldwide have a visual impairment, of which
at least one billion have a visual impairment that could have been prevented or has not
yet been addressed [2]. Medical evidence shows that early diagnosis and treatment in the
early stages of glaucoma significantly reduce costs by delaying partial or total disability
resulting from blindness, such as the direct costs related to medical fees, medication costs,
and the indirect costs related to days not worked, caregiver fees, and rehabilitation.

In this aspect, using tools such as artificial intelligence (AI) can assist medical special-
ists in the growing population demand.

To obtain a clinical sense, the specialists use retinal image analysis with clinical data
and complementary exams such as VF and OCT. Still, it is a process that is often time-
consuming, dependent on the experience of professionals acquired over a long period of
clinical and personal experience, and dependent on emotional and psychological factors.
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Furthermore, studies show low agreement in optic nerve assessment and only moderate
inter-examiner reproducibility for detecting glaucomatous features [3].

Computer vision is a field of AI that studies algorithms that are capable of visually
interpreting information obtained in digital images, noticing defects imperceptible to
human capabilities. Automated GON screening using deep learning architectures involving
the acquisition of images, including by portable means, which can be stored and distributed
to ophthalmological centers, together with patient records, through teleophthalmology,
which lower costs compared to in-person examination, helps with diagnosis, and reduces
waiting lists for ophthalmological care.

DL techniques applied at various stages of screening demonstrate the potential to
screen GON and other retinal diseases from images quickly and accurately with efficacy
compared to expert standards [4–6], facilitating the work of professionals who seek clinical
meaning in the set of data obtained from the patient, but, to date, a single algorithm has not
been validated to predict the incidence and progression of glaucoma [7]. Furthermore, OCT
and VF have been used as truth sets to validate CFPs, avoiding bias in experts’ decisions [4].

The importance of this study is to analyze the use of DL in glaucoma screening
from a clinical perspective, proposing more efficient and lower-cost solutions that are less
dependent on specialist interpretation bias.

1.1. Research Objective and Main Contributions

Recognition of the glaucomatous papilla is complex, especially in its early forms, due to the
anatomical variability of the optic nerve in the population and the lack of universally accepted
parameters. In medical practice, multimodal data are used, i.e., originating from different stages
of the clinical examination, including images and complementary, structural, and physiological
exams, made available to specialists, increasing the possibility of correct diagnoses in many
cases, and improving the performance of AI analysis. Furthermore, interpreting data and images
transmitted over the internet using telemedicine techniques assists population demands and
the specialists’ work, which automated AI techniques have improved.

The objectives of this work were as follows: (1) To correlate the use of multimodal data
used in clinical practice to offer better solutions in AI-automated methods for glaucomatous
papilla recognition. For this purpose, some medical concepts were described to explain
the relevance of using multimodal data in clinical practice with potential application in
DL methodologies. (2) To identify research that used data from more than one source to
classify glaucoma using DL technologies and identify the main challenges.

Some questions were proposed to obtain a better understanding of the main scenarios
of glaucoma diagnosis.

Q1. What are the main challenges in the clinical recognition of a glaucomatous optic
nerve, especially in its early stages?

Q2. What literary references defined the diagnostic limits of AI glaucomatous optic
neuropathy using multimodal data?

Q3. What are the main challenges in this area of research?
The first question concerns the complexity of recognizing the glaucomatous papilla in

medical practice (summarized below in Section 2.1), considering factors such as the lack of
universally accepted biomarkers and the anatomical diversity of the optic nerve head in
the population.

The second question is defined in the state of the art (summarized below in Section 3.2)
and brought literary references that used data to analyze the glaucomatous papilla using
DL methodologies. We saw that AI has the potential to track glaucoma and interpret the
OCT and the CV.

