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Abstract: Background and Objectives: The incidence of diabetic osteoporosis, an important complication
of diabetes mellitus, is increasing gradually. This study investigated the combined effect of the Zuogui
pill (ZGP) and eldecalcitol (ED-71), a novel vitamin D analog, on type 2 diabetic osteoporosis (T2DOP)
and explored their action mechanism. Materials and Methods: Blood glucose levels were routinely
monitored in db/db mice while inducing T2DOP. We used hematoxylin and eosin staining, Masson
staining, micro-computed tomography, and serum biochemical analysis to evaluate changes in the
bone mass and blood calcium and phosphate levels of mice. Immunohistochemical staining was
performed to assess the osteoblast and osteoclast statuses. The MC3T3-E1 cell line was cultured
in vitro under a high glucose concentration and induced to undergo osteogenic differentiation.
Quantitative real-time polymerase chain reaction, Western blot, immunofluorescence, ALP, and
alizarin red staining were carried out to detect osteogenic differentiation and PI3K–AKT signaling
pathway activity. Results: ZGP and ED-71 led to a dramatic decrease in blood glucose levels and an
increase in bone mass in the db/db mice. The effect was strongest when both were used together. ZGP
combined with ED-71 promoted osteoblast activity and inhibited osteoclast activity in the trabecular
bone region. The in vitro results revealed that ZGP and ED-71 synergistically promoted osteogenic
differentiation and activated the PI3K–AKT signaling pathway. The PI3K inhibitor LY294002 or AKT
inhibitor ARQ092 altered the synergistic action of both on osteogenic differentiation. Conclusions:
The combined use of ZGP and ED-71 reduced blood glucose levels in diabetic mice and promoted
osteogenic differentiation through the PI3K–AKT signaling pathway, resulting in improved bone
mass. Our study suggests that the abovementioned combination constitutes an effective treatment
for T2DOP.

Keywords: Zuogui pill; eldecalcitol; type 2 diabetic osteoporosis; osteoblast; PI3K–AKT signaling pathway

1. Introduction

Diabetes mellitus (DM), a severe chronic metabolic illness, has spread rapidly in recent
years. More than 425 million people were reported to have DM in the 2017 worldwide
statistics of the International Diabetes Federation Atlas, a number that could increase
to 156% by 2045 [1,2]. Type 2 DM (T2DM) is common among adults and older adults,
accounting for approximately 90% of patients with DM [3]. Type 2 diabetic osteoporosis
(T2DOP), a T2DM complication, is a systemic bone illness marked by low bone mass and
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deterioration of the bone microstructure, resulting in brittle bones prone to fractures [4].
Evidence supporting an association between T2DM and the susceptibility to fractures
is growing. The incidence of secondary osteoporosis (OP) and the risk of fractures in
people with DM is 4–5 times higher than in the general population [5]. The diabetic
osteoporosis (DOP) incidence in patients with T2DM is as high as 20–60% [6]. Therefore,
developing effective therapeutic agents for T2DOP could have considerable economic and
social significance.

Bone homeostasis depends on osteoclast-mediated bone resorption and osteoblast-
mediated bone formation. Osteoblasts are involved in bone matrix synthesis and mineral
deposition. The main characteristics of T2DOP are reduced bone turnover and impaired
osteoblast activity [7–9], mainly due to impaired osteoblast proliferation, differentiation,
and function due to persistent hyperglycemia, the formation of advanced glycation end
products (AGEs), oxidation products, insulin deficiency, obesity, and microangiopathies in
T2DM [10–12]. A high-glycemic environment is often used to model T2DOP in vitro and
help elucidate its pathogenesis [13,14].

