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Abstract: Background and Objectives: To optimally predict lymph node (LN) failure after definite ra-
diotherapy (RT) in head and neck cancer (HNC) with LN metastases, this study examined radiomics
models extracted from CT images of different periods during RT. Materials and Methods: This study
retrospectively collected radiologic and clinical information from patients undergoing definite RT over
60 Gy for HNC with LN metastases from January 2010 to August 2021. The same largest LNs in each pa-
tient from the initial simulation CT (CTpre) and the following simulation CT (CTmid) at approximately
40 Gy were indicated as regions of interest. LN failure was defined as residual or recurrent LN within
3 years after the end of RT. After the radiomics features were extracted, the radiomics alone model and
the radiomics plus clinical parameters model from the set of CTpre and CTmid were compared. The
LASSO method was applied to select features associated with LN failure. Results: Among 66 patients,
17 LN failures were observed. In the radiomics alone model, CTpre and CTmid had similar mean
accuracies (0.681 and 0.697, respectively) and mean areas under the curve (AUC) (0.521 and 0.568,
respectively). Radiomics features of spherical disproportion, size zone variance, and log minimum
2 were selected for CTpre plus clinical parameters. Volume, energy, homogeneity, and log minimum
1 were selected for CTmid plus clinical parameters. Clinical parameters including smoking, T-stage,
ECE, and regression rate of LN were important for both CTpre and CTmid. In the radiomics plus
clinical parameters models, the mean accuracy and mean AUC of CTmid (0.790 and 0.662, respectively)
were more improved than those of CTpre (0.731 and 0.582, respectively). Conclusions: Both models
using CTpre and CTmid were improved by adding clinical parameters. The radiomics model using
CTmid plus clinical parameters was the best in predicting LN failure in our preliminary analyses.

Keywords: radiomics; radiotherapy; head and neck cancer; lymph node

1. Introduction

Definite radiotherapy (RT) is widely used in advanced head and neck cancer (HNC)
with regional lymph node (LN) metastases. Although the prognosis differs depending
on the details of disease progression, loco-regional recurrence generally occurs in 10–20%
for better sub-sites such as the nasopharynx or human papillomavirus (HPV)-positive
oropharynx [1,2] and in up to 30–40% for worse sub-sites such as the HPV-negative orophar-
ynx, oral cavity, larynx, and hypopharynx [3,4]. Loco-regional recurrence is quite an impor-
tant issue in HNC as it not only affects survival but also affects quality of life. It ultimately
requires salvage treatment.
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To increase loco-regional control, an advanced RT technique has been developed. The
simultaneous integrated boost (SIB) technique can add radiation doses to risky areas such
as gross tumors and hypoxic regions [5,6]. Various combinations with chemo-regimen and
schedule have been studied [7]. As a part of the treatment to control HNC by preserving
function, induction chemotherapy is of great interest [8]. However, whether the response
could be assessed in advance remains unclear. If the response prediction in the middle
of definite RT is judged to be radio-resistant, early surgical resection could be considered
before fibrosis occurs due to full-dose radiation. Alternatively, clinical trials on additional
chemotherapy for high-risk groups with incomplete response after definite RT could also
be attempted. As a result, it would be possible to perform a multidisciplinary approach in
a more comprehensive way.

Radiomics is a research method that can extract various features from images using
detailed image analysis, convert phenotypes into numerical values, and predict certain
results. A study including advanced HNC has shown that overall survival, progression-free
survival, and local control can be well predicted with radiomics features extracted from
computer tomography (CT) [9]. Another study has shown that radiomics features are as good
as clinical factors for predicting disease-free survival and successfully dividing patients into
low- and high-risk groups [10]. Although these previous studies have shown the potential
of radiomics as an imaging biomarker, both studies were conducted based on work-ups
performed before definite therapy. RT could cause various tumor microenvironment (TME)
changes in response to radiation [11]. However, studies focusing on TME changes during
definite RT are limited. We hypothesize that intrinsic resistance could be predicted more
accurately than previous methods if TME changes during RT could be reflected in radiomics.

Thus, this study evaluated the applicability of an LN failure model with radiomics
extracted from different periods of initial CT images and other CT images in the middle of
RT in advanced HNC with LN metastases. The improvement in each model after adding
clinical parameters was then examined. An optimal model of LN failure was then suggested.