The third question refers to the challenges of recognizing glaucoma using AI and
establishing confidence limits. The literature generally mentions that different combinations
of multimodal data for glaucomatous optic nerve screening can improve the results of
suspected and early cases, facilitating population demands for glaucoma screening and
remembering that a qualified ophthalmologist must accompany glaucoma screening.
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1.2. Materials and Methods

This review aimed to select studies that present a combination of multimodal data to
classify the glaucomatous optic nerve. A comprehensive literary review was carried out
and selected using inclusion and exclusion criteria of subjects and data selection.

Based on medical practice, the inclusion criteria prioritized selecting studies investi-
gating glaucoma through AI from two or more multimodal data sources. Among them,
objective approaches were considered, which do not depend on the emotional and psycho-
logical factors or the experience of specialists, such as optical coherence tomography (OCT)
examinations, and subjective approaches that depend on personal characteristics, such as
the classification made by specialists using color background photographs.

Studies that used only one data source for glaucoma screening and those that did not
use AI to classify the disease were excluded.

The keywords “Early Manifest Glaucoma Trial, pre-perimetric glaucoma screening,
glaucoma screening cost, glaucoma screening by photos, glaucoma screening by teleoph-
thalmology” were added to the search. The search for publications was carried out mainly
through Google Scholar, Scopus, MDPI, Springer, Medline, AAO, and Cochrane.

2. Some Approaches to Medical Practice in Glaucoma

In glaucoma screening, experts analyze clinical data from optic nerve head analysis,
biomarkers, and ancillary exams based on their experiences [8]. However, studies show
low agreement between examiners in evaluating stereo photographs and only moderate re-
producibility to detect glaucomatous features in the optic disc [3]. At this point, automated
screening can represent an advantage.

Although optic disc cupping is a diagnostic feature of glaucoma, there is an excellent
diversity of presentation among healthy individuals. Larger discs tend to have larger
cup-to-optic disc vertical diameter ratio (vCDR) measurements. Therefore, although vCDR
is a sensitive indicator, it should not be used alone to diagnose glaucoma because it can
lead to high false favorable rates [9].

In more distant locations, with limited resources and a high demand for care, glaucoma
screening may depend only on a slit-lamp fundus examination, often performed without
mydriasis, where the values of the disc area ratio and excavation (CDR) [9] generate a
high rate of suspected diagnoses with unnecessary referrals for additional tests, thus
compromising patient confidence. In these cases, AI could solve some of these demands
using teleophthalmology.

Ophthalmologists overestimate physiologically enlarged cups in larger optic discs
or underestimate them in small discs; therefore, models that depend on human grada-
tions to establish the reference standard may present severe limitations in defining the
characteristics of the optic nerve.

Table 1 exemplifies some clinical parameters used to screen normal, suspicious, and
glaucomatous eyes and the approaches that can be used. In normal eyes, the optic nerve
does not present defects in the neural layer nor the subsidiary exams; the suspect has flaws
in the neural layer without correspondence with the subsidiary exams.

Table 1. Example of optic nerve classification.

Healthy ONH Suspicious ONH GON

Defects in the neural layer − + − +

VF − − + +

sdOCT − − + +

Conduct Annual assessment Complementary exams Clinical or surgical treatment

ONH = optic nerve head, VF = visual field, sdOCT = spectral domain optical coherence tomography, GON = optic
nerve with features of glaucoma, (−) absence of abnormality, (+) presence of abnormality.
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2.1. Clinical Practice in the Analysis of the Optic Papilla

The transparency of the ocular tissue media allows the viewing and documenting of
optic nerve head images. However, the diagnosis of glaucoma should be made more than
just through pictures but through available clinical data and complementary physiological
and structural exams, as previously mentioned.

The signs of glaucomatous optic neuropathy (GON) are based on an increase in the
cup/disc ratio, loss of the ISNT pattern, changes in the path of the vessels, presence of the
lamina cribrosa, and hemorrhages. The diagnosis of certainty is the correspondence of the
fiber layer defect in at least two visual field tests. Recent discoveries suggest that Bruch’s
membrane opening (BMO), defined using spectral domain optical coherence tomography
(sdOCT) at the disc margins, can serve as a reference for the diagnosis and progression of
GON [10].

