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Abstract: Background and Objectives: In many sports, maintaining muscle work at an optimal level
despite fatigue is crucial. Therefore, it is essential to discover the most efficient way of recovery.
This study aimed to evaluate and compare the acute effects of four different recovery methods
on muscle neuromechanical properties. Materials and Methods: The research was conducted using
a randomized, quasi-experimental, repeated-measures design. Fourteen healthy and active male
students of the Faculty of Sport and Physical Education (age 25.1 ± 3.9 years) were included in this
study. The tensiomyography was used to evaluate muscle responses after four different types of
short-term recovery methods (passive rest, percussive mechanical, vibro-mechanical, and manual
massage) on the rectus femoris muscle on four occasions: baseline, post fatigue, post recovery and
prolonged recovery. Results: The ANOVA revealed that muscle fatigue decreased maximal vertical
muscle displacement (Dm) and muscle contraction time (Tc) in post fatigue compared to the baseline.
The most important finding shows that only the vibro-mechanical massage resulted in an increase
in Tc in the prolonged recovery compared to the post fatigue (p = 0.028), whereas only manual
massage showed no differences in Dm from the baseline in post-recovery (p = 0.148). Moreover,
both manual and vibro-mechanical massages increased Dm and Tc in prolonged recovery, indicating
no differences from the baseline (all p > 0.05), thus showing signs of muscle recovery. Percussion
mechanical massage and passive rest did not show indices of muscle recovery. Conclusions: Manual
massage could induce immediate positive changes in Dm by reducing muscle stiffness. In addition,
vibro-mechanical and manual massage improved muscle tissue by rapidly returning Dm and Tc
values to baseline at prolonged recovery measurement (5 min after the fatigue protocol). These
findings can benefit sports practitioners, and physical therapists in developing the best recovery
method after muscle fatigue.

Keywords: tensiomyography; isometric fatigue; massage modalities; muscle recovery; training

1. Introduction

Long-term, dedicated, hard work is a prerequisite for serious athletic success. How-
ever, training and competing at a high level brings a certain amount of fatigue and stress
that, if not reduced, can negatively affect the athlete’s body or outcome [1]. Passive recovery
is often not enough for the athlete to recover fully [2]. For this reason, athletes must have a
quality recovery process that restores and improves muscle function in addition to expertly
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guided training [3]. In many sports, athletes have little time to prepare for a game during
competition when they are tired. After short breaks or a time-out, maintaining muscle
work at an optimal level despite fatigue is critical. This makes it essential for athletes to
recover as quickly and efficiently as possible. For this reason, it is up to researchers to find
the most efficient way of recovery. There are numerous training-related, psychological, and
medical recovery methods [4]. Massage is a method that is frequently used for this very
purpose: to recover an athlete and prepare them for the following efforts. It is a mechanical
manipulation of soft tissues through rhythmically applied movements and pressure [5,6].
There are many types of massage: manual massage, acupressure massage, rolling massage,
vibro-massage, percussion massage, hydro-massage, and electro-massage, all aimed at
improving the recovery process [7,8].

It is crucial to find sufficiently sensitive methods to detect the changes caused by
the effect of massages. There is a lack of suitable, more sensitive systems for measuring
the contractile properties of muscles after fatigue. This led researchers to search for al-
ternative methods to provide more accurate insight into the contractile mechanisms. In
addition to surface electromyography, neuromuscular function has been studied using ul-
trasound [9,10], magnetic resonance imaging (MRI) [11], transcranial magnetic stimulation
(TMS) [12], mechanomiography (MMG) [13,14], myotonic technology (MyotonPRO) [15],
and tensiomyography (TMG). In recent studies, tensiomyography is a valid and reliable
method for examining the neuromechanical contractile properties of muscles [16]. Ten-
siomyography represents an essential link in the sports and training system. It is based on
the response of the muscles to an appropriate electrical stimulus, enabling the detection of
neuromechanical changes during external muscle electrostimulation using a sensor that
records the radial displacement of the muscle belly [17,18]. This sensor provides highly
accurate information on muscle contractile velocity, muscle stiffness, and, indirectly, func-
tional and lateral symmetry, which plays a vital role in injury prevention, rehabilitation,
and training processes [19].