2. Materials and Methods
2.1. Patient Information

This study was conducted on patients who underwent definite RT for HNC with
LN metastases from January 2010 to August 2021. The inclusion criteria were as follows:
(1) HNC was initially confirmed with a pathologic evaluation; (2) LN metastases were
confirmed with structural or functional images with a diameter of the short axis > 7 mm;
(3) fractionated conventional RT or concurrent chemoradiotherapy (CRT) was planned;
(4) an Eastern Cooperative Oncology Group performance score of 0 or 1; and (5) image sets
of simulation CT were acquired before and during RT. The exclusion criteria were as follows:
(1) an LN was excised before RT or infiltrated to the skin; (2) HNC originated from the skin,
paranasal sinus, salivary gland, or unknown primary site; (3) the second simulation CT
was delayed over one week compared with the planned schedule; (4) RT was incompletely
finished with a dose less than 60 Gy; and (5) patients who had arbitrarily follow-up loss
within 2 years. This study was approved by the Institutional Review Board (K-2021AS0138).
Written informed consent was waived due to the retrospective nature of this study.

2.2. CT Imaging and Radiotherapy

Our institutional principle of CT simulation of HNC had generally been unchanged in
the study period. After laying the patients down with a suitable headrest and fixing them
with aquaplast to cover from head to shoulder, the patients’ images were acquired using
a Big Bore CT simulation (Philips Medical System, Amsterdam, The Netherlands). The
thickness of the CT image was 3 mm for 3D conformal RT (3DCRT) and 2 mm for intensity-
modulated RT (IMRT). Iodine contrast (70 mL) for CT was injected at 1 mL/s. Images were
taken 70 s after injection. After the initial plan for 3DCRT, cone-down was performed at
about 40 Gy and 60 Gy excluding low- and intermediate-risk areas, respectively. High-risk
areas including at least a margin of 3 mm from the gross primary tumor and LN were
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irradiated at up to 70 Gy. For IMRT, the same SIB technique of 2.2 Gy and 2 Gy per fraction,
cone-down was performed at about 44 Gy. Low-, intermediate-, and high-risk areas were
irradiated with 40 Gy, 64 Gy, and 70.4 Gy, respectively. We collected a pretreatment set of
CT images (CTpre) and a mid-treatment set of CT images (CTmid). These CT images were
taken 1 week before and 3.5 weeks after starting RT, respectively (Figure 1).
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Figure 1. Diagram of the sequence of this study. Initial simulation CT (CTpre) and cone-down
simulation CT were acquired prior to RT and in the middle of RT at 4 weeks, respectively. Lymph
node within the white circle indicated the region of interest in this study.

2.3. Radiomics Feature Extraction and Clinical Features

For radiomics analyses, regions of interest (ROIs) of the largest LN were drawn on CT-
pre and CTmid after matching the same lymph node. If the largest LN was conglomerated
with circumferential LNs without a distinct border, the ROIs included all adjacent LNs.
A radiation oncologist with over 20 years of experience performed 3D ROI segmentation
using a semi-automated method (MRIcro).

A total of 70 radiomics features were extracted from each CT image. These features
were divided into the following four categories: (1) histogram-based features (N = 19), which
were computed using the voxel intensity of the tumor; (2) shape-based features (N = 11),
which were calculated based on 2D and 3D ROIs; (3) texture-based features (N = 13), which
were computed using GLCM (gray-level co-occurrence matrix) and GLSZM (gray-level
size zone matrix); and (4) filtered-based features (N = 27), which were calculated using 3D
Laplacian of Gaussian. A total of 70 radiomics features were extracted using a combination
of PyRadiomics (ver. 3.0.)- and MATLAB (Math Works, Inc., Portola Valley, CA, USA)-based
in-house code. Detailed descriptions of all features are given in Supplementary Table S1.

Clinical information on age, sex, primary site, smoking history, viral infection history, and
disease stage according to the 7th AJCC stage were collected. In addition, specific information
for the main LN such as size, degree of response during treatment, extracapsular extension
(ECE), central necrosis (CN), multiplicity, bi-laterality, and level of lymph nodes was examined.