Table 2 shows that many characteristics of standard images are also present in GON;
in addition, there is a lack of consensus to define the references between normal and
glaucomatous eyes and reinforces the importance of evaluating not only the images but the
entire set of data and examines additional information for a more accurate diagnosis.

Table 2. Example of references between ONH and GON.

CDR Asymmetry Diffuse
Excavation vCDR > 0.6 Violation of ISNT Rule

Healthy ONH CDR < 0.4 * CDR < 0.2 * 3% 5%
GON vCDR > 0.6 vCDR > 0.2 44% 92% 84%

Suspicious ONH CDR > 0.2 70% 87%

* in most of the population.

2.2. Visual Field (VF) in Glaucoma

Campimetry or automated perimetry (white on white) is considered the gold standard
for evaluating the visual field in glaucoma [11], as it reflects the loss of fibers secondary to
glaucomatous disease progression.

The ophthalmologist interprets the automated perimetry by combining risk factors, ap-
pearance of the optic nerve, age, ocular pressure (IOP), and family history of glaucoma [12].

Visual field tests require good patient cooperation. Changes in the first exams may
present some inconsistency due to failures related to fatigue, patient learning, uncorrected
refractive errors, high rate of false-positive responses, inadequate occlusion of the contralat-
eral eye, weak lamp, and misadjustments of the device itself. They may suffer considerable
test–retest variability [13,14], especially in people with advanced VF damage [15].

Visual field defects in glaucoma must be reproducible and correspond to the estab-
lished glaucomatous damage. An increase can be seen in the progression of the perimetric
weakness in the number of scotomas, enlargement of their areas, increase in depth, and
deterioration of global indices [13].

Most studies using DL use image classification methodologies to screen and study
the progression of glaucoma, and many diagnoses can be anticipated by applying DL
technologies integrated with segmentation, regression, localization, and generative model
techniques to predict future VFs with spatial information. A VF embedded with clinical
data such as intraocular pressure (IOP), medication, and medical history assists clinical
decision-making and allows personalized treatment for each patient [16].

2.3. Optical Coherence Tomography (OCT)

OCT is a non-contact optical imaging technique that uses low coherence interferometry
to measure the light reflected from different layers of the retina and optic nerve, providing
quantitative measurements of the structures of the posterior segment of the eye, notably the
macula, limits of the head of the optic nerve, and excavation, comparing them to a normative
database to assist the ophthalmologist in the diagnosis and follow-up of retinal diseases.
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Its use for diagnosing glaucoma is indicated in eyes suspected of pre-perimetric
glaucoma. Still, it does not replace the need to use retinography for the structural docu-
mentation of the optic nerve for both the diagnosis and assessment of progression, i.e., a
positive or negative result obtained by OCT alone does not confirm or exclude the diagnosis
and progression of glaucoma [15]. The evaluation should include the patient’s medical
history, detailed ophthalmological examination, OCT optic disc parameters, and visual
field tests [17].

For the detection of pre-perimetric glaucoma, the recommendation is to integrate
OCT data with other clinical information to detect glaucomatous damage in patients
without an apparent campimetric defect [18,19], seeking a clinical sense. Structural damage
assessment involves numerous topographic parameters related to the ONH and macula
and is performed imperfectly by the machine’s software, with errors of the scans between
19.9% and 46.3% [20]. Thus, the assessment of the ONH using color fundus photos is a
more attractive option than OCT in terms of global screening, considering the portability
and lower costs of acquiring color fundus photos [21].

Using sdOCT further improved axial resolution, scanning speed, and diagnostic
accuracy compared to previous OCT technologies [22]. However, human experience in
interpreting sdOCT still needs to be improved; sdOCT technology is expensive and not
easily portable, limiting the feasibility of its widespread adoption in screening efforts.
Recent findings suggest that Bruch’s membrane opening (BMO), defined using sdOCT at
the disc margins, may be a reference for diagnosing and progressing GON [10].

