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Abstract: Background and Objectives: Therapeutic hypothermia (TH) shows promise as an approach
with neuroprotective effects, capable of reducing secondary brain damage and intracranial pressure
following successful mechanical thrombectomy in the acute phase. However, its effect on cognitive
impairment remains unclear. This study investigated whether TH can improve cognitive impairment
in a mouse model of transient middle cerebral artery occlusion followed by reperfusion (tMCAO/R).
Materials and Methods: Nine-week-old C57BL/6N mice (male) were randomly assigned to three
groups: sham, tMCAO/R, and tMCAO/R with TH. Cognitive function was assessed 1 month after
model induction using the Y-maze test, and regional cerebral glucose metabolism was measured
through positron emission tomography with fluorine-18 fluorodeoxyglucose. Results: tMCAO/R
induced cognitive impairment, which showed improvement with TH. The TH group exhibited a
significant recovery in cerebral glucose metabolism in the thalamus compared to the tMCAO/R
group. Conclusions: These findings indicate that TH may hold promise as a therapeutic strategy for
alleviating ischemia/reperfusion-induced cognitive impairment.

Keywords: ischemic stroke; hypothermia; cognition; neuroprotection

1. Introduction

Mechanical thrombectomy (MT) is widely used to restore blood flow after acute in-
tracranial artery occlusion [1]. Despite successful MT procedures leading to the restoration
of blood flow, reperfusion injury may still occur, and may worsen neurological outcomes.
Specifically, reperfusion injury can elevate reactive oxygen species (ROS) levels, causing
direct harm to mitochondria and lipid peroxidation [2]. Excessive ROS triggers the acti-
vation of antioxidant enzymes, including superoxide dismutase, glutathione peroxidase,
glutathione reductase, and catalase. Notably, glutathione, a significant antioxidant con-
tributing to the detoxification of ROS, significantly decreases post-cerebral ischemia [3,4].
Cerebral ischemia causes reduced blood flow and diminished oxygen and glucose delivery
to the brain. These conditions contribute to excitotoxicity and impaired functioning of
astrocytic glutamate transporter 1 [5,6]. Astrocytes, one of the most prevalent neuroglia
cell types, play a crucial role in neuronal injury. Following an ischemic stroke, astrocytes
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become activated, and their reactive state contributes to microglia activation, potentially
causing neuronal death through various mechanisms [7].

Furthermore, immune cell activation is accompanied by the upregulation of cytokines
and chemokines. Consequently, ischemia-reperfusion injury induces chronic neurological
dysfunction, particularly cognitive impairment, through brain cell death. In the real clinical
setting, cognitive impairment has been reported in over 80% of patients with ischemic
stroke [8,9]. Ettelt et al. reported that, despite the favorable functional outcome, 86%
of patients with acute large-vessel artery occlusion who underwent MT had cognitive
impairment 3 months after onset [8]. These findings highlight the importance of clinicians
being vigilant regarding cognitive impairment, as it strongly correlates with reduced quality
of life, emphasizing the need for swift recanalization efforts.

Body temperature increases 4–6 h post-stroke, with a more pronounced rise in severe
cases [10]. Given the vulnerability of the central nervous system to high temperatures,
hyperthermia is closely associated with cognitive impairment [11]. Furthermore, patients
with elevated body temperatures during intra- and post-ischemic periods demonstrated
unfavorable outcomes post-MT [12]. Specifically, each 1 ◦C increase in temperature signifi-
cantly increased the risk of impaired functional independence and mortality [12]. Therefore,
therapeutic hypothermia (TH) has emerged as a promising strategy in the clinical field to
mitigate ischemia-reperfusion injury and achieve favorable neurological outcomes. Nev-
ertheless, most extant TH studies have primarily focused on mitigating cerebral edema,
which could lead to increased intracranial pressure in the acute phase, and there remains a
scarcity of investigations exploring the effect of TH on cognitive function.

