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Abstract: Background: The potential positive interaction between intermittent fasting (IF) and brain-
derived neurotrophic factor (BDNF) on cognitive function has been widely discussed. This systematic
review tried to assess the efficacy of interventions with different IF regimens on BDNF levels and
their association with cognitive functions in humans. Interventions with different forms of IF such as
caloric restriction (CR), alternate-day fasting (ADF), time-restricted eating (TRE), and the Ramadan
model of intermittent fasting (RIF) were targeted. Methods: A systematic review was conducted for
experimental and observational studies on healthy people and patients with diseases published in
EMBASE, Scopus, PubMed, and Google Scholar databases from January 2000 to December 2023.
We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statements
(PRISMA) for writing this review. Results: Sixteen research works conducted on healthy people
and patients with metabolic disorders met the inclusion criteria for this systematic review. Five
studies showed a significant increase in BDNF after the intervention, while five studies reported
a significant decrease in BDNF levels, and the other six studies showed no significant changes in
BDNF levels due to IF regimens. Moreover, five studies examined the RIF protocol, of which, three
studies showed a significant reduction, while two showed a significant increase in BDNF levels,
along with an improvement in cognitive function after RIF. Conclusions: The current findings suggest
that IF has varying effects on BDNF levels and cognitive functions in healthy, overweight/obese
individuals and patients with metabolic conditions. However, few human studies have shown that
IF increases BDNF levels, with controversial results. In humans, IF has yet to be fully investigated in
terms of its long-term effect on BDNF and cognitive functions. Large-scale, well-controlled studies
with high-quality data are warranted to elucidate the impact of the IF regimens on BDNF levels and
cognitive functions.
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1. Introduction

Brain-derived neurotrophic factor (BDNF) is a protein (neurotrophin) that is mainly
produced in the central nervous system. Its function depends on the stage of brain develop-
ment and it is involved in processes such as synaptic transmission and synaptic plasticity,
which contribute to cognitive function [1,2]. Furthermore, BDNF modulates metabolism
and controls eating patterns and food intake behaviors as well as contributing to energy
homeostasis [3]. In addition, in a zebrafish model, BDNF was found to affect physical
performance and glucose metabolism, which may influence food appetite, insulin sensitiv-
ity, and parasympathetic cardiovascular tone [4]. Previous studies have shown that lower
BDNF concentrations are associated with cognitive impairment, obesity, and metabolic
syndrome, while higher BDNF concentrations are associated with improved cognitive
performance and metabolic health [5–7]. As a result of its effect on glucose oxidation and
food intake, BDNF may lower blood glucose levels and increase insulin sensitivity [8].
Healthy diet and lifestyle behaviors, such as physical activity, are well known to preserve
cognitive function and metabolic health [9].

Fasting has been advocated as one of the candidate therapies for neurological dis-
orders. This comes by virtue of the fasting effect in improving cognition, slowing down
neurodegeneration, reducing brain damage, enhancing functional recovery after stroke,
and mitigating the pathological and clinical features of epilepsy and multiple sclerosis in
animal models [10]. Among the emerging healthy diets, numerous studies have demon-
strated that intermittent fasting (IF) has significant effects on weight changes and metabolic
parameters associated with type 2 diabetes, cardiovascular disease, oxidative stress, and
cancer [11–14]. Furthermore, many animal studies have shown that IF reduces cognitive
deficits by stimulating a reduction in BDNF production in the hippocampus, cerebral cortex,
and striatum by suppressing the expression of proinflammatory cytokines, such as IL-1β,
and enhancing neurotrophic support [15–18].