The Zuogui pill (ZGP) is a well-known traditional Chinese medicine (TCM) prescrip-
tion derived from the medical book The Complete Works of [Zhang] Jing-yue of the Ming
Dynasty. It comprises eight Chinese herbs, namely Rehmannia glutinosa Libosch. (prepared
root); Lycium barbarum L. (dried fruit); Dioscorea opposita Thunb. (dried rhizome); Cyathula
officinalis Kuan (dried root); Cornus officinalis Sieb. et Zucc. (dried fruit); Cervus elaphus
Linnaeus (antler); Cuscuta chinensis Lam. (dried seed); and Chinemys reevesii (Gray) (shell)
(8:4:4:3:4:4:4:4) [15]. According to TCM, the kidney, which is one of the five zang organs,
has one of the functions of governing bones. The kidney stores the yin essence, which
produces and generates marrow, while the marrow fulfills and nourishes bones. Therefore,
when the kidney’s yin essence is deficient, and there is not enough nourishment, bone
loss, or osteoporosis, occurs [16]. Thereby, nourishing kidney yin is considered a ther-
apeutic method for osteoporosis [17]. Due to its function of nourishing kidney yin and
replenishing this essence, ZGP is recommended by the Chinese Association of Integrative
Medicine (Chinese Association of Integrative Medicine, 2019) and the Chinese Association
of Chinese Medicine (Chinese Association of Chinese Medicine, 2020) as a treatment drug
in the recently updated OP clinical guidelines [18]. ZGP promotes osteoblast differentia-
tion [19–21] and significantly increases bone density in senile OP, postmenopausal OP [21],
and glucocorticoid-induced OP (GIOP) [16,22]. Furthermore, ZGP treatment positively
affected DM by decreasing the glucose level in a rat model [23], avoiding the adverse effects
of high sugar on embryonic development [24], and preventing impaired glucose tolerance
in the offspring induced by a high sugar and fat diet. Conversely, ZGP improves kidney
injury in diabetes [25]. However, its effect on DOP has yet to be reported. Due to its unique
advantages as a TCM, the ZGP effect improves when combined with Western medicine.
For example, a study found that ZGP combined with anti-OP drugs, such as alendronate,
led to better bone mineral density recovery than alendronate alone [18], suggesting that
such combinations could effectively treat DOP.

Vitamin D (VD) is crucial for bone tissue development and remodeling [26]. It main-
tains the body’s calcium and phosphate balance and regulates intestinal and renal reab-
sorption. VD also affects mineralization, bone conversion rate, and fracture occurrence by
acting on various bone tissue cells and factors, thereby contributing to OP prevention and
treatment [27]. The VD level in patients with T2DM affects the blood sugar level and bone
metabolism. Insulin resistance and bone turnover were reported to be inversely linked
to the 25(OH)D concentration. A drop in the 25(OH)D concentration and an increase in
insulin resistance in patients with T2DM triggered bone turnover and increased the risk of
OP [28].

The liver and kidneys metabolize the activated form of VD (AVD). Eldecalcitol (ED-
71) is an emerging AVD analog with a longer half-life and a lower hypercalcemia risk
than previous AVDs [29]. More importantly, ED-71 has exhibited superior therapeutic
efficacy against various OP types. In an earlier study, ED-71 stimulated pre-osteoblast
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differentiation and downregulated osteoclast number, thus reducing bone loss in OVX
rats [30]. In GIOP mice, ED-71 prevented glucocorticoid-induced bone loss by promoting
osteogenic differentiation [31]. In a mouse DOP model, ED-71 promoted M2 macrophage
polarization and induced the osteogenic differentiation of BMSCs [32]. ED-71 has also
achieved good results when combined with other drugs. Cotreatment with exendin-4
had a remarkable glucose-reducing effect in DOP mice and enhanced osteogenesis [32].
ED-71 sequential treatment after PTH inhibited PTH withdrawal-associated OP in estrogen-
deficient rats [33]. There is no relevant study on the combined effect of ZGP and ED-71
on OP.

This study investigated whether the ZPG and ED-71 combination could improve
T2DOP and explored the associated specific mechanisms. We also verified that ZPG and
ED-71 cotreatment promoted osteogenic differentiation in a PI3K–AKT-dependent manner.
The study results could help open new venues for T2DOP treatment.

2. Materials and Methods
2.1. Reagents

ED-71 (Chugai Pharmaceutical Co., Ltd., Tokyo, Japan) was dissolved in 100% ethanol
for storage and diluted to the desired concentration in medium-chain triglycerides (MCTs)
before usage. MCTs with the same absolute ethanol concentration were used as controls.
ZGPs were purchased from Beijing Tongrentang Co., Ltd., Beijing, China. The granules
were used to prepare a ZGP suspension at the desired concentration, which was kept at
4 ◦C.