Given the facts above, we hypothesized that TH could ameliorate impaired cogni-
tive function by mitigating ischemia-reperfusion injury. To validate our hypothesis, we
investigated the effects of TH on cognition using the Y-maze test. We assessed topograph-
ical changes in glucose metabolism through F-18 fluorodeoxyglucose positron emission
tomography scans in a mouse model of transient middle cerebral artery occlusion.

2. Materials and Methods

Transient middle cerebral artery occlusion/reperfusion (tMCAO/R) model
Male C57BL/6 mice of SPF-grade (9 weeks old) were obtained from Samtako Bio (Osan,

Republic of Korea) and bred in a controlled environment (22 ◦C and 12 h light/dark cycle,
lights on at 6 AM) with free access to water and food. The animals were acclimatized for
1 week before initiating tMCAO/R modeling. The mice were categorized into three groups:
(1) sham (n = 13), (2) tMCAO/R (n = 18), and (3) tMCAO/R + TH (n = 14). Following
induction of anesthesia with 4.0% isoflurane evaporated in a nitrous oxide (N2O)/oxygen
(O2) (70:30) gas mixture, we conducted tMCAO/R or sham surgery according to the
procedures outlined in a previous study. (Figure 1A) [13]. In summary, we introduced
a 6–0 nylon monofilament with a silicone-coated tip (0.22 mm; Doccol Co., Sharon, MA,
USA) through the external carotid artery into the right internal carotid artery, advancing it
to 6 mm from the internal carotid bifurcation site. Subsequently, we temporarily covered
the surgical site, and anesthesia was discontinued. After 60 min of occlusion, the mice
were re-anesthetized for monofilament removal. The mice in the sham-operation group
underwent an identical procedure as the tMCAO/R group, excluding the actual MCA
occlusion. Figure 1A illustrates the specifications of the experimental design employed in
this study. The rectal temperature of the mice was carefully maintained at 37 ± 0.5 ◦C during
anesthesia, using an infrared lamp and a heat blanket pad. Furthermore, cerebral blood flow
(CBF) was monitored throughout the experiment using laser Doppler flowmetry (Omega
Flow FLO-C1 BV; Omega Wave, Tokyo, Japan). Mice showing a decrease in CBF exceeding
70% of the basal level were excluded from the analysis. All animal experiments conformed
to ethical standards and received approval from the Institutional Animal Care and Use
Committee of Keimyung University (IACUC No: KM-2019-09R2), in accordance with the
principles delineated in the NIH Guide for the Care and Use of Laboratory Animals.
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ysis was performed by Student’s t-test. (* p < 0.05, *** p < 0.001). 
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(ranging from 0–4) in the sham (n = 13), tMCAO/R (n = 18), and tMCAO/R + TH (n = 14) 
groups [17]. We chose the Bederson scoring test because of its significant association with 
infarct volume across scores ranging from 0–4 [18]. Scoring was briefly based on the fol-
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forelimb flexion and circling, 3 points for partial paralysis on the affected side, and 4 
points for no spontaneous motor activity. 
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4 cm wide, and positioned 120° from each other. During the 8 min testing period, the mice 
were placed on one arm of the device and allowed to move freely through the maze. The 
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of possible triads × 100 [19]. 
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(n = 13/13), (2) tMCAO/R (n = 12/18), and (3) tMCAO/R + TH (n = 14/14). Mice underwent 

Figure 1. Comparison of neurological score and spatial working memory among sham, tMCAO/R,
and tMCAO/R + TH groups. (A) Experimental schedule for behavioral study and FDG-PET using
tMCAO/R mouse model. (B) A neurological score test was performed post-surgery. (C) The Y-maze
test was performed 30 days post-surgery. Data were expressed as mean ± SEM, and statistical
analysis was performed by Student’s t-test. (* p < 0.05, *** p < 0.001).