In recent years, the influence and effects of massage on the neuromechanical contractile
properties of muscles, often used as a means of recovery, have become an increasingly
interesting topic of study [20–24]. Although the studies mentioned above examined the
effects of different types of massage (manual, mechanical, and foam roller massage), only
one study aimed to compare them and determine possible differences [24]. Their findings
showed that there was no difference between the mentioned treatments. In actual sports
circumstances, athletes have different pauses during competition when coaches or team
staff can intervene directly. Depending on the sports modality, these pauses include
timeouts, technical timeouts, substitutions, and intervals between parts, sets, or quarters.
However, only substitutions and timeouts can be freely managed by the coach, and these
two tools are considered very important for managing the team during the competition [25].
Therefore, it can be regarded as one of the most essential tools in team sport management.
It allows coaches to provide direct instructions to their players [26] and physicians to
attend to them. In the light of applicable sports science, there is a significant lack of studies
focusing on massage usage in these short periods.

Based on the abovementioned problem, this research aims to evaluate the effects of four
different types of short-term recovery methods (manual, vibro-mechanical, and percussive
mechanical massage and passive rest) on the neuromechanical contractile properties of
the rectus femoris muscle, measured using the TMG method after an isometric fatigue
protocol. We hypothesized that any massage treatment immediately after the fatigue
protocol would significantly positively affect the neuromechanical contractile properties of
the treated muscle group compared to passive rest. The results of this study could provide
crucial information on the influence of different short-term massage therapies on muscle
recovery, which could lead to further development of sports training and the achievement
of peak results.
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2. Materials and Methods
2.1. Ethical Approval

This study was approved by the Institutional Review Board of the Faculty of Sport
and Physical Education, the University of Belgrade (IRB: 02-2650/23-1). This study was
conducted following recognized ethical standards according to the Declaration of Helsinki
adopted in 1964 and revised in 2013.

2.2. Participants

Fourteen healthy and active male students of the Faculty of Sport and Physical Educa-
tion, aged between 20 and 30, were included in this study (25.1 ± 3.9 years, 78.6 ± 8.9 kg,
181.3 ± 6.0 cm, 23.9 ± 2.1 kg·m−2). The primary criterion for including subjects in the study
was no history of neuromuscular diseases or musculoskeletal injuries. For the duration
of the experiment, subjects were not involved in any massage process. They maintained
their daily routine regarding physical activity and were asked not to take any dietary
supplements or medications. All participants signed a written consent to participate in
the study.

2.3. Experimental Protocol

The research was conducted using a randomized, repeated-measures design in which
participants were required to visit the research laboratory on five different days/sessions,
separated by a rest period of 5–7 days [27]. On the first day, in the morning, subjects were
familiarized with the experimental protocol and the custom-made isometric dynamometer.
In addition to body height (Seca 220, Seca, Hamburg, Germany) and weight (Seca 769, Seca,
Hamburg, Germany), maximal voluntary isometric contraction (MVIC) was also measured.
The research protocol for the remaining four visits was based on TMG measurements,
fatigue, and recovery procedures. TMG measurements were performed at rest, immediately
after a fatigue procedure, immediately after a recovery procedure, and five minutes after
fatigue (PRT) to determine any prolonged effects of the treatment. Four groups of recovery
procedures were used in the study: passive rest, percussion mechanical massage, vibro-
mechanical massage, and manual massage, and they were applied in randomized order
(Figure 1). All measurements were performed under the same conditions and by the same
experienced researcher.
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Figure 1. Schematic depiction of the experimental protocol.