The anti-Runx2 (20700-1-AP) and anti-GAPDH (10494-1-AP) antibodies were pur-
chased from Proteintech (Chicago, IL, USA). The anti-osteocalcin (OCN) antibody (bs-
4917R) was purchased from Bioss (Beijing, China). The anti-alkaline phosphatase (ALP)
(ab65834), anti-P-PI3K (ab278545), and anti-P-AKT (ab192623) antibodies as well as goat
anti-rabbit (ab6721), goat anti-mouse (SA00001-1), and goat anti-rabbit (SA00013-2) IgGs
were purchased from Abcam (Cambridge, UK). The ARQ092 (HY-19719) and LY294002 (HY-
10108) inhibitors were purchased from MedChemExpress (Monmouth Junction, NJ, USA).

2.2. Animals and Drug Administration

Male C57BLKS/J Iar-+Leprdb/+Leprdb mice (db/db; 33–45 g; 8 w; n = 5), as a DOP
model, were acquired from the Model Animal of Nanjing University (Jiangsu, China). The
mice were maintained under normal laboratory conditions at 20 ◦C and subjected to a
normal 12 h/12 h light and dark routine. We randomly divided the animals into four
groups: control (PBS given orally for 6 w); ZGP (3.8 g/kg/d ZGP given orally for 6 w);
ED-71 (0.25 µg/kg ED-71 given orally 3 times/w for 6 w [32]); ZGP + ED-71 (3.8 g/kg/d
ZGP and 0.25 µg/kg ED-71 3 times/w given orally for 6 w).

2.3. Blood Glucose Assay and Serum Biochemical Analysis

The mice were deprived of food and water for 8 h/w before being pricked in the tail
vein to measure the blood glucose level with a blood glucose meter (China Yuwei Medical
Equipment Co., Ltd., Shenzhen, China). The mice were anesthetized, and blood samples
were collected from their posterior orbit before they were sacrificed. Serum samples were
separated via centrifugation at 3000 rpm for 10 min and stored at−80 ◦C. A fully automatic
biochemical analyzer (BS-240VET, Mindray, Shenzhen, China) was used to measure the
serum levels of calcium and phosphate using dedicated kits (Century World Biotechnology
Co., Ltd., Shenzhen, China), according to the manufacturer’s instructions.

2.4. Animal Euthanasia and Sample Preparation

Mice were euthanized via anesthetic overdose. Their tibia bones were placed in 4%
paraformaldehyde phosphate-buffered saline with 10% EDTA-2Na for one month at 4 ◦C.
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2.5. Micro-Computed Tomography (CT) Scan

Samples were dissected aseptically and scanned, and the data were reconstructed
using a micro-CT system (Scanco Medical, Wangen-Brüttisellen, Switzerland) to generate
three-dimensional images.

2.6. Hematoxylin and Eosin (HE) Staining

The sections were dewaxed through immersion in des-gradient alcohol, stained with
hematoxylin for 15 min, washed with distilled water, stained with eosin for 7 min, and
washed again with distilled water. Mounts were observed on an optical microscope
(Olympus BX-53, Tokyo, Japan), and images were acquired.

2.7. Masson Staining

After dewaxing and hydration, the sections were stained with hematoxylin for 10 min,
placed in a Ponceau S acid solution, allowed to undergo differentiation in a phosphomolyb-
dic solution, and then transferred to an aniline blue solution. The mounts were observed
on an optical microscope (Olympus BX-53, Tokyo, Japan).

2.8. Immunohistochemical and Tartrate-Resistant Acid Phosphatase (TRAP) Staining

Tissue sections were immersed in alcohol, followed by treatment with 1% bovine
serum albumin (BSA) in PBS for 20 min, to block nonspecific staining. The sections were
incubated with primary antibodies overnight at 4 ◦C, washed with PBS, incubated with
secondary antibodies at room temperature for 1 h, washed in 3, 3′-diaminobenzidine
tetrahydrochloride, and counterstained with methyl green. The sections were washed in
double-distilled water and immersed in the TRAP staining solution and then restained
in methyl green. The sealed sections were observed under optical microscopy (Olympus
Corp), and digital images were captured.

