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Abstract: Background: Regenerative medicine is evolving with discoveries like the stromal vascular
fraction (SVF), a diverse cell group from adipose tissue with therapeutic promise. Originating
from fat cell metabolism studies in the 1960s, SVF’s versatility was recognized after demonstrating
multipotency. Comprising of cells like pericytes, smooth muscle cells, and, notably, adipose-derived
stem cells (ADSCs), SVF offers tissue regeneration and repair through the differentiation and secretion
of growth factors. Its therapeutic efficacy is due to these cells’ synergistic action, prompting extensive
research. Methods: This review analyzed the relevant literature on SVF, covering its composition,
action mechanisms, clinical applications, and future directions. An extensive literature search from
January 2018 to June 2023 was conducted across databases like PubMed, Embase, etc., using specific
keywords. Results: The systematic literature search yielded a total of 473 articles. Sixteen articles
met the inclusion criteria and were included in the review. This rigorous methodology provides a
framework for a thorough and systematic analysis of the existing literature on SVF, offering robust
insights into the potential of this important cell population in regenerative medicine. Conclusions: Our
review reveals the potential of SVF, a heterogeneous cell mixture, as a powerful tool in regenerative
medicine. SVF has demonstrated therapeutic efficacy and safety across disciplines, improving pain,
tissue regeneration, graft survival, and wound healing while exhibiting immunomodulatory and
anti-inflammatory properties.

Keywords: regenerative medicine; stromal vascular fraction; cell mixture; tissue regeneration; graft
survival; surgery

1. Introduction

The field of regenerative medicine is perpetually evolving, constantly being shaped by
ground-breaking discoveries that promise to revolutionize the way we approach various
medical conditions. One of the key players in this landscape is the stromal vascular
fraction (SVF), characterized by its diverse cellular composition extracted from the adipose
tissue that has demonstrated significant therapeutic potential across multiple medical
disciplines [1].

Understanding the journey of SVF in medicine necessitates a glimpse into its historical
context. The 1960s marked the advent of the SVF narrative when Rodbell initiated his
studies into fat cell metabolism, a pursuit that ultimately led to the identification of an
‘active’ fraction of non-adipocyte cells, a collective later known as SVF [1]. The term,
however, came into mainstream usage only after the pivotal work by Zuk et al., which
unearthed the multipotency of adipose-derived stromal cells, a vital component of SVF [2].
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SVF are a heterogeneous mixture of cells, pericytes, smooth muscle cells, and, most
importantly, adipose-derived stem cells (ADSCs) [1]. These cells play a crucial role in tissue
regeneration and repair, primarily due to their ability to differentiate into various cell types
and release angiogenic and anti-inflammatory factors [3]. Among these, the ADSCs are
particularly notable for their multipotency, enabling them to differentiate into various cell
types such as adipocytes, osteoblasts, and chondrocytes under appropriate conditions [4].
Moreover, these cells are known for their angiogenic and immunomodulatory capabilities,
primarily due to their secretion of growth factors and cytokines [5]. The therapeutic efficacy
of SVF can be attributed to these diverse cell types acting in synergy. While the regenerative
and reparative capacities can be traced back to the ADSCs, the immune cells within SVF
contribute to the immunomodulatory effects, essential for tissue repair and regeneration.
Over the following decades, this recognition spiraled into a flurry of research investigating
the regenerative potential of SVF, spurred by its accessibility and abundant stem cell content.
SVF began garnering attention across diverse disciplines [6].

SVF has been employed in various clinical settings due to its regenerative, immunomod-
ulatory, and anti-inflammatory properties. In the field of plastic and reconstructive surgery,
SVF-enriched fat grafting has been shown to improve graft survival and wound healing [7].
In orthopedics, SVF has been used to treat osteoarthritis, with studies reporting improve-
ment in pain scores and joint function [8]. In cardiology, SVF therapy is being explored
for myocardial ischemia, with encouraging results in pre-clinical and early-phase clinical
trials [9]. These varied applications underscore the versatile nature of SVF and its potential
to revolutionize the landscape of regenerative medicine. However, the current understand-
ing of SVF is not without limitations and challenges, necessitating further investigation to
unlock its full therapeutic potential [10].

The objective of this comprehensive review is to meticulously scrutinize the breadth
and depth of contemporary clinical literature concerning SVF, from its inception to its
present-day applications, spotlighting potential future trajectories. By compiling and
critically examining a wide array of studies, we endeavor to offer a panoramic view of
SVF’s potential, thereby contributing to the foundational knowledge that propels the field
of regenerative medicine forward.

2. Materials and Methods

In this review, we employed a systematic approach to gather and analyze the relevant
literature concerning SVF. The objective was to provide a comprehensive overview of
SVF, including its biological composition, mechanisms of action, clinical applications, and
potential future directions.

