Impact of GLP-1 Agonists on Male Reproductive Health—A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Glucagon-like Peptide-1 Receptor Agonists (GLP-1 RAs)
GLP-1 RAs and Obesity
4. GLP-1 RAs and Male Reproductive Physiology: A Comprehensive Examination
4.1. GLP-1 RAs and Male Infertility
GLP-1 RAs and Hypogonadism
4.2. GLP-1 RAs and Semen Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- James, W.P.T. WHO recognition of the global obesity epidemic. Int. J. Obes. 2008, 32 (Suppl. S7), S120–S126. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- GBD 2015 Obesity Collaborators; Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Obesity and Cancer: A Current Overview of Epidemiology, Pathogenesis, Outcomes, and Management—PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857053/ (accessed on 13 November 2023).
- Kivimäki, M.; Strandberg, T.; Pentti, J.; Nyberg, S.T.; Frank, P.; Jokela, M.; Ervasti, J.; Suominen, S.B.; Vahtera, J.; Sipilä, P.N.; et al. Body-mass index and risk of obesity-related complex multimorbidity: An observational multicohort study. Lancet Diabetes Endocrinol. 2022, 10, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Sen, A.; Prasad, M.; Norat, T.; Janszky, I.; Tonstad, S.; Romundstad, P.; Vatten, L.J. BMI and all cause mortality: Systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ 2016, 353, i2156. [Google Scholar] [CrossRef] [PubMed]
- Sarwer, D.B.; Polonsky, H.M. The Psychosocial Burden of Obesity. Endocrinol. Metab. Clin. N. Am. 2016, 45, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Craig, J.R.; Jenkins, T.G.; Carrell, D.T.; Hotaling, J.M. Obesity, male infertility, and the sperm epigenome. Fertil. Steril. 2017, 107, 848–859. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, R.; Mumford, S.L.; Buck Louis, G.M. Couples’ body composition and time-to-pregnancy. Hum. Reprod. Oxf. Engl. 2017, 32, 662–668. [Google Scholar] [CrossRef]
- Provost, M.P.; Acharya, K.S.; Acharya, C.R.; Yeh, J.S.; Steward, R.G.; Eaton, J.L.; Goldfarb, J.M.; Muasher, S.J. Pregnancy outcomes decline with increasing body mass index: Analysis of 239,127 fresh autologous in vitro fertilization cycles from the 2008-2010 Society for Assisted Reproductive Technology registry. Fertil. Steril. 2016, 105, 663–669. [Google Scholar] [CrossRef]
- Sermondade, N.; Faure, C.; Fezeu, L.; Shayeb, A.G.; Bonde, J.P.; Jensen, T.K.; Van Wely, M.; Cao, J.; Martini, A.C.; Eskandar, M.; et al. BMI in relation to sperm count: An updated systematic review and collaborative meta-analysis. Hum. Reprod. Updat. 2013, 19, 221–231. [Google Scholar] [CrossRef]
- Stokes, V.J.; Anderson, R.A.; George, J.T. How does obesity affect fertility in men—And what are the treatment options? Clin. Endocrinol. 2015, 82, 633–638. [Google Scholar] [CrossRef]
- Hammoud, A.O.; Gibson, M.; Peterson, C.M.; Hamilton, B.D.; Carrell, D.T. Obesity and male reproductive potential. J. Androl. 2006, 27, 619–626. [Google Scholar] [CrossRef]
- Ma, J.; Wu, L.; Zhou, Y.; Zhang, H.; Xiong, C.; Peng, Z.; Bao, W.; Meng, T.; Liu, Y. Association between BMI and semen quality: An observational study of 3966 sperm donors. Hum. Reprod. Oxf. Engl. 2019, 34, 155–162. [Google Scholar] [CrossRef]