Deep learning (DL) technology associated with OCT demonstrates efficiency, precision,
and exemplary performance in interpreting the exam and discriminating glaucomatous
eyes from normal eyes [22,23], contributing to improving diagnosis and reducing the
precious time and involvement of professional experts [24].

Table 3 summarizes the stages of glaucoma screening in terms of costs, portability,
and diagnostic interpretation, highlighting that image interpretation is a cheap method,
still used in detection through sequential analysis, and admitting the use of portable
devices to obtain and transmit images via telemedicine. On the other hand, it presents
disadvantages such as the variable quality of the photos obtained by different devices, the
lack of universally accepted references to characterize normal from glaucomatous ONH,
and the dependence on the examiner’s experience.

Table 3. Main characteristics of the glaucoma screening stages.

Costs Portability Interpretation/Diagnosis Reproducibility

Images Low Yes, through
smartphone cameras

It depends on the experience of the
examiner. Does not show neuroretinal
rim structures. It is a good technique
for studying the progression of GON.

Dependent on location,
camera, and population

VF Moderate Yes, VF via iPad not yet
validated

The gold standard for diagnosis and
treatment. It depends on the patient’s
cooperation and the number of fibers

involved in the structural damage.

The exam is very dependent
on patient-related failures.

OCT High No

It is indicated in suspected cases and
pre-perimetric glaucoma. It has good

reproducibility but difficult
interpretation and several limitations.

Good

2.4. Transmission and Storage of Data through Teleophthalmology

Teleophthalmology uses technologies to provide remote eye care that have evolved
rapidly with smartphones, fifth generation wireless communication, and artificial intelli-
gence [25].

It is based on the storage and forwarding of eye images in real time to screening
centers [26]; it can be improved using image processing techniques and artificial intelli-
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gence [27], increasing the offer of diagnoses, qualifying and helping to reduce queues’
waiting time for ophthalmological care [28], improving the effectiveness of specialized
centers [29] and lowering costs compared to face-to-face examination [30,31].

Data collection, storage, and transmission can combine teleophthalmology with DL
techniques in ocular imaging as a potential solution to track, diagnose, and monitor major
ocular diseases for patients in primary care and community settings [32]. The data can be
used to assess the incidence and progression of the disease in real time [25]. They may
represent a viable and effective resource to increase access to care and identify the most
common causes of blindness and its risk factors [33]. Ting and colleagues proposed a DL
model to screen glaucoma in images transmitted via teleophthalmology. They obtained an
ROC curve of 0.942, a sensitivity of 96.4%, and a specificity of 87.2% [34].

In the future, these techniques could play a fundamental role in screening for chronic
eye diseases, increasing the accessibility of screening for rural and remote populations.

3. Computer Vision and Artificial Intelligence
3.1. Concepts

Computer vision is a field of artificial intelligence (AI) that studies algorithms and
systems capable of understanding, analyzing, and visually interpreting information ob-
tained from digital images, videos, and other visual inputs, noticing imperceptible defects
in human capabilities, being an essential tool in helping diagnosis [8]. In contrast, the
experts’ vision is based on experiences acquired over a long period of clinical and personal
experience, dependent on physical effort and psychological state.

Convolutional neural networks (CNNs) encompass deep learning (DL) algorithms that
use computer vision and image processing. They are designed to recognize patterns and
extract features from images through successive layers of representations that analyze the
data repeatedly and allow the machine to learn independently without programming [35].
Deep learning (DL) is a subset of artificial intelligence (AI) based on neural networks
that use an active learning strategy in the automated detection of glaucoma based on
fundus images [36,37]. It can recognize patterns with glaucomatous features in images
quickly and accurately [8], achieving a robust performance in detecting other retinal
pathologies such as diabetic retinopathy and retinopathy of prematurity, macular edema,
and age-related macular degeneration [32], with the potential to assist specialists in mass
screening of glaucoma [38], reducing costs, and offering the potential to solve complex
problems involving large datasets with medical images and classify diseases with a good
innovative perspective for the introduction of individualized medicine and the optimization
of diagnosis and therapy, screening, and prognosis [22,39,40], with less dependence on
the examiner’s experience [5,41,42], demonstrating the potential for implementation of
large-scale screening protocols in the population, to screen for glaucomatous papilla in
several evolutionary stages and monitor treatments [43].