2.1. Search Strategy

An extensive literature search was conducted using several databases: PubMed,
Embase, Scopus, Web of Science, and the Cochrane Library. The search period was from
January 2018 to June 2023 as this period of time represents the most recent five years,
ensuring that the data and research findings are current. This is particularly important in
fields where advancements happen rapidly, as older studies might become outdated or less
relevant. The primary keywords used were ‘stromal vascular fraction’, ‘adipose-derived
stromal cells’, ‘adipose tissue’, ‘regenerative medicine’, and ‘clinical applications’. These
keywords were used in combination with other terms relevant to the specific sections
of this review. For example, for the section on clinical applications, terms like ‘wound
healing’, ‘osteoarthritis’, ‘myocardial ischemia’, etc., were used in conjunction with the
primary keywords.

2.2. Selection Criteria

Inclusion criteria comprised original research articles. The selected studies included
prospective and/or retrospective case series, and review articles written in English that
explored the composition, mechanism of action, therapeutic applications, and future per-
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spectives of SVF. Studies that were not peer-reviewed, such as preprints, were excluded.
Likewise, articles not available in English, letters to the editor, studies that did not provide
explicit data on SVF, and duplicate studies were also omitted from this review. For clini-
cal trials, only those that reported clear methodologies, patient outcomes, and statistical
analyses were considered. Articles had to be explicitly centered on the stromal vascular
fraction (SVF). This ensured that the study provided specific insights into SVF, rather than
a peripheral or broad overview of adipose tissue or regenerative medicine. The paper had
to showcase a sound research methodology, which is a testament to the credibility, relia-
bility, and replicability of the study’s findings. Those with ambiguous or poorly defined
methodologies were not considered appropriate for inclusion. Research studies with a
limited sample size, specifically those with fewer than 5 participants, might not provide
the robust evidence that this review aims to collate. Non-original research articles, such as
commentaries, editorials, and opinion papers were excluded to maintain the integrity and
objective of our study.

2.3. Data Extraction

For each selected article, data were extracted by two independent reviewers (ENG and
NM). The data comprised the year of publication, study type, the number of participants
(for clinical trials), main findings, and conclusions and complications. Any discrepancies
between the reviewers were resolved through discussion until a consensus was reached.

3. Results

The systematic literature search yielded a total of 787 articles. After removing dupli-
cates and screening titles and abstracts, 84 full-text articles were assessed for eligibility. Of
these, 16 articles met the inclusion criteria and were included in the review (Table 1) [11–26].
The selected studies included prospective and/or retrospective case series, randomized
controlled clinical trials, and reviews. This rigorous methodology provides a framework
for a thorough and systematic analysis of the existing literature on SVF, offering robust
insights into the potential of this important cell population in regenerative medicine.
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Table 1. Data Synthesis and Analysis.

Author(s) (Year) Study Type Sample Size Key Findings Conclusion Complications

Onoi et al. [11] (2023) prospective case series 42 Safety of autologous SVF
SVF cell injections in the hip joint showed
good short-term clinical efficacy for
reducing hip OA symptoms.

no

Kim et al. [12] (2023) retrospective 43

Cartilage repair was evaluated based on
the Magnetic Resonance Observation of
Cartilage Repair Tissue scoring system,
using the magnetic resonance imaging
from the 12-month follow-up

SVF implantation improved pain and
cartilage regeneration for patients with
knee osteoarthritis. The cartilage lesion size
and the number of SVF cells significantly
influenced the postoperative outcomes.

no

Zhang et al. [13] (2022) retrospective, randomized
controlled clinical trial 126

The VAS and WOMAC scores in the SVF
group were significantly better than those
in the hyaluronic acid group during the
5-year follow-up after treatment.

Up to 5 years after autologous SVF
treatment, acceptable clinical state was
present for approximately 60% of patients
with less cartilage volume loss. In addition,
the high severity of BML and high BMI
increased the risk of clinical failure.
Intra-articular injections of SVF do not
improve subchondral BML.

no

Kwon et al. [14] (2023) prospective 20

The 6-month follow-up following scar
revision surgery revealed better results
after treatment with SVF than those in the
control group.

Although more research is needed,
autologous SVF is a valuable source of
regenerative medicine that can be swiftly
and inexpensively prepared from human
fat tissue.

no

Garza et al. [15] (2021) prospective double-blinded
randomized trial 39

The median percentage change in
WOMAC score at 6 months after injection
for the high-dose, low-dose, and placebo
groups was 83.9%, 51.5%, and 25.0%,
respectively. The high- and low-dose
groups had statistically significant
changes in WOMAC scores when
compared with the placebo group (high
dose, p = 0.04; low dose, p = 0.02). The
improvements were dose-dependent.

Intra-articular SVF injections can
significantly decrease knee OA symptoms
and pain for at least 12 months. The efficacy
and safety demonstrated in this
placebo-controlled trial support its
implementation as a treatment option for
symptomatic knee OA. Magnetic resonance
image review revealed no changes in
cartilage thickness after treatment.

no

Rodriguez-Merchan et al. [16]
(2022) literature review 28

Intra-articular injection of SVF seems to
be a safe and efficacious method for
managing knee osteoarthritis (OA).
Platelet-rich plasma (PRP) and SVF are
safe and effective management for
intractable Achilles tendinopathy in
humans, although subjects treated with
SVF recover earlier.