- Palmer, N.O.; Bakos, H.W.; Fullston, T.; Lane, M. Impact of obesity on male fertility, sperm function and molecular composition. Spermatogenesis 2012, 2, 253–263. [Google Scholar] [CrossRef]
- Ameratunga, D.; Gebeh, A.; Amoako, A. Obesity and male infertility. Best Pract. Res. Clin. Obstet. Gynaecol. 2023, 90, 102393. [Google Scholar] [CrossRef]
- Fernandez, C.J.; Chacko, E.C.; Pappachan, J.M. Male Obesity-related Secondary Hypogonadism—Pathophysiology, Clinical Implications and Management. Eur. Endocrinol. 2019, 15, 83–90. [Google Scholar] [CrossRef]
- Du Plessis, S.S.; Cabler, S.; McAlister, D.A.; Sabanegh, E.; Agarwal, A. The effect of obesity on sperm disorders and male infertility. Nat. Rev. Urol. 2010, 7, 153–161. [Google Scholar] [CrossRef]
- Basaria, S. Male hypogonadism. Lancet Lond. Engl. 2014, 383, 1250–1263. [Google Scholar] [CrossRef]
- Barbagallo, F.; Condorelli, R.A.; Mongioì, L.M.; Cannarella, R.; Cimino, L.; Magagnini, M.C.; Crafa, A.; La Vignera, S.; Calogero, A.E. Molecular Mechanisms Underlying the Relationship between Obesity and Male Infertility. Metabolites 2021, 11, 840. [Google Scholar] [CrossRef]
- Yuxin, L.; Chen, L.; Xiaoxia, L.; Yue, L.; Junjie, L.; Youzhu, L.; Huiliang, Z.; Qicai, L. Research Progress on the Relationship between Obesity-Inflammation-Aromatase Axis and Male Infertility. Oxidative Med. Cell. Longev. 2021, 2021, 6612796. [Google Scholar] [CrossRef]
- Amiri, M.; Ramezani Tehrani, F. Potential Adverse Effects of Female and Male Obesity on Fertility: A Narrative Review. Int. J. Endocrinol. Metab. 2020, 18, e101776. [Google Scholar] [CrossRef]
- Håkonsen, L.B.; Thulstrup, A.M.; Aggerholm, A.S.; Olsen, J.; Bonde, J.P.; Andersen, C.Y.; Bungum, M.; Ernst, E.H.; Hansen, M.L.; Ernst, E.H.; et al. Does weight loss improve semen quality and reproductive hormones? Results from a cohort of severely obese men. Reprod. Health 2011, 8, 24. [Google Scholar] [CrossRef]
- Collins, L.; Costello, R.A. Glucagon-Like Peptide-1 Receptor Agonists. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK551568/ (accessed on 13 November 2023).
- Campbell, J.E.; Drucker, D.J. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013, 17, 819–837. [Google Scholar] [CrossRef]
- Drucker, D.J. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018, 27, 740–756. [Google Scholar] [CrossRef]
- Meier, J.J. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2012, 8, 728–742. [Google Scholar] [CrossRef]
- Drucker, D.J.; Nauck, M.A. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet Lond. Engl. 2006, 368, 1696–1705. [Google Scholar] [CrossRef]
- Filippatos, T.D.; Panagiotopoulou, T.V.; Elisaf, M.S. Adverse Effects of GLP-1 Receptor Agonists. Rev. Diabet. Stud. RDS 2014, 11, 202–230. [Google Scholar] [CrossRef]
- Rubino, D.M.; Greenway, F.L.; Khalid, U.; O’neil, P.M.; Rosenstock, J.; Sørrig, R.; Wadden, T.A.; Wizert, A.; Garvey, W.T.; STEP 8 Investigators; et al. Effect of Weekly Subcutaneous Semaglutide vs Daily Liraglutide on Body Weight in Adults with Overweight or Obesity without Diabetes: The STEP 8 Randomized Clinical Trial. JAMA 2022, 327, 138–150. [Google Scholar] [CrossRef]