Intriguingly, recent research unraveled that as humans age, the brain experiences a
decline in neurogenesis and synaptic plasticity, contributing to cognitive decline. However,
BDNF was found to improve brain function by promoting both neurogenesis and synaptic
plasticity, particularly through a process called long-term potentiation (LTP), a process
involving persistent strengthening of synapses that leads to a long-lasting increase in signal
transmission between neurons [2]. This is achieved by BDNF acting directly binding to
a receptor called tropomyosin receptor kinase B, also known as tyrosine receptor kinase
B (trkB). This BDNF/TrkB signaling pathway supports neuronal survival, plasticity, dif-
ferentiation, and growth via the activation of several functional downstream cascades,
and ends with triggering both pre-and postsynaptic changes that enhance communication
between brain cells [19]. Interestingly, IF is a potent inducer of BDNF signaling, along
with an adaptive stress response. This upregulates protein synthesis and further boosts
neuroplasticity, leading to improved learning and memory. Therefore, understanding the
interplay between brain aging, BDNF, and IF will open exciting avenues for promoting
cognitive health and potentially mitigating age-related cognitive decline [20].

A previous review on athletes at rest and during exercise demonstrated that BDNF
signaling in the brain can affect some behavioral and metabolic reactions in response to
IF, including exercise and activity levels, appetite regulation, cognitive development, and
glucose metabolism [21]. However, few human studies have shown the effect of IF on BDNF
production. In contrast, a solicited study examining the effects of IF and long-term food
restriction on BDNF in human subjects pointed toward a negative impact of IF and long-
term food restriction on cognitive performance. To the best of our knowledge, no published
systematic review has exclusively examined the effectiveness of interventions with IF on
BDNF levels and the associated changes in cognitive functions in human subjects. In this
structured systematic review, the main aim was to investigate the effect of interventions
with different IF regimens on the concentration of BDNF in human subjects as well as to
examine the impact of IF on cognitive functions through the BDNF pathway.
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2. Materials and Methods
2.1. Search Strategy

To identify the available studies, a detailed search relating to CR, IF, and BDNF was
conducted according to the PRISMA guidelines [22]. A systematic literature search was
performed in the electronic databases EMBASE, Scopus, PubMed, and Google Scholar, using the
following search terms in all possible combinations: intermittent fasting OR calorie restriction
AND brain-derived neurotrophic factor OR BDNF AND cognitive function OR mental health.
Additionally, a manual search was conducted through the reference lists of all collected articles
to ensure that all relevant studies were identified and to avoid any missing relevant data.

2.2. Data Extraction and Quality Assessment
2.2.1. Study Selection and Data Extraction

All clinical studies evaluating the impact of IF and CR on BDNF levels in humans
were reviewed and read carefully to identify their relevancy. To identify the eligible studies,
the titles and abstracts were screened in the first phase of the selection procedure by two
independent researchers (LM, MF). In the second phase, the full articles were screened for
eligibility. The eligible criteria for the inclusion of the articles in this review were clinical
trials, observational studies, and correlations between serum/plasma BDNF levels and IF
and CR in healthy individuals or individuals with comorbidities. Studies conducted in
animal models, case reports, reviews, and duplicate studies were excluded. We extracted
items for the characteristics of the articles including the first author, publication year,
study design, disease condition, sample size with male/female ratio, IF protocol applied,
duration, exercise intervention, assessment of BDNF levels, and cognitive function tested.
A flow diagram of the literature search and selection is shown in Figure 1. Potentially
relevant studies (n = 601) were identified by searching electronic databases. Duplicates
were removed and those studies that only included humans were selected.
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2.2.2. Assessment of the Quality of Studies

To assess the quality of the included studies, the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses checklist was used. We used a tool recommended by
the Cochrane Collaboration for assessing the selection bias, performance bias, detection
bias, attribution bias, and reporting bias of the included studies [23].

3. Results

The characteristics of the included studies are summarized in Table 1. The sixteen
studies were conducted between 2007 and 2023. Two of the studies [24,25] were conducted
on patients with schizophrenia, while the rest were conducted on people without a psy-
chological disorder, two of which were conducted on people diagnosed with metabolic
syndrome [26,27]. Nine of the sixteen studies were experimental, while the other seven
studies were observational. Five of the sixteen studies were executed during the month
of Ramadan [25,26,28–30]. Three of the five RIF studies revealed reductions in BDNF lev-
els [25,26,30], while the rest (two studies) revealed an increase in BDNF levels during/after
the observance of RIF [28,29]. Among the sixteen selected studies, eleven studies did not
involve calorie restriction [15,25–34], while the other five studies did [24,35–38]. Six studies
were conducted in the USA [15,26,27,31,33,36], four in Germany [29,30,32,37], and one in
each of the following countries: Egypt [25], UK [35], Brazil [24], New Zealand [34], Iran [28],
and Denmark [38].