TH

TH was conducted as described in a previous study [14]. A 70% alcohol spray was
briefly administered to the entire mouse body, ensuring strict control of the core temperature
within the range of 32–34 ◦C. This hypothermic state was sustained for 2 h following
reperfusion, after which the body temperature gradually returned to 37 ◦C. [15,16]. The
temperature was closely regulated throughout the TH process using a DAS-7007R (BMDS,
Seaford, DE, USA) body temperature feedback system and an IPTT-300 transponder (BMDS,
Seaford, DE, USA).

Neurological function test

Following surgery, neurological deficits were assessed using the Bederson score (rang-
ing from 0–4) in the sham (n = 13), tMCAO/R (n = 18), and tMCAO/R + TH (n = 14)
groups [17]. We chose the Bederson scoring test because of its significant association with
infarct volume across scores ranging from 0–4 [18]. Scoring was briefly based on the fol-
lowing criteria: 0 points for no observed deficit, 1 point for forelimb flexion, 2 points for
forelimb flexion and circling, 3 points for partial paralysis on the affected side, and 4 points
for no spontaneous motor activity.

Cognitive function test

Cognitive function was assessed using the Y-maze test, which utilized a maze with
three arms constructed from white plexiglass. Each arm was 40 cm long, 12 cm high, and
4 cm wide, and positioned 120◦ from each other. During the 8 min testing period, the mice
were placed on one arm of the device and allowed to move freely through the maze. The
behavior change (%) was calculated by dividing the number of alternations by the number
of possible triads × 100 [19].

F-18 fluorodeoxyglucose positron emission tomography (FDG-PET)

One month post-surgery, the survival rates for each group were as follows: (1) sham
(n = 13/13), (2) tMCAO/R (n = 12/18), and (3) tMCAO/R + TH (n = 14/14). Mice under-
went F-18 FDG PET to assess cerebral glucose metabolism using the Triumph II PET/CT
system (Lab-PET8; Gamma Medica-Ideas, Waukesha, WI, USA). Before the PET scan, the
mice underwent a 12 h fast. The mice were anesthetized with 2.0% isoflurane in a nitrous
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oxide/oxygen (N2O/O2, 70:30) mixture and intravenously administered approximately
7.4 MBq of F-18 FDG via the tail vein. PET scanning for whole-brain images was con-
ducted around 30 min post-F-18 FDG injection, with the PET scan lasting for a duration
of 5 min. The obtained data were assumed to show cerebral glucose metabolism. For
the spatiotemporal quantification of cerebral glucose metabolism, a volume-of-interest
(VOI) analysis was conducted for each scan using the PMOD software package (version
3.9; PMOD Technologies, Ltd., Zurich, Switzerland), along with a mouse brain template
and atlas, as previously described, with some modifications [20,21]. PMOD was employed
for the transformation of each mouse brain PET dataset into the relevant space, and an
automated application of a mouse brain atlas was executed to evaluate F-18 FDG uptake.
Standardized F-18 FDG uptake values within defined subregions of the mouse brain were
obtained. The mouse brain VOI atlas was iteratively utilized in conjunction with a stan-
dard brain model to optimize the fusion of experimental data. The regional standardized
F-18 FDG uptake values ratio (SUVR) was computed by dividing the standardized F-18
FDG uptake value for the individual target region by the corresponding region in the left
cerebral hemisphere. Each group consisted of 10 mice, excluding those with unclear PET
scan images or significant deviations.

Cell culture

HT22 cells, derived from immortalized primary mouse hippocampal neuronal cells,
are utilized in memory-related studies related to memory that focus on mature hippocam-
pal neurons. Alterations in mitochondrial function, intracellular Ca2+, and pH homeostasis
during hypoxic conditions can cause neuronal cell death [22,23]. HT22 cells were cultured
in Dulbecco’s modified Eagle’s medium (DMEM, LM001-05, Welgene, Gyeongsan, Repub-
lic of Korea) supplemented with 10% heat-inactivated fetal bovine serum (FBS, 160,004,
Gibco/Thermo Fisher Scientific, Waltham, MA, USA) and 1% penicillin-streptomycin
(15,140,122, Gibco/Thermo Fisher Scientific, Waltham, MA, USA). The cells were cultured
in a humidified CO2 incubator (Sanyo, Osaka, Japan) at 37 ◦C with a 5% CO2/95% air
atmosphere, and sub-culturing was conducted every 2 days. The culture dishes were
utilized to maintain aseptic conditions, preventing contamination.