- Davies, M.J.; Bergenstal, R.; Bode, B.; Kushner, R.F.; Lewin, A.; Skjøth, T.V.; Andreasen, A.H.; Jensen, C.B.; DeFronzo, R.A.; NN8022-1922 Study Group. Efficacy of Liraglutide for Weight Loss Among Patients with Type 2 Diabetes: The SCALE Diabetes Randomized Clinical Trial. JAMA 2015, 314, 687–699. [Google Scholar] [CrossRef]
- Pi-Sunyer, X.; Astrup, A.; Fujioka, K.; Greenway, F.; Halpern, A.; Krempf, M.; Lau, D.C.W.; Le Roux, C.W.; Ortiz, R.V.; Jensen, C.B.; et al. A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. N. Engl. J. Med. 2015, 373, 11–22. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef]
- Larsen, R.G.; Bowdino, C.S.; Mathes, M.A.; Gustin, S.L.; Deibert, C.M. Minimal access to male fertility prices online: An analysis of the Society for Assisted Reproductive Technology (SART) clinics. Transl. Androl. Urol. 2020, 9, 2107–2112. [Google Scholar] [CrossRef]
- Sermondade, N.; Massin, N.; Boitrelle, F.; Pfeffer, J.; Eustache, F.; Sifer, C.; Czernichow, S.; Lévy, R. Sperm parameters and male fertility after bariatric surgery: Three case series. Reprod. Biomed. Online 2012, 24, 206–210. [Google Scholar] [CrossRef]
- Ajayi, A.B.; Afolabi, B.M.; Ajayi, V.D.; Oyetunji, I.; Biobaku, O.; Atiba, A. Men without Sperms. Open J. Urol. 2018, 08, 25–42. [Google Scholar] [CrossRef]
- Sermondade, N.; Faure, C.; Fezeu, L.; Lévy, R.; Czernichow, S. Obesity and increased risk for oligozoospermia and azoospermia. Arch. Intern. Med. 2012, 172, 440–442. [Google Scholar] [CrossRef]
- Holst, J.J.; Ørskov, C.; Nielsen, O.V.; Schwartz, T.W. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett. 1987, 211, 169–174. [Google Scholar] [CrossRef]
- Cannarella, R.; Calogero, A.E.; Condorelli, R.A.; Greco, E.A.; Aversa, A.; La Vignera, S. Is there a role for glucagon-like peptide-1 receptor agonists in the treatment of male infertility? Andrology 2021, 9, 1499–1503. [Google Scholar] [CrossRef]
- Jensterle, M.; Janez, A.; Fliers, E.; DeVries, J.H.; Vrtacnik-Bokal, E.; Siegelaar, S.E. The role of glucagon-like peptide-1 in reproduction: From physiology to therapeutic perspective. Hum. Reprod. Updat. 2019, 25, 504–517. [Google Scholar] [CrossRef]
- Rago, V.; De Rose, D.; Santoro, M.; Panza, S.; Malivindi, R.; Andò, S.; D’agata, R.; Aquila, S. Human Sperm Express the Receptor for Glucagon-like Peptide-1 (GLP-1), Which Affects Sperm Function and Metabolism. Endocrinology 2020, 161, bqaa031. [Google Scholar] [CrossRef]
- Martins, A.D.; Monteiro, M.P.; Silva, B.M.; Barros, A.; Sousa, M.; Carvalho, R.A.; Oliveira, P.F.; Alves, M.G. Metabolic dynamics of human Sertoli cells are differentially modulated by physiological and pharmacological concentrations of GLP-1. Toxicol. Appl. Pharmacol. 2019, 362, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Caltabiano, R.; Condorelli, D.; Panza, S.; Boitani, C.; Musso, N.; Ježek, D.; Memeo, L.; Colarossi, L.; Rago, V.; Mularoni, V.; et al. Glucagon-like peptide-1 receptor is expressed in human and rodent testis. Andrology 2020, 8, 1935–1945. [Google Scholar] [CrossRef]