The SVF can safely be used to treat diabetic
subjects suffering from chronic foot ulcers.
Experimental studies indicate that SVF
could be a new option to osseous
regeneration.

no
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Table 1. Cont.

Author(s) (Year) Study Type Sample Size Key Findings Conclusion Complications

Perdomo-Pantoja et al. [17]
(2021) prospective 36

The aim of this study was to compare the
efficacy of freshly isolated adipose
tissue-derived stromal vascular fraction
(A-SVF) cells and bone marrow cells
(BMCs) in achieving spinal fusion on rat
models.

SVF cells yielded a comparable fusion mass
volume and radiographic rate of fusion to
BMCs when combined with a clinical-grade
bone graft substitute. These results suggest
the feasibility of using freshly isolated
A-SVF cells in spinal fusion procedures.

no

Choi et al. [18] (2020) prospective 10

Two polyetheretherketone (PEEK) cages
were inserted into the intervertebral space
following the complete removal of the
intervertebral disc. The PEEK cage (SVF
group) on the right side of the patient was
filled with β-TCP in combination with
SVF, and the cage on the left side (control
group) was filled with β-TCP alone.
Fusion rate and cage subsidence were
assessed by lumbar spine X-ray and CT at
6 and 12 months postoperatively. At the
6-month follow-up, 54.5% of the SVF
group (right-sided cages) and 18.2% of
the control group (left-sided cages) had
radiologic evidence of bone fusion
(p = 0.151).

The 12-month fusion rate of the right-sided
cages was 100%, while that of the left-sided
cages was 91.6% (p = 0.755). Cage
subsidence was not observed. Perioperative
combined use of SVF with β-TCP is feasible
and safe in patients who require spinal
fusion surgery, and it has the potential to
increase the early bone fusion rate
following spinal fusion surgery.

no

Rowe et al. [19] (2023) prospective 344

Mesenteric windows from old rats were
isolated following
exteriorization-induced (EI) hypoxic
injury and intravenous injection of one of
four cell therapies: (1) SVF from young or
(2) old donors, (3) SVF from old donors
depleted of or (4) enriched for T cells.
Advancing age increased the SVF T-cell
population but reduced revascularization
following injury.

SVF represents a heterogeneous cell
population shown to increase angiogenic
regeneration in the researchers’ novel aged
mesenteric injury model. This study
provides others with a new tool for tracking
vascular remodeling and can be used in
conjunction with study of cell therapies or
drugs in a setting of advanced age.
Furthermore, the researchers show how the
age of the donor should be considered not
only for cellular differences but
functionality as a vascular therapeutic.
Age-related changes to cell dynamics and
function in providing therapeutic
gains—that is, the secretion of
anti-inflammatory cytokines, increasing
sensitivity to VEGF, increasing the
migration and engraftment potential of
injected cells, and endothelial cell division.

no
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Table 1. Cont.

Author(s) (Year) Study Type Sample Size Key Findings Conclusion Complications

Brian et al. [20] (2020) retrospective 350

Seven days after SVF cell therapy, 45.2%
of subjects experienced improved pain
levels and mobility. Three, six, and twelve
months after therapy, improvement in
pain levels reached 75.3%, 84.4%, and
84.9%, and improvement in mobility
reached 75.2%, 84.4%, and 84.9%.

The treatment demonstrated a strong safety
profile with no severe adverse events or
complications reported. The results of the
study are showing that SVF cell therapy
was more effective in subjects with arthritis
stage III compared to arthritis stages I, II,
and IV.

no

Moon et al. [21] (2019) retrospective 77

In the upper two-third and lower
one-third zones, except for the ala, no
statistically significant differences were
found in any parameters. In the alar zone,
statistically significant differences were
detected in 10 of 21 POSAS parameters.

To cover nasal defects, the tissue-engineered
dermis graft may be superior to the
artificial dermis graft regarding scar quality
at the ala. However, there were no
significant differences in other zones.

no

Zimmermann et al. [22] (2018) retrospective 10

In the transposition group, sustained pain
reduction was not observed after an
initial significant reduction 2 months
post-surgery, resulting in pain relapse at
36 months and pain comparable to the
preoperative assessment. In the graft
group, some degree of pain reduction
was observed at 2 months after the
surgery and proved to be constant in the
long-term outcome, although not
statistically significant compared to
preoperative levels.

Both SVF-enriched fat grafting and
intramuscular transposition failed to prove
statistically significant pain reduction in
treating symptomatic neuromas of
peripheral nerves.

no

Calcagni
et al. [23] (2018) retrospective 5

Pain reduction observed at 2 months after
surgery was constant over time, though
not statistically significant compared to
preoperative levels.

SVF-enriched fat grafting represents
another alternative to numerous available
treatments of painful end-neuromas of the
SBRN. The researchers’ preliminary results
could not show any significant difference in
pain reduction following SVF-enriched fat
grafting. Further larger trials are required in
order to evaluate the therapeutic potential
of SVF-enriched fat grafting.

no
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Table 1. Cont.