In vitro hypoxia/reoxygenation (H/R) model

Cells were counted using a hemocytometer and trypan blue solution (15,250,061,
Gibco/Thermo Fisher Scientific, Waltham, MA, USA). HT22 cells were trypsinized and
stained at approximately 80% confluence on a 100 mm plate. A total of 2.84 × 106 cells/mL
were counted, and then 35 µL was aliquoted per well, resulting in a final density of
1 × 105 cells/well. The cells were cultured in DMEM supplemented with 10% FBS and
1%penicillin in a 5% CO2 humid atmosphere at 37 ◦C. After a 24 h period, cells in the
H/R group were cultured in a serum-free and glucose-free medium within a chamber
containing 0.5% O2 and 5% CO2 at 37 ◦C for 6 h. Glucose (A2494001, final concentra-
tion 11 mM, Gibco/Thermo Fisher Scientific, Waltham, MA, USA) was then added to the
hypoxia medium, and the cells were cultured at 37 ◦C in a humidified 5% CO2 incuba-
tor for an additional 24 h. In the TH group, cells were cultured at 32 ◦C following the
hypoxia challenge.

Western blotting

HT22 cells were harvested and prepared for Western blotting. Briefly, cellular pro-
teins were lysed with RIPA buffer (EBA-1149; ELPIS-BIOTECH, Daejeon, Republic of
Korea). Total protein quantities were assessed with a BCA protein assay kit (23,225, Thermo
ScientificTM, Waltham, MA, USA). Forty micrograms of protein samples were separated
on a sodium dodecyl sulfate-polyacrylamide gel and then transferred to polyvinylidene
fluoride membranes (IPVH00010, Merck Millipore Corp., Billerica, MA, USA). The proteins
on the membranes were incubated with primary antibodies against poly (ADP-ribose) poly-
merase (PARP, #9532, 1:1000, cell signaling, Lane Danvers, MA, USA), cleaved caspase-3
(#9664, 1:1000, cell signaling) or α-tubulin (sc-5286, Santa Cruz, Dallas, TX, USA) and the
corresponding secondary antibodies conjugated with horseradish peroxidase (sc-525409,
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#7047, 1:5000). Protein bands were visualized using SuperSignal™ West Pico Chemilumi-
nescent Substrate (34,580, Pierce, Cheshire, UK), digitalized with FUSIONSOLO5 (KOREA
BIOMICS, Seoul, Republic of Korea). Western blot band quantification was performed
using the Image J program (version 1.51; https://imagej.net).

Statistical analysis

Statistical analyses were conducted using SPSS software version 25.0 (SPSS Inc.,
Chicago, IL, USA). The comparison between the means of the two groups was assessed
using Student’s t-test, with significance denoted by asterisks (*) for p-value < 0.05.

3. Results
3.1. Hypothermia Improved Functional Outcome and Cognitive Function

To assess the impact of TH on functional outcomes in the tMCAO/R group, we
employed the Bederson 0–4 neurological scoring system. The functional outcomes were
decreased in the tMCAO/R group and improved in the tMCAO/R + TH group (Figure 1B).
Subsequently, to investigate the effect of TH on short-term memory, we conducted Y-maze
behavioral tests in the tMCAO/R mouse model. The findings revealed a notable decrease
in the percentage of spontaneous alterations following tMCAO/R when compared to sham
controls (Figure 1C). Treatment with TH exhibited a trend towards an increased percentage
of spontaneous changes in comparison to tMCAO/R without TH, although this difference
did not attain statistical significance (Figure 1C). These data suggested that TH tended to
improve spatial motor memory that tMCAO/R reduced.