2.4. Radiomics Feature Selection

Radiomics analysis involves selecting features from the extracted feature set to ef-
fectively explain the intended clinical variables of interest. We applied the LASSO (Least
Absolute Shrinkage and Selection Operator) method to select features associated with LN
control. We applied cross-validation to the LASSO method for feature selection. After ten
repetitions of the LASSO analysis, we selected features that were chosen five or more times
as the final set (signature).
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2.5. Statistical Test

Our endpoint was the failure of LN control with residual or recurrent LN of an ROI
after RT or CRT. Our study restricted the observation period to be 3 years considering
median follow-up of disease-free patients. Residual disease was confirmed with pathologic
findings of LNs or biopsy and clinical progression. If the residual LN was totally regressed
in pathologic findings with a stable status continued during follow-up examination, it was
defined as successful LN control. If the recurrence of ROIs sequentially progressed over a
window period of 3 months after the primary recurrence or distant metastases, those cases
were excluded from our radiomics analyses. If the ROI was aggravated over 3 years after
the end of RT or CRT, it was excluded from our radiomics analyses (Figure 2).
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Figure 2. The flow of the selection process for the entire cohort. After excluding sequential recurrence
following primary lesion and recurrence over 3 years (vertical line), a total of 17 LN control failures
(gray color) were considered in 66 cases for radiomics analyses.

Survival was evaluated on the last follow-up day or event occurrence from the start of
RT. All survival rates were calculated with Kaplan–Meyer methods.

The selected final signature set was input into a Random Forest (RF) model to predict
LN control. We used 200 decision trees, which were trained using the training set and
evaluated using the test set. The training and test sets were split at a 7:3 ratio. Patients were
randomly selected for each iteration, and we repeated the performance tests 20 times. We
measured AUC (area under the curve), sensitivity, specificity, and accuracy for objective
performance evaluation. All statistical analysis procedures were performed using MATLAB.

We compared predictive performances using the same method across a total of five
categories: CTpre, CTmid, clinical parameters alone, CTpre plus clinical parameters, and
CTmid plus clinical parameters.

3. Results
3.1. Survival and Failure of LN Control

A total of 69 patients were analyzed. Table 1 provides detailed characteristics of the
patients. Three-year disease-free survival and overall survival (standard error) were 53.3%
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(6.2%) and 73.2% (5.4%), respectively (Figure 3). Progression of primary site and distant
metastases occurred in 15 and 20 patients, respectively. Among 21 patients with failure of
LN control, two cases of LN recurrence were developed after 11 and 18 months of primary
site recurrence and one case was developed 61 months after CRT. After excluding these
three patients from the radiomics analyses, a total of 66 patients were enrolled with 17 LN
control failures.

Table 1. Distribution of clinical parameters (N = 69).

Category Sub-Category

Sex Male: female 58:11

Age (years) Median (range) 55 (26–84)

Primary site Nasopharynx:oropharynx:larynx:oral cavity: hypopharynx 25:31:3:1:9

Virus status EBV:HPV:negative:unknown 21:17:11:20

Smoking Never, ex-smoker, current smoker 24:17:28
≤10:>10 (pack years) 30:39

Primary tumor
T-stage T1–2: T3–4 39:30
Size ≤2:2.1–4:>4 (cm) 15:35:19

Lymph node (LN)
N-Stage N1:N2–3 15: 54
Size ≤3:3.1–6:>6 27:38:4
Multiplicity ≤2:>2 (lymph node stations) 29:40
Laterality Unilateral: bilateral 33:36
Extra capsular extension No:yes 29:40
Central necrosis No:yes 27:42

Total radiation dose <70:≥70 (Gy) 9:60

Concurrent chemotherapy No:yes 2:67

Regression of the largest LN size (long diameter CTmid/CTpre) Median (range) 0.762 (0.436–1.250)
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Figure 3. Survival curve of our cohort. OS: overall survival; DFS: disease-free survival; DMFS: distant
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3.2. Feature Selection

In the CTpre alone model, out of a total of 75 radiomics features, two features were
selected: size zone variance (GLSZM-based) and log minimum 2 (filtered-based). In the
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CTmid alone model, five features were selected: uniformity (histogram-based), volume
(shape-based), energy (GLCM-based), homogeneity (GLCM-based), and log minimum
1 (filtered-based). In the clinical parameters alone model, age, virus status, LN size, ECE,
and CN were important. In the CTpre plus clinical parameters model, out of 96 features
including clinical parameters and radiomics features, 8 features were selected: spheri-
cal disproportion (shape-based), size zone variance (GLSZM-based), and log minimum
2 (filtered-based) of radiomics features and age, smoking, T-stage, ECE, and regression rate
of LN. In the CTmid plus clinical parameters model, a total of eight features were selected:
volume (shape-based), energy (GLCM-based), homogeneity (GLCM-based), log minimum
1 (filtered-based), smoking, T-stage, ECE, and regression rate of LN.