- Zhang, E.; Xu, F.; Liang, H.; Yan, J.; Xu, H.; Li, Z.; Wen, X.; Weng, J. GLP-1 Receptor Agonist Exenatide Attenuates the Detrimental Effects of Obesity on Inflammatory Profile in Testis and Sperm Quality in Mice. Am. J. Reprod. Immunol. N. Y. N 1989 2015, 74, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Huijben, M.; Huijsmans, R.L.N.; Lock, M.T.W.T.; de Kemp, V.F.; de Kort, L.M.O.; van Breda, J.H.M.K. Clomiphene citrate for male infertility: A systematic review and meta-analysis. Andrology 2023, 11, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Bendre, S.V.; Murray, P.J.; Basaria, S. Clomiphene Citrate Effectively Increases Testosterone in Obese, Young, Hypogonadal Men. Reprod. Syst. Sex. Disord. Curr. Res. 2015, 4, 155. [Google Scholar] [CrossRef] [PubMed]
- Pelusi, C.; Giagulli, V.A.; Baccini, M.; Fanelli, F.; Mezzullo, M.; Fazzini, A.; Bianchi, N.; Carbone, M.D.; De Pergola, G.; Mastroroberto, M.; et al. Clomiphene citrate effect in obese men with low serum testosterone treated with metformin due to dysmetabolic disorders: A randomized, double-blind, placebo-controlled study. PLoS ONE 2017, 12, e0183369. [Google Scholar] [CrossRef] [PubMed]
- Shah, T.; Nyirenda, T.; Shin, D. Efficacy of anastrozole in the treatment of hypogonadal, subfertile men with body mass index ≥25 kg/m2. Transl. Androl. Urol. 2021, 10, 1222–1228. [Google Scholar] [CrossRef]
- Krzastek, S.C.; Sharma, D.; Abdullah, N.; Sultan, M.; Machen, G.L.; Wenzel, J.L.; Ells, A.; Chen, X.; Kavoussi, M.; Costabile, R.A.; et al. Long-Term Safety and Efficacy of Clomiphene Citrate for the Treatment of Hypogonadism. J. Urol. 2019, 202, 1029–1035. [Google Scholar] [CrossRef]
- Puia, D.; Pricop, C. Effectiveness of Clomiphene Citrate for Improving Sperm Concentration: A Literature Review and Meta-Analysis. Cureus 2022, 14, e25093. [Google Scholar] [CrossRef]
- Ramasamy, R.; Masterson, T.A.; Best, J.C.; Bitran, J.; Ibrahim, E.; Molina, M.; Kaiser, U.B.; Miao, F.; Reis, I.M. Effect of Natesto on Reproductive Hormones, Semen Parameters and Hypogonadal Symptoms: A Single Center, Open Label, Single Arm Trial. J. Urol. 2020, 204, 557–563. [Google Scholar] [CrossRef]
- Masterson, T.A.; Best, J.; Bitran, J.; Molina, M.L.; Ibrahim, E.; Kaiser, U.B.; Ramasamy, R. SAT-034 The Effect of Natesto on Spermatogenesis, Reproductive Hormones, and Hypogonadal Symptoms. A Phase IV Study. J. Endocr. Soc. 2020, 4 (Suppl. S1), SAT-034. [Google Scholar] [CrossRef]
- Calderón, B.; Gómez-Martín, J.M.; Vega-Piñero, B.; Martín-Hidalgo, A.; Galindo, J.; Luque-Ramírez, M.; Escobar-Morreale, H.F.; Botella-Carretero, J.I. Prevalence of male secondary hypogonadism in moderate to severe obesity and its relationship with insulin resistance and excess body weight. Andrology 2016, 4, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhao, F.; Hu, L.; Bai, R.; Zhang, N.; Yao, G.; Sun, Y. Effect of paternal overweight or obesity on IVF treatment outcomes and the possible mechanisms involved. Sci. Rep. 2016, 6, 29787. [Google Scholar] [CrossRef] [PubMed]
- Izzi-Engbeaya, C.; Jones, S.; Crustna, Y.; Machenahalli, P.C.; Papadopoulou, D.; Modi, M.; Panayi, C.; Starikova, J.; Eng, P.C.; Phylactou, M.; et al. Effects of Glucagon-like Peptide-1 on the Reproductive Axis in Healthy Men. J. Clin. Endocrinol. Metab. 2020, 105, 1119–1125. [Google Scholar] [CrossRef] [PubMed]
- La Vignera, S.; Condorelli, R.A.; Calogero, A.E.; Cannarella, R.; Aversa, A. Sexual and Reproductive Outcomes in Obese Fertile Men with Functional Hypogonadism after Treatment with Liraglutide: Preliminary Results. J. Clin. Med. 2023, 12, 672. [Google Scholar] [CrossRef] [PubMed]