Computer-aided automatic screening for glaucoma detection from fundus images is
based on the analysis of features such as the optic cup-disk ratio, extracted from segmen-
tation results [44], optic neuroretinal border, and ISNT rules, presenting homogeneous
and clinically significant results [38,45]. For this purpose, different strategies are used to
segment the disc and optical cup based on the region of interest (ROI). The use of CDRs has
shown to have good application in segmentation. The results of the glaucoma assessment
using these indicators were good results from the area under curve (AUC) metric (AUC
between 0.79 and 0.96) [46]. The CDRs computed using the segmented masks were very
close to the ground truth (GT) masks classified by experts, reinforcing that CNNs can
make an assessment like that carried out by a clinician. However, in most works, the
validation of DL algorithms was compared to human classification results as a reference
standard, occurring in the same way with public databases [47], an approach that can
present severe limitations, as they tend to exaggerate or underestimate the probability of
glaucoma given the significant variability of the optic disc region, the low reproducibility
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and inter-examiner agreement, the different experiences of the evaluators, and the lack of
references to screen for the glaucomatous papilla [4].

The diagnostic accuracy of the model using color photographs suggests that deep
learning (DL)-based architectures have the potential to standardize and automate the
classification of chronic open-angle glaucoma. However, further studies are needed to
implement these technologies [36,37] and bring them closer to reality by analyzing a set of
data less dependent on human interpretation, including retinal photographs and clinical
markers, symptoms, ocular pressure, family and personal history [47], and complementary
exam results such as VF and OCT.

3.2. State of the Art

DL methodologies have applications in glaucoma screening by using color images
of the optic nerve head, structural (sdOCT), and functional (VF) complementary exams
individually or together, demonstrating the potential for diagnosis, prediction of GON
progression, and the use of complementary exams as an objective reference for classification,
avoiding the bias of subjective interpretation based on the experience of experts [5].

The studies show applications at different stages of glaucoma screening, as follows:
fundus photographs, initial VF, and optical coherence tomography for diagnosis. They
also propose a standardized reference for validating GON and detecting other retinal
pathologies. However, it is essential to remember that a qualified ophthalmologist must
diagnose glaucoma using patient data and specific tests to confirm the diagnosis.

Using color fundus photographs (CFPs), Neto [46] analyzed a methodology for glau-
coma screening based on algorithms taught with public databases RIM-One r3, DRISHTI-
GS, and REFUGE applied in CFPs, referenced by glaucoma experts. It obtained an IoU of
0.81 and a Dice of 0.96, which indicates that the accuracy of the cup segmentation technique
is also accurate, with a good overlap with the reference mask.

DL methodologies were applied to the VF in the study by Shuldiner [48], who used DL
models on the VF to predict the future progression of glaucoma by training algorithms with
reliability metrics based on the initial VF and age and obtained ROC (receiver operating
characteristic) with a value of 0.72, indicating a good test performance. The 95% confidence
interval (CI) means that there is a 95% probability that the actual AUC value is in the range
of 0.70–0.75.

Kucur [49] used a CNN methodology to discriminate between normal eyes and those
with early glaucoma through standard and pre-perimetric VFs. The results indicate that
the model had an average accuracy of 87.4% for Rotterdam and 96.8% for Budapest.