3.3. Performance Test

The predictive model of CTpre and CTmid consisted of two and five different ra-
diomics features, respectively. Clinical parameters including smoking, T-stage, ECE, and
diameter regression rate during RT were commonly used for both models. Age was ad-
ditionally used for the CTpre model. The mean accuracies (standard deviation) of the
models with CTpre, CTmid, and clinical parameters were 0.681 (0.069), 0.698 (0.089), and
0.726 (0.089), respectively (Figure 4). These mean values of CTpre and CTmid plus clinical
parameters became 0.731 (0.100) and 0.790 (0.095), respectively. Mean areas under the
curve (AUC) of the models with CTpre, CTmid, and clinical parameters were 0.521 (0.080),
0.568 (0.093), and 0.593 (0.085), respectively. These mean values of CTpre and CTmid
became 0.582 (0.088) and 0.662 (0.133) when the clinical parameters were included. These
results are summarized in Table 2.
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Table 2. Values (mean ± standard deviation) of ACC and AUC according to various radiomics models.

CTpre CTmid Clinical Parameters CTpre Plus
Clinical Parameters

CTmid Plus
Clinical Parameters

ACC 0.681 ± 0.069 0.698 ± 0.089 0.726 ± 0.089 0.731 ± 0.100 0.790 ± 0.095

AUC 0.521 ± 0.008 0.568 ± 0.093 0.593 ± 0.085 0.582 ± 0.088 0.662 ± 0.133

ACC: accuracy; AUC: area under the curve.

3.4. Feature Importance

We evaluated the importance of features for each model that underwent performance
testing using the out-of-bag method. The importance of each feature is visualized in Figure 5.
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4. Discussion

This study aimed to suggest a model to predict LN control failure after definite RT
in advanced HNC with regional LN metastases. It was designed to determine whether
radiomics differentiate the intrinsic sensitivity of LN to radiation doses and whether clinical
parameters have a synergic effect over radiomics alone. LNs were targeted as ROIs in our
study. Since LNs have a round or oval shape different from a primary tumor, the physician
could more readily conduct ROI delineation. Another benefit is the reproducibility of
CTmid images since LNs maintain a consistent shape despite regression during treatment.
Lastly, as shown in the recurrence pattern of our study, the LN was a common first recur-
rence site in locally advanced HNC and an important factor in determining the success of
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definite RT. The radiomics alone model for both CTpre and CTmid showed a moderate
ACC to predict LN control failure. The predictability of radiomics was improved after
adding clinical parameters.

A previous radiomics study of LN regression for 374 LNs from 113 patients showed an
AUC of 0.71 in external validation [12]. Although our study differed from the above study
in that only the largest lymph node was selected and analyzed in each patient, the outcomes
of our study fell short with an ACC of 0.698 and an AUC of 0.568 in the CTmid set. In
addition, a high ECE rate (58.0%) showed that our cohort consisted of more advanced
LN metastases.

In our study, node regression rates during RT, ECE, T-stage, and heavy smoking were
significant clinical parameters that could intensify the accuracy and AUC of radiomics.
Previous studies have found that clinical–radiomics models show improved predictability,
similar to our study. The radiomics features from MRI combined with clinical information
improved the predictability of DFS and OS [13]. One report showed that combining genetic
information on the hedgehog pathway and E2F transcriptional targets can potentially
improve a radiomics model [14]. For lung cancer, dosimetric parameters of stereotactic body
RT could improve the predictability of local control in addition to the clinical–radiomics
model [15]. Thus, the radiomics model could be improved by adding other fields or omics
information related to prognoses.

In the CTpre alone and the CTpre plus clinical parameters models, size zone vari-
ance and log minimum (σ = 2) were consistently chosen. Size zone variance measures
how diverse the sizes of identical texture regions are within the ROI, reflecting texture
heterogeneity. The log minimum is primarily observed at a tumor’s edge and is sensi-
tive to subtle texture changes within the tumor. In the CTmid alone and the CTmid plus
clinical parameters models, volume, energy (GLCM-based), homogeneity (GLCM-based),
and log minimum were consistently selected. Volume, representing the size of the tumor
projected in the image, was deemed crucial for predicting LN failure in this study. Energy
(GLCM-based), signifying the degree of brightness variation within an ROI, indicates
texture heterogeneity, expressing a tumor’s complexity and contributing as an important
predictive factor of LN failure. Homogeneity, similar to energy, measures a tumor’s con-
sistency and assesses the tumor’s unseen uniformity, thus playing a significant role in
predicting LN control failure. The log minimum (σ = 1), a feature common with CTpre,
was chosen again, reinforcing its role as a predictive feature of LN control failure in this
study. Our research results encompass various aspects such as tumor texture, size, and
brightness changes. By considering these factors collectively, we anticipate enhancing the
accuracy of the LN control failure.