In this review, BDNF was the primary outcome of interest in association with IF in
human studies. In total, 36 relevant publications were found using the literature search.
However, 16 studies were experimental studies examining the effect of different types of
IF including CR, TRE, RIF, and ADF on BNDF levels in healthy individuals; patients with
metabolic syndrome or a neurodegenerative disorder; and overweight or obese individuals.
Overall, six of the included studies showed no significant changes in the serum BNDF
concentration after the IF intervention. Five studies showed a significant increase and the
other five showed a significant decrease in BDNF concentration. Nevertheless, five out of
the sixteen studies used the RIF protocol, and by observing RIF, we found that three studies
showed significant decreases and two studies showed significant increases in BDNF levels.
In addition, only four studies showed that IF therapy may positively influence cognitive
function while the rest did not assess cognitive performance.

Interestingly, the results of Catenacci et al. [36] suggested that ADF induced significant
changes in BDNF secretion at the 24-week follow up and this alteration may be due to
weight loss as BDNF can play a role in the regulation of energy balance that ultimately
reduces adiposity. However, this result should be carefully construed, as changes in BDNF
may correlate with changes in weight or body composition. Similarly, Bastani et al. [28]
observed a significant increase in plasma BDNF on the 14th day (second group) and 29th
day (third group) of RIF compared to pre-Ramadan levels. The BDNF level in the second
group was increased significantly by 25% and by 47% in the third group compared to the
control group (p < 0.05). Another study suggested that TRE may have a direct impact on the
central circadian clock and has the tendency to affect hormonal levels depending on meal
timing. They also showed that TRE reduced cortisol levels by 1.4 ± 0.6 µg/dL (p = 0.03)
and tended to increase BDNF levels by 2.46 ± 1.34 ng/mL (p = 0.09) in the evening [15].
BDNF is a well-recognized protein for the regulation and adaptation of energy balance at
the cellular level [39]. However, many lifestyle interventions like IF exert changes in energy
balance that may influence the level of BDNF.
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Table 1. Characteristics of the included studies.

Reference/
Country

Study
Design

Health
Condition

Subject
M/F Ratio IF Strategy Duration Inclusion of Exercise Effect on

BDNF Level
Cognitive

Performance
Involvement of Calorie

Restriction

Carlson et al.,
2007 [31]/USA RCT Healthy 5 M/10 F

1 meal per day (for 4 h
in the early evening;

4:00 to 8:00 p.m.)
16 weeks N/A ↔ N/A No CR

Guimaraes et al.,
2008 [24]/Brazil Cross-sectional Schizophrenia 51 M/

16 F Hypo-caloric diet, CR 4 weeks N/A ↑ N/A
CR:

F 1600–2000 kcal/day;
M 2000–2300 kcal/day

Harvie et al., 2010 [35]/UK RCT Overweight 89 F IER 6 months N/A ↔ Positive effect on
mood

CR: 25% CR as IER (~2266 kJ/day
for 2 days/week) or CER

(~6276 kJ/day for 7 days/week)
2266 kJ = ~540 kcal;
6276 kJ = 1500 kcal

Fawzi et al., 2014 [25]/Egypt RCT Schizophrenia 100 M RIF 4 weeks N/A ↓ N/A No CR; just RIF

Catenacci et al.,
2016 [36]/USA RCT Obesity 6 M/19 F ADF/CR 8 weeks N/A ADF ↑/CR ↓ N/A Either zero-calorie ADF or CR

(−400 kcal/day)

Bastani et al., 2017 [28]/Iran RCT Healthy 7 M/22 F RIF 4 weeks N/A ↑ Positive change in
cognitive health No CR; just RIF