2.4. Experimental Procedures
2.4.1. TMG Measurements

The measurement of neuromechanical contractile properties of muscles was per-
formed on the rectus femoris muscle using the tensiomyography method (TMG-BMC,
Ljubljana, Slovenia), following all procedures recommended by the manufacturer (20).
This muscle was chosen as it assists in knee extension, hip flexion, and stabilization of
the pelvis on the femur when bearing [28], and these are the most common movements
in sports. The subjects were in a relaxed supine position, with the angle in the knee
joint at 120◦ [29]. Immediately before the electrodes were attached, they were asked to
perform a voluntary contraction to determine the position for placement of the TMG
measurement sensor by visual and palpatory methods. The electrode was marked and
placed at the site of the greatest vertical displacement of the muscle belly [22]. Two
self-adhesive electrodes (Pals Platinum, model 895220 with multistick gel, Axelgaard
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Manufacturing Co. Ltd., five cm2) were placed there. They emitted an electrical im-
pulse proximally and distally at a distance of 55 to 60 mm from the marked site [29].
The sensor to detect changes and obtain data was placed between the electrodes (GK40,
Panoptik, Ljubljana, Slovenia) (Figure 2).
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Neuromechanical contractile properties were assessed using an electrical pulse of
40 mA for 1 ms. The impulses were increased proportionally by 20 mA every 10 s until
the moment when any additional muscle response to the increase in electrostimulation
disappeared [24,30]. The two best scores were used for further statistical analysis. The TMG
method provides us with different variables, such as muscle contraction time (Tc), delayed
muscle contraction time (Td), muscle relaxation time (Tr), duration of contraction (Ts), and
maximal vertical muscle displacement (Dm) [31]. The variables that were monitored and
analyzed in our study were contraction time (Tc), the time required to reach from 10% to
90% of the maximum vertical movement of the muscle, and maximum vertical muscle
movement during electrical involuntary stimulation (Dm), as the most reliable variables of
tensiomyography in assessing muscle fatigue [32]. Tc reflects the rate of contraction from
the onset to the end of muscle contraction and is related to the rate of force generation,
whereas Dm measures the movement of the muscle belly expressed in millimeters and
is considered an indirect measure of muscle tone or stiffness [33]. Tc is a physiological
component of neuromuscular function. On the other hand, Dm is considered an anatomical
component determined by the number and type of muscle fibers recruited by the electrical
stimulus [34].

2.4.2. MVIC, Warm-Up, and Fatigue Procedures

MVIC, warm-up, and fatigue procedures were carried out in an adjustable custom-
made chair specifically designed for this type of testing. Participants assumed a
comfortable seated position and were restrained with straps across the chest, hips, and
thighs. The rigid strap and force sensor were placed approximately 2 cm above the
lateral malleolus of the right foot so that the knee joint was flexed to 120◦ (full knee
extension was 180◦) (Figure 3).
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The signals from the force sensor (“CZL302”, GSCS Electronic Measuring Technol-
ogy Co., Ltd. Guangdong, China) were acquired using commercially available software
(“Isometrics, Sports Medical Solutions,” Belgrade, Serbia) version 4.0., with a sampling
frequency of 1000 Hz and filtered with a second-order Butterworth low-pass filter (5 Hz).
For MVIC measurement, subjects were asked to perform three maximal contractions with
2 min of rest in between. Contractions lasted 3 to 5 s, and subjects were verbally encour-
aged during their trials. The highest MVIC value was selected as the reference value for
the upcoming procedures. Participants had visual feedback of their contraction forces
on a screen in front of them the entire time. For warm-up, subjects performed three 40 s
isometric contractions at 40% of their MVIC with a 30 s rest in between. The fatigue proce-
dure consisted of five contractions at 40% of MVIC until task failure, with one minute rest
between contractions [35]. Task failure was defined as the participant’s inability to maintain
force within 10% of the target force. A horizontal boundary line was placed beneath the
required contraction intensity to facilitate visual feedback.

2.4.3. Recovery Treatments

In addition to manual massage as a typical means of recovery, mechanical massages in
electromassage devices are increasingly used in sports practice [36]. The largest number of
sports workers used Hypervolt® (54%) and Theragun® (38%) in their work, indicating the
quality of these devices [36]. Therefore, we decided to use these types of recovery methods.