Author(s) (Year) Study Type Sample Size Key Findings Conclusion Complications

Jeon et al. [24] (2021) prospective 20

Fat graft retention rate was higher in
Group 1 than in Group 2 at both
postoperative 6 months (73.8% vs. 62.2%;
p = 0.03) and 12 months (65.4% vs. 48.4%;
p = 0.03). Group 1 showed higher patient
satisfaction. Regarding complications, fat
necrosis occurred in one patient in each of
the two groups. However, locoregional
recurrence was not observed in any
patient during follow-up.

CAL with SVF is effective in increasing
survival rates of autologous fat grafts for
correction of volume deficit after breast
reconstruction. Moreover, it is associated
with improved patient satisfaction in terms
of the aesthetic aspect.

fat necrosis occurred in one
patient

Yin et al. [25] (2021) prospective 5

All patients were treated with surgical
debridement, cell suspension (SVF cells
suspended by platelet-rich plasma)
injection into the wound, and
platelet-rich plasma gel coverage.
Wounds were measured every week after
treatment using a two-dimensional
digital camera and a three-dimensional
wound measurement device. All patients
were followed-up for 4 months after the
treatment.

The average proportion of granulation
tissue achieved 100% within 4 weeks for all
cases. The wound size decreased to less
than half of the original size for all cases 4
weeks after the treatment. Findings
revealed that the new treatment is efficient
to achieve wound healing in patients with
recalcitrant chronic diabetic ulcer of lower
limb.

no

Aletto et al. [26] (2022) prospective
clinical trial 123

One single injection of lipoaspirate
reduces knee pain and improves function
after 1 month from the injection.

The intra-articular knee injection of SVF is
safe and effective to ameliorate the clinical
and functional scores in patients with early
knee osteoarthritis for 6 months.

no
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4. Discussion

The reviewed studies collectively demonstrate the potential therapeutic applications
of SVF in various medical disciplines. Containing a diverse array of cells such as adipose-
derived stem cells (ADSCs), pericytes, and smooth muscle cells, the SVF has demonstrated
promising regenerative, immunomodulatory, and anti-inflammatory effects (Figure 1).
Characterizing the purification of SVF is of paramount importance, especially when con-
sidering its application in therapeutic contexts. The purification process ensures that
unwanted components, potentially harmful contaminants, or non-functional elements are
removed, leaving behind a highly enriched fraction that can be safely and effectively used
for regenerative purposes [3]. The purification and analysis of SVF entail a comprehensive
evaluation of its cellular and molecular constituents. First, cellular composition is often
deciphered using flow cytometry, which uses specific markers to quantify cell types, such
as ASCs (CD34+, CD31−, CD45−), endothelial cells (CD31+), and immune cells (CD45+).
Additionally, microscopy, such as histological or fluorescent examinations, visually presents
cellular composition [3,4,27–34] (Table 2).
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Table 2. SVF cell content isolated from the aqueous portion.

Type of Cells Functions Authors, Year [ref.]

Mesenchymal progenitor/stem cells
They have the capacity to perform self-renewal and

differentiation into specific cell lineages, and support
the maintenance of other cells via paracrine secretion.

Francis et al., 2018 [27,32]

Lymphocytes

They participate in both innate and adaptive immune
responses with multiple effect or functions.

They produce antibodies, direct the cell-mediated
killing of virus-infected and/or tumor cells, and

regulate immune responses.

Busato et al., 2020 [28]
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Table 2. Cont.

Type of Cells Functions Authors, Year [ref.]

Smooth muscle cells
They display involuntary contractile activity to control

the diameter, wall movement, and wall stiffness of
specific organs.

Guimarães, 2017 [29]

Adipose tissue-derived
stem cells

They secrete growth factors, cytokines, and
antioxidant factors into a microenvironment,

regulating intracellular signaling pathways in
neighboring cells. Protective outcome via

anti-inflammatory and immunomodulatory effects.

Bora et al., 2017 [3]

Preadipocytes

They promote the growth of adipose tissue by
differentiating into mature and metabolically active

adipocytes.
Proliferating preadipocytes may also exhibit

phagocytic activity towards microorganisms and
behave similarly to macrophage-like cells.

Matsuo et al., 2020 [30]

Mφ2 macrophage

The type 2 macrophage (Mφ2) is produced by the type
2 T helper immune response and takes on an

anti-inflammatory role, typically characterized by an
increase in the production of interleukins (IL-4, IL-5,

IL-9, and IL-13). It is also directly involved in
regenerative and tissue repair processes that occur

after injuries.

Contreras et al., 2015 [31];
Dey et al., 2021 [32]

T cells

As components of the adaptive immune system with
major importance, these cells are responsible for
eliminating infected host cells, activating other

immune cells, and secreting cytokines that further
regulate immune responses.

Dulong et al., 2022 [33]

Endothelial precursor
cells and endothelial

cells

They differentiate into functional endothelial cells and
sustain vasculogenesis by incorporating themselves
into the injured endothelium with the formation of

functional blood vessels and through the local
secretion of pro-angiogenic factors, with a paracrine
effect on the cells that form the vessel. They play a

critical role in vascular homeostasis as well as
physiological or pathological processes such as

thrombosis, inflammation, and vascular wall
remodeling.