Kessler et al., 2017 [32]/
Germany Non-RCT Healthy 22 1-day fasting/week 8 weeks N/A ↔ N/A No CR

Schübel et al., 2018 [37]/
Germany RCT Obesity 150 F ICR and CCR 50 weeks N/A ↔ N/A Either ICR or CCR (daily energy

deficit ∼20%)

Ghashang et al., 2019 [29]/
Germany Prospective CT Healthy 50 M RIF 4 weeks N/A ↑ N/A No CR; just RIF

Glud et al., 2019 [38]/
Denmark RCT Overweight/

Obesity
24 M/
26 F CER 12 weeks 3× per week with 60–75

min ↓ N/A Included very low-energy diet
(VLED 600 kcal/day)

Jamshed et al.,
2019 [15]/USA RCT-crossover Healthy and obesity 7 M/4 F 4 days of TRE 18 h 5 weeks N/A ↑ N/A No CR

Abdulsada et al.,
2021 [26]/USA RCT Healthy and

metabolic syndrome 21 M/7 F RIF, 14 h fasting 4 weeks N/A ↓ N/A No CR; just RIF

Wallace et al.,
2020 [33]/USA RCT Healthy 12 M

TRE
(up to 16 h

fasting window)
6 weeks 4x per week with a

duration of 30–45 min ↔ N/A
No CR

TRE with aerobic exercise (AE) or
without AE

Riat et al., 2021 [30]/
Germany RCT Healthy 19 M/

15 F RIF 4 weeks N/A ↓ Improvement in
mood No CR; just RIF

Bartholomew et al.,
2021 [27]/USA RCT Metabolic syndrome 34 M/

69 F 5:2 IF 6 months N/A ↔ N/A No CR

Gibbons et al.,
2023 [34]/New Zealand Crossover Healthy 6 M/6 F 20 h fasting Once 90 min light exercise, and

high-intensity exercise IF ↔ N/A No CR

M/F = male/female ratio, RCT = randomized control trial, N/A = not applicable, IER = intermittent energy restriction, ADF = alternate-day fasting, CR = caloric restriction,
ICR = intermittent caloric restriction, CCR = continuous caloric restriction, ↔ = no significance, ↑ = significant increase, ↓ = significant decrease, CER = continuous energy restriction
(600–800 kcal per day), TRE = time-restricted eating.
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A study demonstrated that RIF significantly increases the BDNF level at the end of
Ramadan; however, the BDNF level decreased and returned to the baseline value one week
post Ramadan [29]. This could be explained by the fact that BDNF can be altered in the
energy balance adaptation process. Similarly, the CR diet also induced an increase in BDNF
levels in schizophrenic patients and it was suggested that the improvement in dietary
nutrients and food quantity may modify important markers of brain plasticity. However,
the BDNF level may also increase in patients taking high antipsychotics daily (r = 0.216;
p = 0.098), which also typically increases BDNF levels [24].

In contrast, we found that five studies showed a significant reduction in BDNF levels
after IF. Similarly, a study found a significant reduction in BDNF levels while demonstrating
significant improvement in a patient with focal seizures post-Ramadan. Thus, it was
proposed that RIF plays a role in inducing the transcription of BDNF which stimulates the
production and survival of new hippocampal neurons, maintains the synaptic structure,
and thus promotes more sustained neuronal resistance to stress [40]. Fawzi et al. [25] found
that the change in total energy and BMI during Ramadan fasting were significant and
independent variables associated with the increase in serum BDNF levels by 44%; however,
they could not demonstrate any benefits in schizophrenia patients as a lower BDNF level
may worsen the psychiatric status, such as a relapse of bipolar disorder. Moreover, previous
studies also reported a significant decrease in BDNF levels upon IF intervention [30,35,38];
however, the results indicated that other factors may contribute to BDNF alterations like
body composition parameters, hormonal status, sex, and exercise. On the other hand,
a study reported that intermittent energy restriction induces a positive mood when the
cognitive function in overweight individuals was assessed and this effect was due to
increased self-confidence and ongoing motivational calls in their 6-month weight loss
journey rather than the alteration in BDNF concentrations [35]. In addition, other studies
suggested that RIF may positively affect cognitive function by improving the individual’s
mood along with a significant change in the BDNF level at the end of the Ramadan fasting
month [28,30]. The reported partial improvement in BDNF levels after observing RIF could
be also ascribed to the effect of RIF in reducing body weight [41], adiposity [42], visceral
adiposity [43], metabolic syndrome components [44], cardiometabolic risk factors [45],
proinflammatory cytokines and oxidative stress markers [46,47], and IGF-1 [43]; all of
these have been implicated in the pathogenesis of mental health problems and decreased
BDNF levels.