All treatments were performed by a therapist with extensive experience and lasted
one minute. The applied massages followed the direction of the fibers of the rectus femoris
muscle using moderate force and rapid movement, gliding along the muscle belly from
origin to insertion. During the treatment, the participants gave subjective feedback on the
intensity of the massage pressure [37]. It should also be noted that the same technique or
move can often be given different names in different styles (e.g., longitudinal friction, deep
twitch, or muscle shaping are the same), so massage therapists with different training may
not realize when they are applying the same technique [38].

Four techniques are performed in manual massage (MM) for 15 s each (effleurage,
friction, tapping, and vibration, respectively). In the effleurage treatment (Figure 4,
panel A), the movements are performed with the palms. The friction (Figure 4, panel
B) involved flat motions with the forearms, moving the tissue over the underlying
structures. Tapping (Figure 4, panel C) refers to continuous rhythmic movements
in which the hands come into contact with the tissue, similar to playing percussion
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instruments. Vibrations (Figure 4, panel D) included vibrating or oscillatory rhythmic
movements to release tension. In order to accomplish an optimal effect with this type of
massage, the region of the body where the vibrations are performed should be relaxed.
The main difference between tapping and vibration is that vibrations do not break
contact with the tissue [39–41].
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For the vibro-mechanical (VM) massage (Figure 4, panel E), we used the already
mentioned Hypervolt®. Of the three possible working speeds, we used the middle one
with 2600 vibrations per minute and a working amplitude of 13 mm.
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For the percussive mechanical (PM) massage (Figure 4, panel F), we used the Theragun®.
An operating speed of 2400 strokes per minute and a ball extension with a working ampli-
tude of 16 mm were used [36].

Finally, participants also have passive rest (PR) as a form of recovery.

2.5. Statistical Analysis

Descriptive statistics were calculated as mean and standard deviation (SD). First,
the Kolmogorov–Smirnov test revealed that none of the dependent variables devi-
ated significantly from the normal distribution. A repeated-measures ANOVA was
performed for the main effect (measurement time point) to compare the dependent
variables obtained at the four different time points. Additionally, two-way ANOVA
(between within) was performed to assess the differences between recovery proce-
dures. In case of significant differences in individual procedures, a Bonferroni post hoc
test was performed. Along with the ANOVAs, Eta squared (
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Table 1. Descriptive values (Mean ± SD) of TMG parameters Tc (ms) and Dm (mm) in four measure-
ments in four different recovery procedures.

Baseline Measurement Post-Fatigue
Measurement

Post-Recovery
Measurement

Prolonged Recovery
Time Measurement

Tc Dm Tc Dm Tc Dm Tc Dm

PR 27.1 ± 4.1 10.0 ± 2.7 24.2 ± 5.1 7.4 ± 2.5 24.4 ± 4.1 7.7 ± 2.4 25.2 ± 3.8 7.9 ± 2.5
PM 26.2 ± 4.8 9.5 ± 3.5 21.9 ± 6.0 7.4 ± 3.1 21.4 ± 4.0 7.3 ± 3.1 22.5 ± 4.3 7.5 ± 3.1
VM 27.2 ± 5.0 9.8 ± 3.3 22.0 ± 5.5 7.2 ± 3.1 22.9 ± 5.0 7.2 ± 2.5 24.8 ± 5.8 8.0 ± 2.7
MM 26.9 ± 4.6 9.1 ± 2.6 22.2 ± 4.0 6.9 ± 2.9 23.7 ± 3.9 7.6 ± 2.8 24.5 ± 4.9 7.7 ± 2.5

Abbreviation: Tc—muscle contraction time; Dm—maximal radial muscle displacement; PR—passive rest;
PM—percussive mechanical (Theragun®); VM—vibro-mechanical massage (Hypervolt®); MM—manual massage.

Figure 5 shows a graphical representation of the Tc and Dm results at four time points
and recovery procedures. In almost all procedures, Tc and Dm values decreased after the
fatigue protocol and gradually increased again.