2.9. Cell Culture, Acquisition of Medicated Serum, and Osteogenic Differentiation Induction

Mouse pre-osteoblast MC3T3-E1 cells from Shanghai Cell Center (Shanghai, China)
were incubated with an α-minimal medium with 10% serum, 100 units/mL penicillin,
100 µg/mL streptomycin, and a high glucose environment of 35 mmol/L [18] at 37 ◦C
and 5% CO2. Medicated serum was acquired from eight-week-old male Sprague Dawley
rats [34]. We randomly divided them into four groups: control (PBS given orally for 7 d);
ZGP (ZGP 1.85 g/kg/d, given orally for 7 d); ED-71 (ED-71 0.125 µg/kg, given orally
3 times/w); and ZGP + ED-71 (ZGP 3.8 g/kg/d and ED-71 0.25 µg/kg 3 times/w, both
given orally). The rats’ blood was withdrawn after 7 d [34], filtered, aliquoted, and stored
at −80 ◦C.

The cells were cultured for 7 or 21 days in an osteogenesis-inducing medium com-
prising 50 mg/L ascorbic acid, 100 mM β-glycerophosphate, 10 nM dexamethasone, and
drug-containing serum in a high-glucose environment of 35 mmol/L. We changed this
medium every 3 d.

2.10. Alkaline Phosphatase and Alizarin Red (AR) Staining

After inducing osteogenesis for 7 d, the cells were fixed in 4% paraformaldehyde
for 20 min, stained with an ALP solution for 30 min, and washed in PBS. ALP-positive
cells and calcified nodules were observed and analyzed using Image Pro Plus 6.0 (IPP
6.0) software. Other batches of cells were fixed in 4% paraformaldehyde, stained with
1% AR staining solution (Solarbio, Beijing, China), and washed in PBS. The AR-stained
nodules were separated using cetylpyridinium chloride dissolved in PBS and detected
using a spectrophotometer at 450 nm.

2.11. Immunofluorescence Staining

Cells were fixed in 4% paraformaldehyde, permeated with 0.5% Triton X-100, and
blocked with 5% BSA in PBS. Subsequently, they were incubated with a primary antibody
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at 4 ◦C overnight and then with a secondary antibody at room temperature for 1 h. Finally,
the cells were counterstained with DAPI for 5 min, and the relative fluorescence intensity
was measured using ImageJ software.

2.12. Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) Analysis

The total RNA was extracted from cell samples using the RNAex Pro Reagent (Accu-
rate Biology, Changsha, China) and reverse-transcribed into cDNA using an Evo M-MLV
Reverse Transcription Kit (Accurate Biology, Changsha, China). RT-qPCR was performed
in triplicate with the SYBR Green PCR kit (Accurate Biology, Changsha, China) using
the Roche Light Cycler 96 Real-time PCR system (Roche, Welwyn Garden City, UK). The
relative expression levels of RUNX2, ALP, OCN, and GAPDH were calculated using the
2−∆∆Ct method. The levels of the first three factors were normalized to that of GAPDH. The
primer sequences are listed in Table 1.

Table 1. Primer sequences (5′ to 3′) used for mouse genes.

Gene Forward Reverse

OCN CAGAACAGACAAGTCCCACACAG TCAGCAGAGTGAGCAGAAAGAT
RUNX2 TACGACCATGAGATTGGCAGTGA TATAGGATCTGGGTGCAGGCTGA

ALP GCGACCACTTGAGCAAACATC CGGCTGATTGGCTTCTTCTT
GAPDH GCACCGTCAAGGCTGAGAAC TGGTGAAGACGCCAGTGGA

2.13. Western Blotting

Total cell proteins were extracted in a mixture containing phosphatase inhibitor, pro-
tease inhibitor, and RIPA lysis buffer (Cwbio, Beijing, China) at a ratio of 98:1:1. The
protein concentration was assessed using a BCA Assay Kit (Beyotime, Shanghai, China).
A standard quantity of proteins was electrophoresed on SDS-PAGE and transferred to a
PVDF membrane. The membrane was incubated overnight with a primary antibody at 4 ◦C
and then with a secondary antibody for 1 h. The bands were measured using an enhanced
chemiluminescence reagent (Proteintech, Chicago, IL, USA) and an ECL system (General
Electric Company, Boston, MA, USA). Each experiment was repeated in triplicate.

2.14. Statistical Analysis

Data were approximately normally distributed. All quantitative data are expressed
as means ± standard deviations (SDs), and all experiments were independently repeated
at least 3 times. One-way ANOVA was used for multiple groups’ comparison, and the
mean value of each group was compared using the least significant difference (LSD) test.
Statistical analysis was performed using GraphPad Prism 6.0 software (GraphPad Software,
San Diego, United States), and p < 0.05 was considered statistically significant.