- Jensterle, M.; Podbregar, A.; Goricar, K.; Gregoric, N.; Janez, A. Effects of liraglutide on obesity-associated functional hypogonadism in men. Endocr. Connect. 2019, 8, 195–202. [Google Scholar] [CrossRef]
- Giagulli, V.A.; Carbone, M.D.; Ramunni, M.I.; Licchelli, B.; De Pergola, G.; Sabbà, C.; Guastamacchia, E.; Triggiani, V. Adding liraglutide to lifestyle changes, metformin and testosterone therapy boosts erectile function in diabetic obese men with overt hypogonadism. Andrology 2015, 3, 1094–1103. [Google Scholar] [CrossRef]
- Guo, D.; Wu, W.; Tang, Q.; Qiao, S.; Chen, Y.; Chen, M.; Teng, M.; Lu, C.; Ding, H.; Xia, Y.; et al. The impact of BMI on sperm parameters and the metabolite changes of seminal plasma concomitantly. Oncotarget 2017, 8, 48619–48634. [Google Scholar] [CrossRef]
- Faure, C.; Dupont, C.; Baraibar, M.A.; Ladouce, R.; Cedrin-Durnerin, I.; Wolf, J.P.; Lévy, R. In Subfertile Couple, Abdominal Fat Loss in Men Is Associated with Improvement of Sperm Quality and Pregnancy: A Case-Series. PLoS ONE 2014, 9, e86300. [Google Scholar] [CrossRef]
- Mir, J.; Franken, D.; Andrabi, S.W.; Ashraf, M.; Rao, K. Impact of weight loss on sperm DNA integrity in obese men. Andrologia 2018, 50, e12957. [Google Scholar] [CrossRef]
- Andersen, E.; Juhl, C.R.; Kjøller, E.T.; Lundgren, J.R.; Janus, C.; Dehestani, Y.; Saupstad, M.; Ingerslev, L.R.; Duun, O.M.; Jensen, S.B.K.; et al. Sperm count is increased by diet-induced weight loss and maintained by exercise or GLP-1 analogue treatment: A randomized controlled trial. Hum. Reprod. Oxf. Engl. 2022, 37, 1414–1422. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Rastrelli, G.; Monami, M.; Saad, F.; Luconi, M.; Lucchese, M.; Facchiano, E.; Sforza, A.; Forti, G.; Mannucci, E.; et al. Body weight loss reverts obesity-associated hypogonadotropic hypogonadism: A systematic review and meta-analysis. Eur. J. Endocrinol. 2013, 168, 829–843. [Google Scholar] [CrossRef] [PubMed]
- Jeibmann, A.; Zahedi, S.; Simoni, M.; Nieschlag, E.; Byrne, M.M. Glucagon-like peptide-1 reduces the pulsatile component of testosterone secretion in healthy males. Eur. J. Clin. Investig. 2005, 35, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Duits, F.H.; Van Wely, M.; Van Der Veen, F.; Gianotten, J. Healthy overweight male partners of subfertile couples should not worry about their semen quality. Fertil. Steril. 2010, 94, 1356–1359. [Google Scholar] [CrossRef] [PubMed]
- Aggerholm, A.S.; Thulstrup, A.M.; Toft, G.; Ramlau-Hansen, C.H.; Bonde, J.P. Is overweight a risk factor for reduced semen quality and altered serum sex hormone profile? Fertil. Steril. 2008, 90, 619–626. [Google Scholar] [CrossRef]
- Fontoura, P.; de Almeida Cardoso, M.C.; Erthal-Martins, M.C.; Werneck, C.; Sartorio, C.; Ramos, C.F. The effects of liraglutide on male fertility: A case report. Reprod. Biomed. Online 2014, 29, 644–646. [Google Scholar] [CrossRef]
- Ammar, O.F.; Sharma, K.; Liperis, G.; Fraire-Zamora, J.J.; Serdarogullari, M.; Ali, Z.E.; Ramasamy, R.; Laurentino, S.; Watkins, A.; Mincheva, M. Balancing the scales: The interplay of diet, exercise, GLP-1 receptor agonists, and obesity in shaping male reproductive health. Hum. Reprod. Oxf. Engl. 2023, 38, 1649–1653. [Google Scholar] [CrossRef]