Huang [50] evaluated visual field loss (VF) in a deep learning (DL) system with results
referenced by glaucoma experts and obtained an ROC of 0.93, indicating the model’s high
ability to distinguish between true-positives and false-positives, while the accuracy of 85%
suggests that the model correctly classified 85% of the cases.

Wen [16] evaluated the VF prediction ability of the 24-2 strategy of DL (deep learning).
The 95% confidence interval between 2.45 dB and 2.48 dB indicates that if the experiment
were repeated several times, in 95% of cases, the MAE would be within this range. These
results suggest a good performance in VF prediction, but further studies are still needed.

Eslami et al. [51] evaluated models to predict VF loss using an independent population.
The PMAE 95% confidence intervals were 2.21 to 2.24 dB for CNNs and 2.56 to 2.61 for
RNNs, indicating a good performance.

Kihara used DL methodologies in CFPs, VF, and OCT [15], and used two network
models to predict VF results from CFPs and OCT. The mean absolute error (PMAE) was
0.485 dB with a 95% confidence interval between 0.438 dB and 0.533 dB compared to
the disk image alone and 0.060 dB with a 95% confidence interval between 0.047 dB and
0.073 dB compared to the OCT alone, indicating that using CFPs and OCT in conjunction
with DL models can significantly improve the accuracy of VF predictions.
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Lim [52] suggests a CNN model to aid the diagnosis of glaucoma using fundus images
(CFPs) in eyes with greater axial length (myopia) with an AUROC result of 93.9%, indicating
a high detection capacity with a meager error rate.

Table 4 shows studies with DL methodologies applied to color fundus photos (FCF),
clinical data (DC), visual field (VF), and optical coherence tomography (OCT). Results
referenced with glaucoma specialists (E), incorporation of telemedicine (T), inclusion and
exclusion criteria (CE), disease stage classification/VF prediction (R), validation of the
results of the method studied by the ROC curve, accuracy (Acc), sensitivity (SE), and
specificity (SP)

Table 4. Application of DL in glaucoma screening.

Author Objective CE FCF DC VF OCT E T R Results

Neto
[53]

Screen for glaucoma
using DL

segmentation and
classification

methods.

Images from the
RIM-ONE r3,

DRISHTI-GS, and
REFUGE databases

yes

Disk segmentation
IoU 0.94, Dice 0.97

Cup: IOU 0.81, DICE
0.96 with

InceptionResNet V2;

Shuldiner
[48]

Studies the risk of
future progression of
glaucoma based on

initial VF.

ML algorithms were
trained based on

reliability metrics of
initial VF and age.

yes yes ROC 0.72
[95% CI 0.70–0.75])

Kucur
[49]

Using CNNs to
discriminate between

normal and early
glaucomatous eyes.

VF of the European
population, white
with normal and

pre-perimetric eyes.

yes yes
Precision: Rotterdam

87.4%,
Budapest 98.6%

Huang
[50]

Assess VF loss using
a DL system
compared to

ophthalmologists

Diagnosed by
ophthalmologists.

Use VF with
false-negative and
false-positive less

than 30%.

yes yes yes yes Acc 85 ROC 0.93

Wen [16]
DL networks can be
trained to predict VF

24-2

More than one VF
24-2 strategy and

used clinical variables
age, sex, and

ophthalmological
test.

yes yes
PMAE = 2.47

(95% CI: 2.45 dB to
2.48 dB)

Kihara
[15]

DL Networks to
Predict VF from FCF,

OCT

VF 24-2, combined
with an sdOCT scan

(exclude eyes with VF
defects) caused by

neurological damage
and retinal disease

yes yes yes yes

PMAE = 0.485 (0.438,
0.533) decibels (dB)
compared with the

OD; 0.060 (0.047,
0.073) dB with OCT.

Eslami
[51]

CNN and RNN
models predicting VF

changes over time
and the models’

abilities to predict VF
loss.

VF with a
false-positive,

false-negative, and
fixation losses were
excluded from the

study. Extra cage, sex,
and the tested eye.

yes
The PMAE 95% for

the CNN and 2.56 to
2.61 dB for the RNN.
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Table 4. Cont.