4. Quality Assessment

The systematic review included a diverse range of study types, each contributing
unique insights. The randomized controlled trials (RCTs), comprising Jamshed et al. [15],
Carlson et al. [31], Harvie et al. [35], Catenacci et al. [36], Bastani et al. [28], Schübel et al. [37],
Glud et al. [38], Wallace et al. [33], and Bartholomew et al. [27], offered rigorous experimental
data. Complementing these were non-RCTs like Kessler et al. [32] and Abdulsada et al. [26];
prospective studies by Fawzi et al. [25] and Riat et al. [30]; a cross-sectional study by
Guimarães et al. [24]; a prospective controlled trial by Ghashang et al. [29]; and a study
using a repeated measures cross-over design by Gibbons et al. [34].

The quality assessment of the studies using the Cochrane tool reveals varied results.
Adequate sequence generation was observed in Jamshed et al. [15], mitigating selection bias.
Allocation concealment was robust in Carlson et al. [31], enhancing the study’s internal
validity. The blinding of participants, a critical aspect of reducing performance bias, was
well-implemented by Catenacci et al. (2016) [36]. Attrition bias was minimized due to
the comprehensive handling of incomplete outcome data by Bastani et al. [28]. However,
the potential for detection bias was present, as outcome assessment blinding was not
consistent across all studies, which was particularly noted in Harvie et al. (2011) [35]. The
review also highlighted selective reporting and other biases in a subset of studies, including
Schübel et al. [37], warranting cautious interpretation of these results (Figure 2a,b).
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Figure 2. Quality assessment of the experimental studies included in the systematic review using the
Cochrane tool. (a) Risk of bias with each risk of bias item for each included study; (b) risk of bias
graph with each risk of bias item presented as percentages across all included studies. Green: low
risk of bias; yellow: unclear risk of bias; red: high risk of bias (n = 9) [15,27,28,31,33,35–38].

As per the Cochrane Risk of Bias Tool for Randomized Controlled Trials, the included
studies had several sources of bias. We observed several forms of bias across the studies
including selection bias, which was noted in the way participants were allocated to the
intervention and control groups, potentially affecting the comparability of these groups;
measurement bias, which pertained to inconsistencies in how outcomes were measured
and recorded across different studies, which could influence the results; dietary adherence
Bias, specific to studies involving dietary interventions, which arose from variations in
participants’ adherence to dietary guidelines; time-frame bias, which was observed in the
duration of the studies, which varied and might have impacted the outcomes; limited data
points leading to bias, which refers to the scarcity of data points in some studies restricting
our ability to draw comprehensive conclusions; lack of baseline measurement bias, which,
in some studies, the absence of baseline measurements hindered the assessment of changes
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over time; and omission of relevant variables bias, which was noted in studies that failed to
account for or report relevant variables that could influence the outcomes.

5. Discussion

This systematic review tried to assess the efficacy of interventions with different
IF regimens on BDNF levels and their association with cognitive functions in humans.
Interventions with different forms of fasting regimens such as CR, ADF, TRE, and RIF were
targeted. The current results revealed mixed effects of CR and IF regimens on BDNF levels,
with no clear picture being drawn concerning the effect of these dietary interventions
on the targeted outcome, a matter that dictates the need for well-controlled, long-term
experimental studies to elucidate the impact of IF and CR regimens on BDNF levels.