3.2. Cerebral Glucose Metabolism

To explore the impact of TH on cerebral glucose metabolism, F-18 FDG PET was
conducted in the sham, tMCAO/R, and tMCAO/R + TH groups. The regional SUVRs were
determined using VOI analysis (Figure 2). One month after tMCAO/R surgery, the SUVRs
of the right hippocampus, left striatum, right striatum, left thalamus, right thalamus, and
central gray were significantly lower in the tMCAO/R group compared to the sham group.
Additionally, the SUVRs of the left thalamus were considerably higher in the tMCAO/R +
TH group than in the tMCAO/R group (Table 1). However, no significant differences were
observed in the SUVR in other brain regions.

Table 1. Comparison of regional cerebral glucose metabolism after tMCAO/R surgery.

Regions Side

Mean (Standard Deviation) p-Value

Sham tMCAO/R tMCAO/R +
TH

Sham vs.
tMCAO/R

Sham vs.
tMCAO/R +

TH

tMCAO vs.
tMCAO/R +

TH

Amygdala left 0.828 (0.081) 0.904 (0.064) 0.890 (0.066) 0.115 0.213 1.000
right 0.883 (0.107) 0.856 (0.087) 0.904 (0.088) 1.000 1.000 0.883

Cortex
left 0.960 (0.036) 0.970 (0.043) 0.943 (0.035) 1.000 1.000 0.438

right 0.998 (0.085) 0.948 (0.107) 0.942 (0.094) 0.867 0.624 1.000

Hippocampus left 1.141 (0.070) 1.062 (0.079) 1.151 (0.079) 0.134 1.000 0.065
right 1.187 (0.109) 1.062 (0.078) 1.162 (0.102) 0.044 * 1.000 0.127

Midbrain
left 1.280 (0.131) 1.175 (0.086) 1.260 (0.108) 0.193 1.000 0.362

right 1.282 (0.152) 1.143 (0.081) 1.243 (0.135) 0.106 1.000 0.345

Striatum
left 1.165 (0.078) 1.082 (0.031) 1.133 (0.069) 0.040 * 0.887 0.307

right 1.191 (0.116) 1.074 (0.052) 1.145 (0.091) 0.043 * 0.845 0.345

Thalamus
left 1.224 (0.086) 1.102 (0.049) 1.213 (0.079) 0.007 ** 1.000 0.012 *

right 1.280 (0.136) 1.135 (0.067) 1.248 (0.113) 0.038 * 1.000 0.127

Inferior colliculi
left 1.336 (0.165) 1.205 (0.074) 0.265 (0.084) 0.083 0.570 0.850

right 1.390 (0.209) 1.222 (0.083) 1.331 (0.124) 0.089 1.000 0.412

https://imagej.net
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Table 1. Cont.

Regions Side

Mean (Standard Deviation) p-Value

Sham tMCAO/R tMCAO/R +
TH

Sham vs.
tMCAO/R

Sham vs.
tMCAO/R +

TH

tMCAO vs.
tMCAO/R +

TH

Superior colliculi 1.318 (0.152) 1.182 (0.053) 1.261 (0.099) 0.056 0.827 0.438
Basal forebrain 1.046 (0.041) 1.031 (0.037) 1.006 (0.042) 1.000 0.126 0.602

Central gray 1.434 (0.177) 1.237 (0.079) 0.328 (0.138) 0.023 * 0.325 0.551
Hypothalamus 1.078 (0.086) 1.043 (0.058) 1.083 (0.053) 0.899 1.000 0.675
Olfactory bulb 1.377 (0.135) 1.321 (0.173) 1.248 (0.142) 1.000 0.220 0.944