Author Objective CE FCF DC VF OCT E T R Results

Mariottoni
[4]

Standard for defining
glaucomatous optic

neuropathy based on
a set of OCT + VF+

ONH defects.

VF 24-2. SD-OCT
excluded tests with a

quality score.
yes yes yes yes yes

AUC 0.92
Se 77%
Sp 95%

GON 99.8%
ONH 0.03%.

Noury
[54]

To develop a 3D DL
algorithm to detect

glaucoma using
sdOCT and fundus
photographs in the

population.

An assessment was
conducted from scans

in four countries,
divided into healthy
and glaucomatous

eyes.

yes yes yes AUC ranged from
0.91 to 0.99.

Ting [34]

Detection of various
retinal pathologies

using DL
methodologies.

Race/ethnicity
information collected. yes yes GON: AUC 0.942, Se

96.4%, Sp 87.2%

Singh
[24]

Evaluate DL models
applied in OCT to

evaluate glaucoma.

OCT images are
divided into healthy

and glaucoma.
yes yes 95.68% accuracy

using VGG16

Li [7]

Fundus photographs,
evaluate a DL method

to diagnose risk,
future incidence, and

glaucoma
progression.

Patients visit
ophthalmologists to
ensure collections

with open-angle and
without glaucoma for

control.

yes yes yes

AUROC incidence
0.90

AUROC progression
0.91

Lim [52]

It suggests a tool to
assist in diagnosing

glaucoma using
fundus images.

Eyes with greater
than usual axial

length (axial myopia).
yes yes yes yes

Xception—AUROC
93.9% for glaucoma

detection

GON—glaucomatous optic neuropathy, sdOCT—spectral domain optical coherence tomography, VF—automated visual
field, DL—deep learning; AUC—area under the receiver operating characteristic curve; Yes (present characteristic).

Mariottoni [4] proposed a reference standard for defining glaucomatous optic neuropa-
thy based on OCT + VF + ONH defects in PFCs with expert-referenced results. It obtained
neuropathy (GON) at 99.8%, and ONH at 0.03%, suggesting a good ability to distinguish
individuals with and without GON, moderate knowledge in identifying individuals with
GON, and a high capacity in identifying individuals without GON. The ONH value of
0.03% suggests that the test cannot identify individuals with optic disc defects.

Noury [54] developed a 3D DL algorithm to detect glaucoma using sdOCT and CFPs
in population samples in four countries, divided into normal and glaucomatous eyes,
with results referenced by glaucoma experts, obtaining an AUC between 0.91 and 0.99,
indicating that the algorithm had a high performance in detecting glaucoma.

Ting [34] analyzed the detection of various retinal pathologies using DL methodologies
with results referenced by glaucoma experts. The results indicate good performance in
detecting retinal pathologies with AUCs ranging between 0.931 and 0.942.

Singh [24] suggested a tool to evaluate DL models applied in OCT to evaluate glau-
coma, using standard and glaucomatous OCT images. Experts referenced the results. It
achieved 95.68% accuracy using VGG16.

These studies demonstrate that DL methodologies have the potential to screen glau-
coma, interpret OCT and VF, and use them as references for results, thus avoiding the bias
of specialist experience, bringing greater security of results, and enabling the diagnosis of
early forms, prediction of disease progression based on VF data and differentiation between
ocular diseases [34].
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New studies will be necessary to compare the results of automated methodologies with
those carried out by specialists in different populations and also to study the importance
of including the lamina cribriformis obtained using sdOCT as a reference measure in the
evolution of excavation and the detection of glaucoma [54].

4. Discussion

The present study analyzed how the different stages of computer vision can offer
better solutions in glaucoma screening and create more objective references that are less
dependent on specialists.