GLP-1 Agonist | Half Life | Common Dosing |
---|---|---|
Short-Acting | ||
Exenatide | ~2–5 h | 5 mcg up to 10 mcg with titration twice daily |
Lixisenatide | ~2–5 h | 10 mcg up to 20 mcg with titration once daily |
Long-Acting | ||
Exenatide ER | ~12 h to several days | 2 mg once weekly |
Liraglutide | ~13 h | 0.6 mg up to 1.8 mg with titration once weekly |
Dulaglutide | ~5 days | 0.75 mg up to 4.5 mg with titration once weekly |
Semaglutide (subcutaneous) | ~7 days | 0.25 mg up to 2 mg with titration once weekly |
Semaglutide (oral) | ~7 days | 3 mg up to 14 mg with titration once daily |
Albiglutide | ~5–8 days | 30 mg up to 50 mg once weekly |
Efpeglenatide | ~5–8 days | 4 mg or 6 mg once weekly 8 mg, 12 mg, or 16 mg once monthly |
Tirzepatide (dual-acting GLP-1 and GIP agonist) | ~5 days | 2.5 mg up to 15 mg with titration once weekly |
Study | Study Design | Participants | Intervention | Main Findings | Adverse Events |
---|---|---|---|---|---|
Martins et al. (2019) [43] | Pre-clinical | NA | Increasing GLP-1 doses in the presence of human Sertoli cells | * Decrease in mitochondrial membrane potential and oxidative damage at highest GLP-1 dose * Improved efficiency in conversion of glucose to lactate at lowest GLP-1 dose | NA |
Rago et al. (2020) [42] | Pre-clinical | NA | Dose-response model using exendin-4 to investigate GLP-1 receptors on human sperm cells | * GLP-1 and its receptors play a role in mediating progressive motility and cholesterol efflux * Observed stimulation of glucose metabolism enzyme activities | NA |
Zhang et al. (2015) [45] | Pre-clinical (Mouse model) | NA | 12 weeks of chow or high fat diet (HFD) followed by HFD mice assigned to saline or exenatide daily for 8 weeks | * Improved sperm motility, DNA integrity, decreased expression of pro-inflammatory cytokines | NA |
Izzi-Engbeava C et al. (2020) [56] | Randomized clinical trial | 18 men (normal range BMI, eugonadal) | GLP-1 infusion (rate 0.8 pmol/kg/min) for 500 min, serum sampling every 10 min | * No discernable effect on LH pulsatility, FSH, LH or testosterone levels | Nausea |
La Vignera S. et al. (2023) [57] | Randomized clinical trial | 110 male, aged 18–35, metabolic hypogonadism | Urofollitropin (Group A), liraglutide (Group B), transdermal testosterone (Group C) for 4 months of treatment | * Improvement in all sperm parameters and erectile function in Group B (sperm motility in particular) * Increased total serum testosterone and sex hormone-binding globulin in Group B * Significantly higher gonadotropin levels in Group B compared to other groups | NA |
Jensterle et al. (2019) [58] | Prospective randomized open-label | 30 obese men | Liraglutide (3.0 mg daily) or daily transdermal testosterone gel (TRT) for 16 weeks | * Increase in total testosterone and sexual function with no significant difference between treatment groups * Suppression of LH and FSH in TRT group, with increase in these hormones in liraglutide group * Greater weight loss in liraglutide group compared to TRT | Mild to moderate, transient gastrointestinal distress, none in TRT group |