Table 2 presents the results of the repeated measures and two-way ANOVA (between
within) to determine the influence of the short-term recovery procedures and differences
between the recovery procedures (Recovery procedure x Measurement time point). It
can be concluded that there were significant differences between TMG measurements
within each individual recovery procedure (Wilks’ Lambda = 0.387, F = 6.260, p = 0.019,
η2 = 0.612, on average). At the same time, there were no significant interaction effects
(Wilks’ Lambda = 0.873, F = 0.778, p = 0.637, η2 = 0.044); that is, there were no significant
differences between the measurement procedures.

Table 3 contains the pairwise comparison results, i.e., the comparison between
TMG parameters in all four recovery procedures. Significant differences between
baseline and post-fatigue measurements exist in all four recovery procedures for both
Tc (p = 0.038, on average) and Dm (p = 0.018, on average). In addition, differences were
found between the baseline measurement and almost all post-recovery measurements
(except Dm in manual massage) (p = 0.016, on average) and between the baseline
measurement and the measurement taken five minutes after the fatigue protocol for Tc
and Dm of the passive rest (p = 0.028, p = 0.005, respectively) and Theragun® (p = 0.001
and p = 0.009, respectively) procedures. The most important result is that there are no
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significant differences in the measured TMG parameters of any recovery procedure
between the post-fatigue and post-recovery measurements (p = 0.942, on average). The
only significant difference between the post-fatigue measurement and the measurement
taken five minutes after the fatigue protocol is in the Tc of the Hypervolt® procedure
(p = 0.028). Finally, there are no significant differences in both Tc and Dm for any
recovery protocol between the post-recovery measurement and the measurement taken
five minutes after the fatigue protocol (p = 0.603).
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Table 2. The results of the mixed model and repeated measures ANOVA.

Interaction of Recovery Procedures Wilks’ Lambda F Sig. Eta Squared

Passive rest 0.432 4.831 0.022 * 0.568
Percussive mechanical massage 0.302 8.486 0.003 ** 0.698

Vibro-mechanical massage 0.311 8.112 0.004 ** 0.689
Manual massage 0.504 3.611 0.049 * 0.496

Recovery procedure × Measurement time point 0.873 0.778 0.637 0.044
* p < 0.05, ** p < 0.01.

Table 3. The results of the Bonferroni post hoc test—pairwise comparison.

Passive Rest Percussive
Mechanical Massage

Vibro-Mechanical
Massage Manual Massage

Tc Dm Tc Dm Tc Dm Tc Dm

BL
PF 0.049 * 0.002 ** 0.049 * 0.004 ** 0.014 * 0.022 * 0.042 * 0.047 *

PRC 0.008 ** 0.002 ** 0.001 ** 0.018 * 0.043 * 0.027 * 0.030 * 0.148
PRT 0.028 * 0.005 ** 0.001 ** 0.009 ** 0.399 0.105 0.287 0.205

PF
PRC 1 1 1 1 1 1 0.739 0.803
PRT 1 0.719 1 1 0.028 * 0.246 0.45 1

PRC PRT 0.335 1 0.174 1 0.121 0.199 1 1

Tc—muscle contraction time, Dm—maximal radial muscle displacement, BL—baseline measurement, PF—post-
fatigue measurement, PRC—post-recovery measurement, PRT—5-min post-fatigue measurement; * p < 0.05,
** p < 0.01.

4. Discussion

The present study aimed to evaluate and compare the acute effects of four different
short-term recovery methods on the neuromechanical contractile muscle properties, i.e.,
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contraction time and the maximum displacement of the rectus femoris muscle using the
TMG method after isometrically induced muscle fatigue. The most important finding of
this study was that manual massage could cause immediate positive changes in Dm by
reducing muscle stiffness. In addition, vibro-mechanical and manual massage improved
muscle tissue by rapidly returning Dm and Tc values to baseline at the PRT measurement.
Moreover, the results of our study indicate that muscle fatigue affected both Dm and
Tc parameters.