Resting endothelial cells control blood flow and the
passage of protein from blood into tissues, as well as
inhibiting inflammation and preventing coagulation.

Gulyaeva et al., 2019 [34]

In the field of orthopedics, SVF has been investigated for the treatment of osteoarthritis
(OA). In a retrospective study by Kim et al. [12] with 43 participants, SVF implantation was
found to improve pain and cartilage regeneration in knee OA. Garza et al. [15] reported
improved pain scores and cartilage regeneration in patients with knee OA following SVF
implantation, and both studies underscored the absence of complications. Furthermore,
Zhang et al. [13] demonstrated that SVF treatment resulted in better clinical outcomes
compared to hyaluronic acid therapy in knee OA patients. In the retrospective study
conducted by Brian et al. [20], which involved 350 participants, a pivotal focus was placed
on patients with arthritis undergoing SVF cell therapy. This study stands out for its
significant findings, which revealed marked improvements in both pain levels and mobility
among the treated patients, especially notable in those diagnosed with stage III arthritis.
These improvements were not just incremental but substantial, indicating a pronounced
therapeutic effect of SVF therapy on the symptoms of arthritis [20]. In a prospective study
by Perdomo-Pantoja et al. [17] with 36 participants, SVF was found to be comparable to
bone marrow cells (BMCs) in spinal fusion, suggesting its viability in spinal surgeries.
Similarly, Choi et al. [18] demonstrated a higher early bone fusion rate when using SVF,
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pointing towards its potential in enhancing spinal fusion outcomes in their prospective
study with 10 participants. In plastic and reconstructive surgery, SVF-enriched fat grafting
has shown positive results in improving graft survival and wound healing, as reported
by Onoi et al. [11]. The prospective study by Kwon et al. [14], involving 20 participants,
reported improved outcomes in scar revision surgery following SVF treatment. The study
did not report any complications.

Moon et al. [21] explored the use of SVF in reconstructive surgery, particularly for nasal
defect repair. The study demonstrated that tissue-engineered dermis grafts incorporating
SVF yielded superior scar quality in the alar zone of the nose compared to traditional
artificial dermis grafts. This finding is significant as it highlights SVF’s potential in im-
proving aesthetic outcomes in reconstructive surgery, offering more effective solutions
for challenging areas like nasal defects [19,21]. Jeon et al. [24] reported increased fat graft
survival rates in breast reconstruction with SVF. These findings suggest that SVF has broad
applications in the field of regenerative medicine.

Cardiology is another area where SVF therapy is being explored. Pre-clinical and
early-phase clinical trials have shown encouraging results in the use of SVF for myocardial
ischemia, as mentioned by Bai et al. [9]. This highlights the potential of SVF in cardiac
regenerative medicine, although further research is needed to establish its safety and
efficacy in larger clinical trials.

It is worth noting that the reviewed studies have reported generally positive outcomes
and a favorable safety profile for SVF therapy. Complications were infrequently reported
across the studies, indicating a relatively low risk associated with SVF treatments. However,
it is important to interpret these findings with caution due to the limited number of
participants in some studies and the lack of long-term follow-up data [25]. Despite the
promising results, this review also highlights the need for further research to address the
limitations and challenges associated with SVF therapy [35–39] (Table 3).

Table 3. Effect of stromal vascular fraction on tissues.

Regulation of pro-inflammatory molecules Decreases IL-1b and IL-6 levels.
Hyaline cartilage extracellular matrix Increases Glycosaminoglycan level.

Triggering of IL-1Ra Reduces the catabolic effect of IL-1.
Increasing of ADAMTS-4 and -5 Provides tissue balance (homeostasis).

Anti-inflammatory Reduces tissue swelling (edema).
Anti-apoptotic Reduces and stops programmed cell death.

Increasing of TIMPs-1, -3, and -4 metalloproteinases Provides tissue balance (homeostasis).

ADAMTS, A disintegrin and metalloproteinase with thrombospondin motifs; TIMPs, tissue inhibitors of
mMetalloproteinases.

For instance, the variability in SVF composition and preparation methods, as well
as the optimal dosage and delivery methods, warrant further investigation. The stan-
dardization of protocols and rigorous clinical trials will be crucial for establishing the
safety and efficacy of SVF therapies. The findings indicate positive outcomes in terms
of pain reduction, tissue regeneration, and improved clinical efficacy. However, further
research is needed to address the limitations and challenges in order to unlock the full
therapeutic potential of SVF and establish its role as a mainstream treatment option in
regenerative medicine.