3. Results
3.1. ZGP and ED-71 Synergistically Reduced Blood Glucose Levels in Diabetic Mice

The blood glucose levels in the db/db mice were markedly higher than in the wild-
type (WT; Figure 1A), while ZGP or ED-71 treatment reduced the blood glucose level.
ED-71 exhibited a stronger effect than ZGP in the early administration stage, whereas
ZGP exhibited a more significant effect from the third week onward. More importantly,
treatment with both showed a stronger sugar-lowering effect than each alone (Figure 1B).
The liver tissue’s HE staining revealed no significant difference between the treatment and
control groups, suggesting that ZGP and ED-71 caused no damage to the liver. Meanwhile,
microvesicular liver steatosis was reduced after drug treatment (Figure 1C).
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Figure 1. ZGP synergizes with ED-71 to reduce the blood glucose level in db/db mice: (A) comparison
of blood glucose levels between WT and db/db mice (n = 6); (B) changes in blood glucose levels during
the treatment (n = 6); (C) HE staining. Bar, 100 µm. The values are expressed as means ± standard
deviations. ns: no significance, * p < 0.05, ** p < 0.01, and *** p < 0.001.

3.2. ZGP and ED-71 Synergistically Increased Bone Mass, Improved Osteoblasts, and Inhibited
Osteoclasts in Diabetic Mice

Micro-CT revealed that the db/db mice had very little cancellous bone. The ZGP
treatment slightly increased the cancellous bone mass, whereas the ED-71 treatment in-
creased it significantly, and the ZGP + ED-71 combination exhibited the strongest effect
(Figure 2A). HE staining revealed that the number, volume, and width of the trabecular
bone increased, and the separation was reduced after ZGP or ED-71 treatment. These obser-
vations were more significant after administering the ZGP + ED-71 combination than any
alone (Figure 2B,C). Masson staining also demonstrated that the ZGP + ED-71 combination
increased bone mass, as indicated by increased blue-stained new bone regeneration regions
(Figure 2B). Serum calcium and phosphor levels were in the following increasing order:
control, ZGP, ED-71, and ED-71 + ZGP (Figure 2D).

Osteoblasts and osteoclasts in the metaphyseal region of the mice were observed histo-
logically. ZGP or ED-71 improved the positive expression of ALP and COL-1, increased the
number of RUNX2-positive osteoblasts, reduced the number of TRAP-positive osteoclasts,
and inhibited the positive expression of MMP-9. This suggested that ZGP and ED-71 could
stimulate the osteoblasts and inhibit the osteoclasts (Figure 3A,B). This effect was further
enhanced when both were administered together (Figure 3A,B).
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Figure 2. ZGP synergizes with ED-71 to increase bone mass in db/db mice: (A) representative
3D micro-CT images of the femur in the CON, ZGP, ED-7I, and ZGP + ED-71 groups after 6 w of
treatment; (B) HE and Masson staining of the mice tibia. Bar, 50 or 100 µm; (C) bone/tissue volume,
and trabecular bone number, thickness, and space were analyzed via HE staining (n = 3); (D) serum
calcium and phosphor levels (n = 3); ** p < 0.01; *** p < 0.001 VS. Control Group; # p < 0.05; ### p < 0.001
VS. ZGP Group; & p < 0.05 VS. ED-71 Group. The values are expressed as means ± SDs. ns: no
significance, * p < 0.05, ** p < 0.01, and *** p < 0.001, **** p < 0.0001. BV/TV, bone/tissue volume;
Tb.N, trabeculae bone number; Tb.Th, trabeculae bone thickness; Tb.Sp, trabeculae bone space; GP:
growth plate; TB: trabeculae bone; BM: bone marrow.
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analysis of the mean optical density of ALP and MMP-9, the integrated optical density of COL1, and 
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Figure 3. ZGP synergizes with ED-71 to stimulate the osteoblasts in db/db mice: (A) TRAP staining
and immunohistochemical staining of ALP, RUNX2, COL-1, and MMP-9. Bar, 50 µm; (B) statistical
analysis of the mean optical density of ALP and MMP-9, the integrated optical density of COL1, and
the number of RUNX2-positive osteoblasts and TRAP-positive osteoclasts. The data are presented as
means ± SDs (n = 3). * p < 0.05, ** p < 0.01, and *** p < 0.001. GP: growth plate; TB: trabeculae bone;
BM: bone marrow.