Despite advances in technology, diagnosing glaucoma remains a challenging task and
depends on the experience of professionals. The expansion of the use of DL techniques in
glaucoma screening processes gives a new impetus towards more accurate results that are
less dependent on specialists, bringing automated analysis of the optic papilla closer to the
real world; in addition, they can help specialists in the arduous task of triage glaucoma,
homogenizing opinions, and producing objective references.

A DL model can recognize disease features in images, VF, and sdOCT and predict
glaucoma progression from the VF (see Table 4). However, it requires a large dataset for
training. ML algorithms used to predict the risk of rapid glaucoma progression based on
initial VF testing [48] can predict the risk of glaucoma onset and advancement based on
color fundus photos with an excellent predictive performance (AUROCs 0. 87) [7].

Recent studies show that the convergence of DL methodologies applied at different stages
of glaucoma screening increases the speed and quality of results, reducing costs and providing
reference standards that are less dependent on the subjectivity of specialist assessment.

The usefulness of using DL techniques must be analyzed from a statistical point of
view. As an example, from the work of Ting et al. [34], a DL system was used to screen
diabetic retinopathy, glaucoma, and senile macular degeneration with AUC 0.958; 0.942;
and 0.931, sensitivity 91.1%; 96.4%; and 93.2% and specificities 91.6%; 87.2%; and 93.2%,
respectively. Considering population values, we would have around 12.8% false-positive
results in the population; that is, more than 10% of healthy individuals would be diagnosed
as “glaucoma suspects” and would be unnecessarily referred for additional tests, in addition
to the psychological burden resulting from the suspicion.

VF data have been leveraged to train several DL algorithms to detect glaucomatous
damage, showing a similar and better performance than experts. It is important to note
that the DL model’s reliable and unreliable tests were used to train the networks.

Artificial intelligence techniques combined with the screening process and the trans-
mission of retinal images and clinical data (teleophthalmology) demonstrate the potential
to assist the specialist in making a correct diagnosis in less time, given similar (or better)
results. They are achieved by analyzing DL technologies.

Teleophthalmology platforms allow the storing and forwarding of images and data in
real time to screening centers. They have been improved by image processing techniques
using DL techniques, increasing the offer of diagnoses at lower costs compared to in-person
examinations, qualifying the diagnosis, helping reduce waiting lists for ophthalmological care,
and facilitating the glaucoma screening process in more distant populations. However, future
studies may establish diagnostic limits carried out through automated methodologies.

Figure 1 shows the steps that specialists use in glaucoma screening (blue flow), in-
cluding analysis of the optic nerve head, complementary exams, and transmitting images
and data via teleophthalmology. The orange flow exemplifies the applications of DL in the
study of pictures of the optic nerve, VF, sdOCT, teleophthalmology, and complementary
exams. The convergence of DL methodologies used in each stage of automated glaucoma
screening brings more robust results closer to reality.
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5. Conclusions

The world faces considerable challenges in eye care, including inequalities in the
coverage and quality of prevention, treatment, and rehabilitation services; shortage of
trained eye care providers; and weak integration of ophthalmological services into health
systems, among others. In this aspect, tools such as AI have developed in recent years
and can assist medical specialists in the growing population demand. It is recommended
that AI-based methodologies be reflected in medical practice due to the complexity of
glaucoma screening.

In the literature, DL methodologies are applied individually or jointly in several stages
of glaucoma screening, including analysis of photographs of the retina, visual field, and
optical coherence tomography, together with the patient’s clinical data, bringing automated
screening using DL methodologies closer to manual screening carried out by specialists,
improving results (mainly in suspected and early cases), facilitating access to the population,
lower costs compared to face-to-face examinations, with the potential to avoid the bias
of specialists in overestimating physiologically increased excavations in larger optic discs
or underestimate them in small discs, in addition to facilitating the glaucoma screening
process in more distant locations through teleophthalmology. However, it is essential to
remember that the glaucoma diagnosis must be monitored by a qualified ophthalmologist
who can recommend specific tests to confirm the diagnosis.
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