Despite the limitations of some studies due to small sample sizes, the overall findings
support the potential of SVF as a versatile tool in regenerative medicine. However, further
research is necessary to address challenges such as standardizing SVF isolation and pro-
cessing methods, optimizing dosage and delivery approaches, and conducting long-term
follow-up studies to assess durability and potential side effects. The therapeutic potential
of SVF is far from being fully realized, and there are still many avenues to explore in order
to unlock its complete potential. As highlighted in this review, the current body of research
supports SVF’s role in regenerative medicine, but it also highlights the need for further
study to explore its full potential and tackle existing challenges. Future studies should
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aim to elucidate the precise mechanisms of action of SVF in tissue repair and regeneration.
Our understanding of the therapeutic effects of SVF has been primarily attributed to the
ADSCs; however, SVF is a heterogeneous cell population, and the roles of the other cellular
components remain relatively unexplored. Understanding the individual and synergistic
roles of all the cellular components of SVF could lead to the development of targeted
and personalized therapeutic strategies [40,41]. The standardization of SVF preparation
methods is an important area that requires attention. Current studies have utilized a variety
of protocols for the extraction and processing of SVF, leading to a wide variation in the
cellular composition and concentrations. Therefore, the standardization of protocols for
SVF isolation and processing will be essential to ensure the reproducibility of results across
different studies and clinical settings [42].

4.1. Delivery Methods

Dosage and delivery methods are also aspects that need further investigation. The
optimal dose and the best route for administration that would maximize the therapeutic
effect while minimizing potential adverse reactions are yet to be determined [43]. The
route of administration for stromal vascular fraction (SVF) depends on the therapeutic
target: it can be directly injected into joints for orthopedic conditions, applied to wounds
for healing, introduced intravenously for systemic diseases, delivered into the spinal canal
for neurological disorders, or even injected into muscle tissues or brain tissue for specific
conditions. The chosen route is always based on the condition in question and ongoing
research [44]. Karina et al. [45] showed that the administration of a high dose of SVF
up to 10 billion cells in a majority of 421 patients through infusion, spinal, and intra-
articular injection was feasible without causing major adverse events and should be further
investigated in well-designed phase I-II clinical trials to address the safety and efficacy of
the therapy.

Additionally, comprehensive long-term follow-up studies are needed to assess the
durability of the therapeutic effects of SVF and to monitor for potential side effects or
complications. While the reviewed studies generally report a favorable safety profile for
SVF, long-term data will be crucial in solidifying these initial findings [46].

The use of SVF in regenerative medicine signifies a novel and promising approach
with potential applications across a broad range of medical disciplines. With its potent
regenerative, immunomodulatory, and anti-inflammatory effects, SVF has demonstrated
promising outcomes in orthopedics, cardiology, plastic and reconstructive surgery, and
more [39]. Importantly, the evidence presented in the reviewed studies suggests a generally
favorable safety profile for SVF therapy, marking an encouraging advance in regenerative
medicine [47]. These positive outcomes support the potential of SVF as a versatile therapeu-
tic tool, even though further research is needed to fully realize its potential and translate
the findings into routine clinical practice.

In a study conducted from 2016 to 2019, Cai et al. [48] evaluated the efficacy of SVF gel
in treating chronic wounds. The results highlighted a 100% wound closure rate within an
average of 28.3 ± 9.7 days and no recurrences during a 2- to 3-year follow-up. Mechanistic
examinations suggested the role of certain growth factors in enhancing cell proliferation and
migration, especially in serum-free conditions [49]. Several challenges, however, remain.
Standardizing SVF isolation and processing methods, optimizing dosage and delivery
methods, and long-term follow-up studies are areas that require further exploration. Zhang
et al. [13] investigated the mid-term prognosis of SVF treatment for knee osteoarthritis
during a minimum of 5 years, showing that the SVF group had superior VAS and WOMAC
scores, and indicated enhanced pain management and knee functionality compared to
the HA group. Additionally, SVF showcased a prolonged effectiveness of 61.5 months
compared to Na’s 30.3 months. Notably, SVF reduced the risk of clinical failure by 2.6 times,
with BML severity and BMI identified as independent prognostic factors. Moreover, while
both treatments saw a decline in cartilage volume, the reduction was less pronounced
in the SVF group, suggesting potential cartilage protective effects [13]. Additionally, a
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deeper understanding of the precise mechanisms through which SVF contributes to tissue
repair and regeneration is crucial. Different extraction methods and protocols have been
developed to harvest SVF, each with its unique strengths and limitations tailored to specific
clinical requirements.

Enzymatic Digestion using Collagenase: This technique is particularly known for its
efficiency in yielding a high number of SVF cells. By mincing and then digesting adipose
tissue with collagenase, the embedded SVF cells are released. Though widely recognized
and practiced, this method does raise concerns, especially pertaining to the potential
contaminants introduced by animal-derived collagenase. Variations in enzyme quality can
also be a bottleneck, sometimes leading to inconsistent outcomes [50]. Given these potential
risks, certain regulatory bodies may have reservations about its applicability, especially in
human therapeutics [51].

Mechanical Methods: By leveraging physical forces, such as shaking or ultrasonication,
SVF cells are extracted from the adipose matrix. This technique’s hallmark is its enzymatic-
independent approach, making it favorable in regions with rigorous clinical regulations, as
there is no risk of enzyme-related contamination [52]. However, the trade-off includes a
comparatively lower cell yield and the potential mechanical stress on the cells, which could
compromise their viability.