To observe the effects of fatigue, it is necessary to select and apply an exercise
with sufficient intensity to induce neuromechanical changes in the muscle. According
to the literature, muscle fatigue should lead to an increase in Tc and a decrease in
Dm. An increase in Tc is associated with decreased contraction velocity, which should
lead to impaired muscle power. On the other hand, a decrease in Dm leads to higher
muscle stiffness during contraction. This means that during the fatigue state, cellular
structures and conductive properties of membranes are impaired, and the efficiency of
neuromuscular contractile capacity is reduced [43]. The recovery procedures should
bring Tc and Dm values as close as possible to initial values as possible. In this regard,
it is essential to point out that the Dm parameter, according to several authors, can
show the most valuable data when examining the contractile properties of muscles
through TMG [44–46]. On the other hand, Tc values should be taken with caution.
Despite the theoretical assumptions that Tc values should increase with fatigue, our
results showed an opposite trend. However, as mentioned earlier, that is in line
with most of the studies conducted recently. In most previous studies, Dm showed a
significant decreasing trend, implying muscle fatigue increases tension and stiffness
after exercise [24,43,47–49]. Only a few studies showed no changes [50,51]. However,
the Tc response to fatiguing exercise yielded more controversial results. It remained
constant [43,51], increased [52], decreased [24,47,49], or showed different outcomes
depending on the muscle group [48,50].

This study demonstrated that the protocol consisting of five isometric contractions at
40% of MVC until failure with one minute of rest successfully induced these changes by
decreasing both Tc and Dm values (Table 1). Muscle stiffness was increased to overcome
the fatigue caused by isometric testing until failure. An increase in tendinous muscle
rigidity can explain this finding. In our case, as mentioned, Tc values were also decreased
after the fatigue protocol. Although this contradicts the theoretical assumptions, it can
be explained by facilitating muscle function by improving the contractile component of
force production. Decreased Dm may lead to a faster twitch response and a higher rate
of force production, thus shortening muscle contraction time [53]. One explanation for
this could be the reduced rate of actin–myosin bond separation [54,55]. This phenomenon
may be considered as a way to store more energy generated during exercise by increasing
muscle stiffness rather than decreasing muscle activity as muscle fatigue increases [56].
The Tc reduction can also be explained by the fact that the acute exercise used in our
study did not cause significant muscle fatigue due to the post-exercise post-activation
potentiation (PAP). Post-activation potentiation is a physiological phenomenon related to
acute neuromuscular and performance improvements, through which acute muscle force
output is enhanced due to contractile history [57,58]. It can compensate for fatigue during
endurance exercise, increase the rate of force development, and thus improve speed and
power performance [59]. TMG is a valid and sensitive method to detect the PAP effects
only in type II muscle fibers, with a sensor mounted directly over the muscle belly [60].
Monitoring PAP and its effect on TMG was not the aim of this study so future research
could pay more attention to this phenomenon.
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The recovery methods used in this study were passive rest, percussive mechanical
massage, vibro-mechanical massage, and manual massage, and their use was time limited
to one minute (time-out duration). These methods should help reduce post-exercise tension,
increase blood circulation, enhance recovery, stimulate the exercising muscles, and prepare
them for maximum performance [61]. As their use increases, it is necessary to find valid
and sensitive methods for evaluating the mechanisms of muscle activity after massage
treatment [62]. This is the first study to fulfill these methodological inconsistencies among
the protocols concerning the duration of applied massages. Immediately after the fatigue
protocol and TMG measurement, we performed one of the four recovery procedures. It
should be mentioned that the main purpose of the recovery procedures was to return
the Tc and Dm values to the initial baseline values. The short-term messages used in
this study yielded some interesting findings. Regarding Tc, none of the applied recovery
procedures had immediate effects, meaning the differences mostly remained significant
after the treatment (p < 0.05). However, manual and vibro-mechanical massage affected
muscle properties five minutes after the fatigue protocol compared to baseline TMG mea-
surement at rest (p = 0.287 and p = 0.399, respectively). It was also found that after the
fatigue procedure, only the vibro-mechanical massage resulted in faster recovery in PRT
measurement compared to the other recovery procedures (p = 0.028).