Asterisks indicate statistical significance. Regional standardized F-18 FDG uptake value ratios on the same side
were compared among the sham, tMCAO/R, and tMCAO/R + TH groups using one-way ANOVA. Bonferroni
post hoc analysis was employed for group comparisons, including sham and tMCAO/R, sham and tMCAO/R
+ TH, and tMCAO/R and tMCAO/R + TH. * p < 0.05, ** p < 0.01; All values are presented as mean (standard
deviation).
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Figure 2. To evaluate cerebral glucose metabolism, a PET scan was performed 30 min after F-18
FDG injection using the Triumph II PET/CT system (Lab-PET8; Gamma Medica-Ideas, Waukesha,
WI, USA), which has a resolution of FWHM 1.35 mm. (A) Regional standardized F-18 FDG uptake
value ratios (SUVRs) were calculated based on a volume-of-interest analysis performed using the
PMOD software package (version 3.9; PMOD Technologies, Ltd., Zurich, Switzerland) with a mouse
brain template. (B) A sham-operated mouse shows no abnormal glucose metabolism in the right
striatum. (C) A tMCAO/R mouse shows decreased glucose metabolism in the right striatum. (D) A
tMCAO/R + TH mouse shows no change in glucose metabolism in the right striatum compared to
a sham-operated mouse—TH upregulated glucose metabolism in the brain induced by tMCAO/R
injury. The Brain PET image in the figure has been converted to rainbow colors, with black represent-
ing 0 and red representing 12 kbq/cc. The arrow indicated the location of the right striatum in the
mouse brain.
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3.3. Therapeutic Hypothermia Attenuated Hypoxia/Reoxygenation(H/R)-Induced
Neuronal Apoptosis

To confirm the impact of TH on cognitive impairment in the tMCAO/R model, we
established an in vitro H/R model. Following the H/R challenge, the viability of neuronal
cells decreased, and PARP cleavage and cleaved-caspase-3 levels increased (Figure 3). How-
ever, TH restored the decreased neuronal viability and the expression levels of increased
PARP cleavage and cleaved-caspase-3 induced by H/R.
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Figure 3. Therapeutic hypothermia attenuated H/R-induced neuronal apoptosis by modulating
the expression of PARP and cleaved-caspase-3. (A) The experimental scheme for the in vitro hy-
poxia/reoxygenation model is presented. (B) Cell viability assay was performed following H/R with
therapeutic hypothermia (TH) or without. (C) The expression levels of apoptotic protein markers
were assessed using Western blotting. α-tubulin was used as a loading control (thick band). Prote-
olytic PARP cleavage was indicated by an arrowhead. Data were expressed as mean ± SEM, and
statistical analysis was conducted using the Student’s t-test. (***; compared to normoxia, p < 0.001,
##; compared to H/R, p < 0.01).

4. Discussion

Ischemic stroke has been recognized as a precipitating factor in selective neuronal
degeneration and neuroinflammation, contributing to consequential cognitive impair-
ment [24]. Cognitive deficits are observed in over 70% of stroke survivors [25]. These
deficits include impairments specific to the stroke lesion site, such as aphasia or memory
deficits, and those arising from strategic infarcts in the hippocampus, thalamus, and key
cortical regions [26]. Additionally, it includes deficits that may have preceded the onset of
the stroke. Cerebral I/R injury often leads to irreversible brain damage, neuronal injury, and
death, involving various complex pathological processes like oxidative stress, excitotoxicity,
amino acid toxicity, release of endogenous substances, inflammation, and apoptosis [27].
Apoptotic triggers, such as Ca2+ accumulation and excessive ROS production induced by
I/R, play a role in mitochondrial cell death [28,29]. These dysfunctions lead to the release
of pro-apoptotic factors, including cytochrome c, endonuclease G, and apoptosis-inducing
factors [30]. Pro-apoptotic factors cause apoptosome formation, converting procaspase-9
into activated caspase-9. This activated caspase-9, in turn, stimulates effector caspases like
caspase-3, caspase-6, and caspase-7, which promote neuronal cell apoptosis [31].