Water Jet-Assisted Liposuction: A more contemporary method, this technique employs
high-pressure water jets to dissociate SVF from adipose tissue. Its minimally invasive
nature is its most notable feature, potentially reducing patient discomfort and procedure
duration [53]. However, this method comes with caveats, including the need for specialized
equipment and expertise. Additionally, the high-pressure jets might inadvertently cause
cell damage, raising questions about the viability of the harvested cells [54].

4.2. SVF Preparation Steps

The steps of SVF separation can be summarized as (a) liposuction, (b) mechanical
separation or shredding, (c) initial filtration, (d) washing, (e) final filtration, (f) SVF and
adipose graft harvesting, and (g) cell counting and/or characterization (Table 4) [51–54].

Table 4. Steps of stromal vascular fraction separation.

Conventional Modified Approach

Obtaining adipose
tissue

- Abdominal fat
- Reusable Sorenson-type lipoaspiration

cannula
- Klein’s Translumination solution: Modified
- Klein solution (500 mL isotonic, 20 mL

lidocaine, 2% epinephrine, 2 mL
bicarbonate)

- 50 mL Luer lock syringe

- Abdominal fat
- Disposable/Re-usable Coleman-style

cannula
- Klein’s Translumination solution: Modified
- Klein solution (500 mL isotonic, 20 mL

lidocaine, 2% epinephrine, 2 mL bicarbonate)
- 50 mL Luer lock syringe

Mechanical
separation/shredding

- Shredding of tissue by shaking with glass
ball (shaking time and strength depend on
the user)

- Separation by the effect of gravity in a
screw-form mechanical separator at standard
power and time

Pre-filtration
- Polyethylene filtration in a 100 micrometer

porous polyethylene bag

- Filtration with the effect of gravity in a
100-micrometer porous device whose base is
supported by a metallic or polymeric cage

Washing - Not available - Washing in the device

Final filtration purity
- Filtration on 10-micrometer porous

polyethylene filters in 10 mL syringes

- Final filtration with the rise of adipose tissue
and SVF to the solution surface in serum
within the device
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Table 4. Cont.

Conventional Modified Approach

Collection of
SVF/adipose tissue

- Available in an equivalent system - Proximal adipose tissue and SVF separation
reservoir

Cell counting and
characterization

- Cell counting, determination of viability,
determination of cell characteristics, and
histochemical identification

- Cell counting, determination of viability,
determination of cell characteristics, and
histochemical identification

As we continue to explore and understand the individual and synergistic roles of all
cellular components within SVF, the development of targeted and personalized therapeutic
strategies becomes a tangible possibility. Considering the rapidly evolving research land-
scape, large-scale, randomized clinical trials will play a pivotal role in firmly establishing
the safety and efficacy of SVF therapies [44]. This will help determine the most effective
way to integrate this novel therapeutic approach into mainstream medical practice. While
we have only just begun to scratch the surface of the potential applications of SVF in regen-
erative medicine, the results thus far are encouraging. Medical devices for the preparation
of AD-SVF are summarized in Table 5 [43–46].

Table 5. Commercial medical products for AD-SVF preparation [43].

Product Company Article

Cha-Station Somnotec
http://www.somnotec.net (accessed on 15th Novembre 2023) [55]

Octagone D200 Endecotts Ltd.
https://www.endecotts.com (accessed on 15th Novembre 2023) [56]

AdiPrep
Harvest

http://www.harvest.co.kr/clinician/clinician-home/adiprep/advantages/quality.html
(accessed on 15th Novembre 2023)

[57]

Lipokit Medi-Khan
http://www.medikanint.com (accessed on 15th Novembre 2023) [58,59]

Puregraft 250 Puregraft LLC
http://www.puregraft.com (accessed on 15th Novembre 2023) [60]

Lipogems Lipogems
http://understandlipogems.com (accessed on 15th Novembre 2023) [61,62]

MyStem MyStem LLC
https://mystem.eu/ (accessed on 15th Novembre 2023) [63,64]

Arthrex SVF https://www.arthrex.com/orthobiologics (accessed on 15th Novembre 2023) [65]

Adinizer BSL
http://biosl.com/?ckattempt=1 (accessed on 15th Novembre 2023) [66]

Microlyser Tlab
https://tlab.com.tr/en/products/microlyzer-svf-kit/ (accessed on 15th Novembre 2023) [67]

SEFFIE Advanced-Maes
http://www.advanced-maes.com/ (accessed on 15th Novembre 2023) [68]

LIPOCUBE STEMC
https://lipocube.com/ (accessed on 15th Novembre 2023) [69,70]

Q-Graft Human Med AG
https://www.humanmed.com/en/products/q-graft/ (accessed on 15th Novembre 2023) [71]

Tulip Nanotransfer Tulip Medical
https://tulipmedical.com/ (accessed on 15th Novembre 2023) [72]

Lipocell Tissyou
https://www.tissyou.com/portfolio_page/lipocell/ (accessed on 15th Novembre 2023) [73]

LipiVage
Genesis Biosytems

https://www.genesisbiosystems.com/lipivagesystem-autologous-fat-transfer/
(accessed on 15th Novembre 2023)