In terms of TME changes during RT, the radiomics at about 40 Gy was another key
point of our study. For TME in HNC, there have been studies performed to distinguish
subtypes of HNC using radiomics. One study showed that radiomics analysis could iden-
tify biologic features of tumors such as HPV status and T-cell infiltration [16]. Another
study using 12 radiomics features more efficiently differentiated HPV-positive tumors
in HNC [17]. Radiomics was also useful in distinguishing atypical, basal, classical, and
mesenchymal subtypes of HNC [14]. These research studies suggest that intrinsic TME
during RT could be detected with radiomics. In our study, the radiomics of mid-treatment
at 40 Gy was better than the radiomics at pretreatment, suggesting that intrinsic sensitivity
to radiation could be more efficiently presented during RT. Due to the limitations of a
retrospective study, changes were observed once in the fourth week during RT. Therefore,
the optimal timing to observe radiation effects should be examined in further studies. In
one study using 18F-FDG-PET/CT, the cluster of metabolic radiomics at 20 Gy showed a
significant relation with recurrence-free survival in oropharyngeal cancer [18]. In another
study using 18F-FMISO-PET to assess hypoxia of intra-tumor, radiomics at 2 weeks and
5 weeks showed higher predictability of the treatment response with an AUC of approxi-
mately 0.8 in HNC [19]. It would be necessary to combine metabolic images and enhanced
CT images to improve the predictive model of intrinsic sensitivity.
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Delta radiomics can be used to analyze paired images and observe changes in TME. In
the case of tumors, it was difficult to control the image itself through deformation because
regression during treatment occurred and the ROI was deformed. It was also hard to judge
the appropriateness of the values of delta features by subtracting or fractionating from one
to another. Therefore, delta radiomics was not used in our study. Normal tissues such as
salivary glands would be beneficial to examine the change with delta radiomics because the
contour of the ROI is preserved [20]. In nasopharyngeal cancer, delta radiomics has been
attempted using MRI. Three image sets at pretreatment and after induction chemotherapy
and CRT were used, and the AUC to predict the efficacy of definite therapy was improved
with delta radiomics [21]. Using cone-beam CT to originally check inter-fractional variation
during RT is another method applied in delta radiomics. The model using radiomics
features including coarseness and hemoglobin level moderately predicted tumor response
in HNC in delta radiomics of cone-beam CT [22]. However, since the image quality is lower
than helical CT images, its practical application still has limitations.

This study was based on retrospectively collected image data over about 10 years.
Although the protocol for acquiring CT images for HNC has not changed, a few biases
might have developed. Some artifacts from the immobilization device of aquaplast and
head rest and prosthetics of teeth especially affected the LN in level IIa. This is an important
problem that must be solved for radiomics studies using simulation CT images of RT. Efforts
should be made to secure appropriate image quality in actual practice in future studies.
Second, our study consisted of various kinds of primary sites originating from epithelial
cells in HNC. Since it is important to analyze a certain number of patients as a preliminary
radiomics study, examinations according to each sub-primary site were not performed.
In addition, there were no data on HPV in some patients at the beginning of this study.
Therefore, it was not sufficiently analyzed as an important clinical parameter. Based on
this study, future research will be conducted targeting a more refined patient group by
recruiting multiple institutions. Lastly, the RT technique was changed from 3DCRT to
IMRT, although patients received sufficient radiation doses for ROIs regardless of the
RT technique.

5. Conclusions

This preliminary study presented radiomics results of CT images for pretreatment and
mid-treatment to predict LN control failure after definite RT in HNC with LN metastases.
Both models were improved by adding clinical parameters. The model of CTmid plus
clinical parameters was the best in our analyses. However, the results shown in our study
still lacked predictive power to determine significant modification of treatment methods
during definite RT. To activate radiomics research in HNC, efforts are needed to acquire
high-quality images with minimum artifacts in actual clinical practice. In addition, future
studies should combine various omics methods using other kinds of images, biomarkers,
and genetic information.
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