3.3. The ZGP and ED-71 Combination Promoted Osteogenic Differentiation of the
MC3T3-E1 Cells

After the osteogenic induction of the MC3T3-E1 cells in a high-glucose environment,
Western blot revealed that ZGP and ED-71 increased ALP, RUNX2, and OCN protein levels,
with the largest increase achieved when both were administered together (Figure 4A). RT-
qPCR analysis demonstrated a similar trend, with the highest increase in ALP, RUNX2, and
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OCN mRNA expression in the cotreatment group (Figure 4A). ALP staining revealed that
ALP expression was enhanced in the ZGP and ED-71 groups and was the strongest in the
combination group (Figure 4B). AR staining demonstrated that treatment with ZGP or ED-
71 increased the calcified nodule number, which was the highest in the combination group
(Figure 4B). These results demonstrated that the ZGP and ED-71 combination promoted
osteogenic differentiation and mineralization in the MC3T3-E1 cells.
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Figure 4. ZGP synergizes with ED-71 in affecting the differentiation and mineralization of HG-treated
MC3T3-E1 cells: (A) the protein expression of ALP, RUNX2, OCN, and GAPDH was detected using
Western blotting after 14 days of culture; (B) the mRNA expression of ALP, RUNX2, OCN, and
GAPDH was assessed via RT-qPCR after seven days of culture; (C) ALP staining of MC3T3-E1 cells
in the CON, ZGP, ED-71, and ZGP + ED-71 groups after seven days of culture, and the quantitative
statistical analysis of ALP staining; (D) AR staining of MC3T3-E1 cells in the CON, ZGP, ED-71, and
ZGP + ED-71 groups after 21 days of culture, and the quantitative statistical analysis of AR staining.
Bar, 100 µm. The data are presented as means ± SDs (n = 3). * p < 0.05, ** p < 0.01, and *** p < 0.001.
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3.4. ZGP Synergized with ED-71 to Promote the Osteogenic Differentiation of MC3T3-E1 Cells
through the PI3K–AKT Pathway

The specific mechanism through which ZGP synergizes with ED-71 to promote os-
teogenic differentiation was explored. The P-PI3K and P-AKT expression levels gradually
increased in the control, ZGP, ED-71, and ZGP + ED-71 groups (Figure 5A). The PI3K
inhibitor LY294002 or the AKT inhibitor ARQ092 validated the signaling pathway activity.
The fluorescence intensity of P-PI3K and P-AKT in the MC3T3-E1 cells, which increased
when treated with the ZGP + ED-71 combination, was inhibited by LY294002 (Figure 5B).
When ARQ092 was added, the expression of P-AKT was inhibited, while that of P-PI3K was
not (Figure 5B). RT-qPCR and Western blotting revealed that LY294002 addition decreased
ALP, OCN, and RUNX2 mRNA and protein expression and reversed the promoting effect
of ZGP and ED-71 on osteoblast differentiation (Figure 6A,B). Similarly, the osteoblast
differentiation-promoting effect of ZGP and ED-71 was reversed when AKT was inhibited
by ARQ092 (Figure 6C,D). ALP staining revealed that LY294002 and ARQ092 inhibited the
positive expression of ALP induced by the ZGP and ED-71 combination (Figure 6E).
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Figure 5. ZGP synergizes with ED-71 in regulating MC3T3-E1 cells through the PI3K–AKT pathway:
(A) the protein expression of P-PI3K, P-AKT, and GAPDH was detected via Western blotting after
14 days of culture; (B) statistical analysis of the Western blot results; (C) representative immunofluo-
rescence staining images of P-PI3K and P-AKT in the CON and ZGP + ED-71 groups seven days after
adding the small-molecule inhibitors LY294002 and ARQ092, and the quantitative statistical analysis
of the immunofluorescence staining. Bar, 200 µm. The data are presented as means ± SDs (n = 3).
ns: no significance, * p < 0.05, ** p < 0.01, and *** p < 0.001.
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Figure 6. ZGP synergizes with ED-71 in regulating MC3T3-E1 cells through the PI3K–AKT pathway:
(A,C) the ALP, RUNX2, OCN, and GAPDH mRNA levels were assessed via RT-qPCR after seven days
of culture with and without the small-molecule inhibitors LY294002 and ARQ092; (B,D) the ALP,
RUNX2, OCN, and GAPDH protein expression was detected via Western blotting after 14 days of
culture; (E) ALP staining of MC3T3-E1 cells in the various groups after seven days of culture, and the
quantitative statistical analysis of ALP staining. Bar, 100 µm. The data are presented as means ± SDs
(n = 3). * p < 0.05, ** p < 0.01, and *** p < 0.001.
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4. Discussion