Mild to moderate hypothermia (31–34 ◦C) during or after cerebral ischemia is a potent
neuroprotective strategy [32–38]. This therapeutic approach concurrently inhibits multiple
mechanisms of brain cell death and decelerates metabolic processes, effectively limiting
tissue damage [36,39–41]. The cumulative and synergistic benefits of hypothermia offer
promising clinical outcomes in patients with stroke.
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Cerebral glucose hypometabolism is a significant feature of dementia [42]. The pat-
tern of hypometabolism identified through F-18 FDG PET holds predictive value for the
progression from baseline cognition to mild cognitive impairment [43]. Beyond its role
as a biomarker, cerebral glucose hypometabolism contributes significantly to the patho-
physiology of Alzheimer’s disease [44,45]. Human clinical trials targeting the restoration
of cerebral bioenergetic pathways have yielded promising early results [44]. Our study
demonstrated that tMCAO/R decreased glucose metabolism, and this effect improved after
TH in the thalamus. Several studies have reported that cognitive dysfunction following
an acute stroke is often attributed to direct injury to brain structures crucial for cognitive
function, such as the thalamus or basal ganglia [25,46,47], which aligns with our results.
The Y-maze test also revealed decreased short-term memory in the tMCAO/R group recov-
ered after TH. Therefore, TH may be a potential adjuvant therapeutic option for vascular
stroke. We demonstrated that TH could be effectively induced in tMCAO/R-affected
injured regions, leading to neuro-regenerative effects and behavioral recovery (Figure 4).
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Figure 4. Therapeutic hypothermia mitigated I/R-induced cognitive impairment by modulating
glucose metabolism and neuronal cell apoptosis. In a tMCAO/R mouse model, TH increased glucose
uptake in the thalamus after I/R and reduced the protein expression of apoptosis-related markers,
including PARP cleavage and cleaved-caspase-3, in a H/R hippocampal neuronal cell model.

Our study has some limitations that warrant consideration. First, the TH effect on
cognitive impairment was assessed in relatively healthy young male mice. Extrapolating
these findings to actual patients may encounter variations because clinical populations
often comprise individuals with advanced atherosclerosis and older adult patients who
have experienced ischemic stroke. Second, the therapeutic effects of hypothermia on
cognitive impairment may vary depending on the degree of ischemic-reperfusion injury.
The extent of injury after successful recanalization is influenced by factors such as the
duration of occlusion, underlying diseases, and collateral circulation. Therefore, additional
studies are essential to explore the effects of TH on cognitive function recovery in mouse
models representing atherosclerosis or older adult populations. Third, our study did not
comprehensively assess the damage to brain structures or isoflurane concentrations, which
could influence cognitive function. For instance, the thalamus is a part of the integral
neuronal network responsible for cognition [48].

Furthermore, a recent study suggested cognitive impairment occurs through the fronto–
parieto–cerebellar–thalamic loop [49]. Thalamic injury has been shown to cause a decline in
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word retrieval, particularly concerning responses from the posterior supplementary motor
area. In this study, we utilized a concentration of 4.0% isoflurane, potentially influencing
cellular damage and consequently affecting cognitive function [50,51]. Finally, reactive
microglia and astrocytes are observed in neurological disease states, including injury-
mediated neuroinflammation, neurodegeneration, epilepsy, demyelination, and ischemic
stroke [52,53]. Neuroinflammation, independently or through interactions with Aβ and
tau proteins, can impair cognitive function. TH recovered cognitive impairment in an I/R
mouse model and reduced neuronal cell death; however, additional investigations into
TH-mediated signaling pathways, such as mitogen-activated protein kinase, nuclear factor
kappa B, and Janus kinase-signal transducer and activator of transcription, are warranted.
Considering these findings collectively, further studies are needed to examine thalamic
damage and isoflurane concentration.

5. Conclusions

Our findings suggest that TH improves cognitive function in mice after tMCAO/R
without causing concomitant long-term sensorimotor deficits. Additionally, TH suppressed
the apoptosis of HT22 cells after H/R. Despite TH exhibiting neuroprotective effects in the
tMCAO/R mouse model, further mechanistic studies are necessary to understand how TH
modulates glucose metabolism while regulating neuroinflammation and neurotoxicity.
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