Giagulli et al. (2015) [59] | Retrospective observational | 43 obese, diabetic, hypogonadal men | Testosterone undecanoate (TU) and metformin for 1 year, with liraglutide added to poor responders for 1 year, and good responders maintained TRT and metformin | * Improvement in International Index of Erectile Function (IIEF) in group that received liraglutide versus no change in TRT/metformin (Met) group * TRT and Met after 2 years saw statistically significant rise in A1c and weight compared to year 1 * Greater glycemic control in group that received liraglutide | Transient gastrointestinal distress |
Hakonsen et al. (2011) [23] | Prospective cohort study | 43 obese men | 14-week weight loss program | * Decrease in BMI associated with increase in sperm concentration, total sperm count, sperm morphology * Statistically significant increase in total sperm count and normal sperm morphology in the group with largest weight reduction | None |
Guo et al. (2017) [60] | Systematic review and meta-analysis | NA | NA | * Decline in total sperm count, sperm concentration, and semen volume with increasing BMI | NA |
Faure et al. (2014) [61] | Case series | 6 men in infertile couples | Lifestyle modifications | * Significant improvement in sperm DNA integrity with weight loss, regardless of BMI * Significant increase in testosterone/oestradiol ratio * No significant change in other semen parameters | None |
Mir et al. (2018) [62] | Cross-sectional | NA | Lifestyle modifications | * Statistically significant improvement in sperm DNA fragmentation index and sperm morphology with weight loss | None |
Andersen et al. (2022) [63] | Randomized clinical trial | 56 men | Liraglutide or placebo, with or without adjunct exercise program 8 week low calorie diet program for all participants prior to being assigned to group | * Improvement in sperm concentration and sperm count after 8 week low-calorie diet, maintained after 1 year individuals who maintained at least 12 kg weight loss regardless of treatment group * Sperm motility and volume unchanged * Liraglutide did not have any additional effects on semen parameters, however the most sustained improvement in sperm parameters was within the liraglutide group | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varnum, A.A.; Pozzi, E.; Deebel, N.A.; Evans, A.; Eid, N.; Sadeghi-Nejad, H.; Ramasamy, R. Impact of GLP-1 Agonists on Male Reproductive Health—A Narrative Review. Medicina 2024, 60, 50. https://doi.org/10.3390/medicina60010050
Varnum AA, Pozzi E, Deebel NA, Evans A, Eid N, Sadeghi-Nejad H, Ramasamy R. Impact of GLP-1 Agonists on Male Reproductive Health—A Narrative Review. Medicina. 2024; 60(1):50. https://doi.org/10.3390/medicina60010050
Chicago/Turabian StyleVarnum, Alexandra Aponte, Edoardo Pozzi, Nicholas Allen Deebel, Aymara Evans, Nathalie Eid, Hossein Sadeghi-Nejad, and Ranjith Ramasamy. 2024. "Impact of GLP-1 Agonists on Male Reproductive Health—A Narrative Review" Medicina 60, no. 1: 50. https://doi.org/10.3390/medicina60010050
APA StyleVarnum, A. A., Pozzi, E., Deebel, N. A., Evans, A., Eid, N., Sadeghi-Nejad, H., & Ramasamy, R. (2024). Impact of GLP-1 Agonists on Male Reproductive Health—A Narrative Review. Medicina, 60(1), 50. https://doi.org/10.3390/medicina60010050