BDNF function is associated with energy metabolism and synaptic and behavioral
plasticity, which influence the cognitive functions of learning and maintaining memory
capacity in humans. Higher BDNF concentrations in the hippocampus have been associated
with both improved cognitive function [48] and metabolic health [49]. Recently, many
animal (rodent) studies have revealed that IF positively stimulates the production of
BDNF in the hippocampus, cerebral cortex, and striatum and reduces cognitive deficits
by enhancing neurotrophic support and suppressing the expression of pro-inflammatory
cytokines [18,50,51].

In terms of human studies, the increase in BDNF concentrations due to IF interventions
has attracted considerable attention. In this systematic review, we analyzed and evaluated
16 human intervention studies from the literature to investigate the effect of CR and
different IF regimens on BDNF concentration and cognitive function. During the evaluation,
several concerns resulted in complex results and we could not determine the effect of IF
on BDNF concentrations and cognitive function due to the varied application of different
methodologies in the studies. First, the collection of the peripheral BDNF concentration
varied between studies which related to whether the BDNF concentration was measured
from serum or plasma samples; in addition, the centrifuge protocol, clotting period, and
temperature can affect the measurement of plasma or serum concentrations in the studies
which made it difficult to generalize the findings of peripheral BDNF concentrations
between the 16 studies.

In animal studies, it was determined that there is a higher concentration of BDNF in
sera than in plasma [52]. Moreover, reports indicated a correlation between fasting and
an increase in BDNF levels in overweight or obese subjects, which was associated with
changes in body composition or fat percentages [38,53–55]. However, in this review, some
of the study results varied and this is because other major factors impacted the BDNF
concentration related to IF. For example, changes in energy balance and gene expression
during long hours of fasting such as Ramadan affect the regulation of hormones, such
as cortisol [56] and insulin-like growth factor (IGF-1) [43], which alter the concentration
of BDNF [57], as well as a sex-based biological parameter, which affects serum BDNF
levels [26].

Further, RIF has been associated with the overexpression of a set of genes (TFAM,
SOD2, and Nrf2) which have been implicated in improving neuroplasticity and decreasing
neuroinflammation [58]. These genes showed significantly increased expression at the
end of the fasting month, increasing by 90.5%, 54.1%, and 411.5% for the three genes,
respectively [59]. In addition, the expression of the fat mass and obesity-associated (FTO)
gene has been found to affect hippocampal function and regulate BDNF processing, which
helps to further explain the intricate relationship between RIF and BDNF. A recent gene
expression study revealed that RIF was associated with an approximately 30% reduction in
the levels of FTO gene expression in overweight and obese people observing the fasting
month [60], which helps to explain the controversial effects of RIF and CR on BDNF.

A study reported a 25% higher serum BDNF level in women compared to men, con-
firming that circulating BDNF levels are sex-dependent [38]. Previous reports also showed
that women tend to have a higher expression of BDNF in several brain regions [38,61]
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and they have higher circulating BDNF levels in the last phase of their menstrual cycle
compared to the first phase [61]. These findings suggested that gonadal hormones could
influence the estrogen-specific effect on circulating BDNF levels more in women than in
men. Furthermore, the expression of BDNF at the protein and mRNA levels is responsive to
exercise and has a positive influence on cognition function [62]. However, BDNF can only
be altered depending on the intensity of exercise, age, sex, body mass, diet, and fitness level
of the individual [63–65]. Additionally, IF in a specific population such as schizophrenia
patients provided inconsistent results in BDNF concentration due to the type of diet, the
effect of drug treatments, phenotypes, the intensity of symptoms, and the duration of
schizophrenia [17]. Notably, no significant outcome was found in the association between
IF and BDNF concentration. There is a positive confirmed link between long-term healthy
lifestyle interventions, including a healthy diet, calorie restriction, physical activity, and
quality of sleep, and beneficial effects on BDNF in the brain and that the elevation of BDNF
can improve neurodegeneration in the nervous system [20,66].