On the other hand, manual massage had an immediate positive effect on muscle
stiffness after the fatigue protocol compared to baseline TMG measurement (p = 0.148).
Manual and vibro-mechanical massage also affected muscle properties five minutes
after the fatigue protocol compared to baseline TMG measurement at rest (p = 0.205 and
p = 0.105, respectively). Interestingly, manual massage resulted in the fastest return of
muscle stiffness to baseline values. The experience and feeling of the therapist could play
a crucial role in this. Moreover, the last technique performed during manual massage
was the vibration technique, so it can be assumed that it could contribute to reducing
stiffness. Percussion mechanical massage and passive rest did not affect muscle stiffness
(p < 0.05). An increase in local stiffness may affect adjacent tissues via collagenous
connective tissue [63]. It is possible that when penetrated through muscle, applied
vibrations had more positive results than percussions. One possible mechanism for these
findings could be that vibration therapy can stimulate more muscle receptors, resulting
in increased blood flow, cutaneous vascular conduction, and improved oxygen delivery
to the muscle [61]. It has also been reported that applied vibrations led to mechanical
oscillatory motions associated with increased intramuscular temperature [64]. Vibration
may play an essential role in muscle recovery.

Limitations

This study needs to acknowledge some limitations. All respondents were male stu-
dents, so no possible differences were observed between men and women, nor between
the participants’ physical fitness levels (recreationists, professional athletes). Also, we
measured only one type of muscle fatigue (isometric) in one muscle group (rectus femoris);
we did not try to create game situations (different sports) and then evaluated the mus-
cle response. In addition, subjective feelings of muscle pain were not analyzed in order
to use the perceptual scales of recovery. It would be advisable to try to create effective
field game-based situations, as well as massage models with precise massage techniques
(studying other massage techniques) and their modalities (i.e., different therapeutic tools,
different attachment heads on handheld devices, different intensity of applied pressure,
different speed of movement, etc.) that could help optimize training and recovery pro-
grams. In addition, further studies are needed to determine the periods in which contractile
properties return to baseline values to investigate both the short- and long-term effects of
massage and the physiological and psychological responses that occur after fatigue and
applied treatments. This way, science could provide exercise physiologists and coaches
with essential clues for better training periodization.
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5. Conclusions

The ability to recover after intense training or competitive bouts is essential to maintain
or even increase performance in subsequent efforts. Developing adequate recovery systems
for the most effective and efficient preparation of athletes for competitions is one of the
most important goals in today’s sport. Our goal was to create a situation as similar as
possible to practical sports conditions, where the therapist has very little time to help the
athlete overcome the current state of fatigue.

The main finding of this study was that manual massage induced a significant immedi-
ate positive change in muscle displacement (Dm) by reducing muscle stiffness. Additionally,
the vibro-mechanical and manual massage affected Tc and Dm five minutes after fatigue
protocol, indicating an acute response of neuromechanical properties. However, only the
vibro-mechanical massage applied led to a faster return of Tc values to the baseline in
the PRT measurement. As an additional value of our study, it is important to note that
our protocol can be used as a muscle fatigue indicator when attempting to induce fatigue
through isometric exercise because it was able to cause changes in Tc and Dm in the rectus
femoris muscle by decreasing both parameters. Thus, TMG has proven to be a reliable
tool in assessing this type of muscle fatigue. To conclude, vibro-mechanical and manual
massage may be helpful recovery methods to improve muscle tissue after isometrically
induced fatigue. These findings can benefit sports practitioners, and physical therapists
in applying the best recovery method after muscle fatigue. As a result, improved mus-
cles’ neuromuscular capabilities might lead to better sports results while reducing the risk
of injuries.

Author Contributions: Conceptualization, M.D. (Miloš Dakić), V.I., L.T., S.D., J.Š., M.M., M.D.
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