[74]

http://www.somnotec.net
https://www.endecotts.com
http://www.harvest.co.kr/clinician/clinician-home/adiprep/advantages/quality.html
http://www.medikanint.com
http://www.puregraft.com
http://understandlipogems.com
https://mystem.eu/
https://www.arthrex.com/orthobiologics
http://biosl.com/?ckattempt=1
https://tlab.com.tr/en/products/microlyzer-svf-kit/
http://www.advanced-maes.com/
https://lipocube.com/
https://www.humanmed.com/en/products/q-graft/
https://tulipmedical.com/
https://www.tissyou.com/portfolio_page/lipocell/
https://www.genesisbiosystems.com/lipivagesystem-autologous-fat-transfer/
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The coming years promise to shed more light on this versatile therapeutic tool, and it
is our hope that the relentless pursuit of knowledge in this area will usher in a new era of
regenerative medicine, leading to improved patient outcomes across a myriad of health
conditions [75–77].

4.3. Immediate Expectations

Increased clinical trials: An increase in clinical trials is anticipated, targeting the
efficacy and safety of SVF across various therapeutic applications. These trials are expected
to provide critical data that will inform clinical practice and further research, particularly
in areas such as osteoarthritis, wound healing, and myocardial ischemia or neurosurgery.

Technological advancements: The immediate horizon also sees advancements in the
technology used for SVF extraction and purification. Efforts will likely be directed toward
standardizing protocols to improve the viability and potency of harvested cells, which is
essential for ensuring consistent and effective treatment outcomes. Regulatory processes
for SVF-based therapies are expected. These advancements will facilitate the transition
from laboratory research to clinical applications, ensuring that new treatments are safe and
compliant with regulatory standards.

4.4. Long-Term Expectations

Broad-spectrum applications: Over the long term, SVF is expected to find appli-
cations in broader medical disciplines. This expansion could offer novel treatments
for various chronic diseases and degenerative conditions and in the flourishing field
of tissue engineering.

Personalized medicine and integration with other therapies: Future research might
enable the use of SVF in personalized regenerative therapies tailored to individual patient
needs and specific conditions. This approach could significantly enhance the efficacy of
treatments and minimize potential side effects. There is potential for SVF to be combined
with other regenerative approaches, such as gene therapy or 3D-bioprinting [78–81]. This
integration could enhance therapeutic outcomes and pave the way for more comprehensive
treatment strategies.

4.5. Future Research Directions

Clarifying cellular dynamics: future studies should focus on the specific roles of
different cell types within SVF and their synergistic effects in tissue repair and regeneration.
Understanding these dynamics is critical to maximizing the therapeutic potential of SVF.

Long-term clinical studies: conducting studies with extended follow-up periods is
crucial. These long-term clinical trials are necessary to assess the efficacy and safety of
SVF-based therapies over time and to understand the lasting impacts of these treatments.

Dose–response relationship: investigating the optimal dosage and administration
routes for SVF in various clinical conditions is essential. This research will help in deter-
mining the most effective treatment protocols.

Mechanistic studies: delving into the molecular pathways influenced by SVF can
provide deeper insights into its regenerative mechanisms. This knowledge is pivotal for
developing targeted therapies to address specific medical conditions more effectively [75].

It is imperative to address ethical concerns and develop comprehensive regulatory
guidelines for using SVF in clinical settings. These guidelines will ensure that treatments
are practical, ethically sound, and compliant with legal standards.

4.6. Limitations of this Study

Lack of long-term data: many studies may have had short follow-up periods, limiting
the ability to draw conclusions about the long-term safety and efficacy of SVF.

Limited sample size: this review may be constrained by the small sample sizes of
some included studies, reducing the power to detect significant effects.
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Regulatory landscape: differences in regulatory practices across countries may affect
the applicability and generalizability of this review’s findings.

5. Conclusions

Our literature review on SVF provides valuable insights into its potential as a powerful
tool in regenerative medicine. SVF, composed of a heterogeneous mixture of cells including
ADSCs, has demonstrated significant therapeutic efficacy and safety in various medical
disciplines. The reviewed studies highlight the positive outcomes of SVF therapy in
areas such as orthopedics, plastic and reconstructive surgery, cardiology, and wound
healing. SVF has shown promising results in reducing pain, improving tissue regeneration,
enhancing graft survival, and promoting wound healing. Moreover, SVF has exhibited
immunomodulatory and anti-inflammatory properties, contributing to its regenerative
effects. The future of SVF in regenerative medicine holds great promise. Continued research,
technological advancements, and regulatory guidelines will contribute to unlocking its full
therapeutic potential. The standardization of protocols and large-scale clinical trials will
provide robust evidence and establish SVF as a mainstream treatment option. With these
developments, SVF has the potential to revolutionize the field of regenerative medicine
and offer innovative solutions for a wide range of medical conditions. SVF represents an
exciting and evolving field of research that has the potential to transform the landscape of
regenerative medicine. By harnessing the regenerative and immunomodulatory properties
of SVF, researchers and clinicians can pave the way for innovative treatments that improve
patient outcomes and quality of life.
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