Recently, IF has emerged as a multifaceted approach that influences long-chain fatty
acid oxidation through the intricate interplay of gut microbiota changes and BDNF pro-
duction [67–69]. This triad not only offers insights into the metabolic benefits of IF but
also sheds light on the complex connections between the gut, the brain, and metabolic
health. Further research is warranted to elucidate the precise mechanisms underlying these
interactions, paving the way for personalized interventions that harness the potential of IF
for optimizing metabolic function and overall well-being.

The observed differences in the effect of IF on BDNF could be also explained by the
sex-specific differences in lipid metabolism [70]. In one clinical trial, sex was found to be
one of the biological determinants that shaped the effect of fasting on circulating BDNF
levels. Such a difference was also a mirror for the differences in the effect of observing RIF
on the two sexes in healthy and disease conditions, as revealed by previous reviews [71,72].

Astroglia, a type of glial cell in the brain, play a crucial and multifaceted role in
the metabolism of fatty acids, contributing significantly to overall brain function [73].
These star-shaped cells are not merely passive supporters; they actively participate in the
intricate biochemical processes that sustain neural health [74]. Astroglia are instrumental
in the uptake, storage, and utilization of fatty acids, serving as key intermediaries in the
intricate lipid metabolism within the brain [75]. Through their sophisticated network of
processes, astroglia contributes to energy homeostasis, neurotransmitter synthesis, and
neuroprotection [76]. The close interaction between astroglia and neurons highlights the
dynamic interplay between different cell types in the brain, emphasizing the intricate
balance required for optimal cognitive function and overall neurological well-being [73,76].
Gaining knowledge about the involvement of astroglia in the metabolism of fatty acids
offers valuable information on potential therapeutic approaches for different neurological
disorders. It also enhances our understanding of the impact of IF on brain health, the
suggested neuroprotective effects of IF, and the mediating role of BDNF in brain health and
cognitive function.

In the context of studying the effect of IF on BDNF, the complex process of synaptic mi-
tochondria efficiently oxidizing long-chain fatty acids gains particular relevance [77]. Dur-
ing fasting periods, the brain’s reliance on alternative energy sources, such as the oxidation
of long-chain fatty acids by synaptic mitochondria, may enhance the production of ketone
bodies and trigger a metabolic state that supports increased BDNF expression [50,78]. The
nuanced interplay between fatty acid metabolism and BDNF in the context of IF highlights
the intricate molecular mechanisms underlying the potential cognitive benefits associated
with this dietary intervention [79], offering a promising avenue for further exploration in
neuroscientific research.

Our study highlights several directions for future research. Reliable protocols for the
assessment of peripheral BDNF levels need to be developed to enable a proper evaluation
of the peripheral concentration of BDNF in future studies. More RCTs in humans are crucial
to investigating the effectiveness of IF on cognitive function in obese or healthy individuals.
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In addition, the duration and type of IF intervention and incorporation of hormones or
biomarker outcomes could help to estimate the effect of peripheral BDNF concentrations.
It should be noted that this review has several limitations, including the presence of only
16 RCTs with a variety of methodologies. Secondly, the inclusion criteria varied, with some
studies including healthy individuals and others excluding those with metabolic syndrome
or neurological disorders. Thirdly, the type of fasting and diet in the IF interventions varied.
Nevertheless, our study is the first systematic review to examine IF’s effect on BDNF
concentrations and cognitive functions in humans. To identify the long-term effects of IF
on BDNF, high-quality research with large-scale randomized controlled trials is required.

6. Conclusions

There are controversial results from human studies regarding the IF and CR effects on
BDNF levels. The long-term effects of IF on BDNF levels have yet to be investigated. Due
to the dissimilarity of the studies’ outcomes and contradictory findings, this review cannot
generalize the results based on human trial interventions related to IF and BDNF levels. To
understand the impact of IF regimens on BDNF levels and cognitive functions, large-scale,
controlled clinical studies are greatly needed.
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