We evaluated the therapeutic effects of ZGP and ED-71 on T2DOP, their ability to
improve osteogenic differentiation in a high-glycemic environment, and their potential
mechanism of action. Our results demonstrated that ZGP and ED-71 synergistically im-
proved T2DOP by increasing the bone mass and osteogenesis rate. These positive effects
were, at least in part, achieved by promoting osteoblast differentiation. PI3K–AKT signal-
ing pathway activation is a potential mechanism through which ZGP and ED-71 promote
osteoblast differentiation.

T2DM, a widespread metabolic disease, is typically manifested in persistent hyper-
glycemia. Accumulating evidence supports the close association between high-glucose
levels and alterations in bone metabolism [35–37]. The reduction in blood glucose levels
has become a major challenge that needs to be addressed. In this study, the blood glucose
level of db/db mice was reduced through the ZGP or ED-71 treatment, an effect that was
more obvious when both drugs were administered together. Although the blood sugar-
lowering effect of ZGP was slow, it exhibited a more significant, stable, and lasting effect
from the third week onward. Studies have reported that ZGP can effectively lower blood
sugar levels [24,25,38,39]. ZGP consists of eight Chinese herbs. The Rehmannia glutinosa
Libosch. and Dioscorea opposita Thunb. in the ZGP can, respectively, inhibit α-amylase and
α-glucosidase, two crucial enzymes involved in glucose production, leading to a significant
reduction in the post-prandial glucose level [40,41]. Lycium barbarum L. is rich in betaine,
which is critical in lowering blood sugar levels [42]. Quercetin-3-o-galactoside, an active
flavonoid glycoside, primarily obtained from Cuscuta chinensis Lam., has been shown to
dramatically reduce the fasting blood glucose levels in db/db mice [43]. The observed
long-term blood glucose-reducing function of ZGP could be due to the many components
of ZGP that exert glucose-reducing effects through multiple targets. VD supplements
effectively reduced the T2DM risk [44,45]. We found in this study that ED-71 effectively
reduced the blood glucose levels in db/db mice, consistent with previous reports [32].
Notably, ED-71 exhibited a rapid hypoglycemic effect in the early stage of administration,
possibly because it is an AVD analog and can function directly without the traditional VD
activation process [31]. Interestingly, we found that the blood glucose level reduction was
higher when the ZGP and ED-71 combination was administered than when either drug
was given alone. Therefore, we speculated that the two-drug combination triggered a full
play of their respective functions to achieve the best hypoglycemic effect. Considering
the fact that previous studies have shown that a high glucose environment can inhibit
the osteogenic differentiation and activity of osteoblasts as well as increase the osteoclast
differentiation and osteoclast activity [46], we believe that the cotreatment may improve
bone mass indirectly by downregulating the blood glucose levels.

Patients with DOP exhibit significant bone mass reduction, bone turnover reduction,
and impaired osteoblast activity [8,47]. A randomized controlled trial revealed that ZGP
improved bone density in 55–75 years old patients with OP [48]. Furthermore, ZGP
improves GIOP and dexamethasone-induced OP by improving the bone mineral extent,
enhancing bone biomechanical strength, increasing osteogenesis, and hindering bone
resorption [15,16,22,49]. It has been reported that the Rehmannia glutinosa Libosch. in
the ZGP can regulate alkaline phosphatase activity and osteocalcin levels in diabetic
rats, increase bone mineral density, and improve bone microstructure. The extract of the
Dioscorea opposita Thunb. and Lycium barbarum L. in the ZGP increased bone mass and
bone strength in models and promoted the proliferation, differentiation, and ossification
of osteoblasts. Our results indicated that ZGP promoted osteogenesis and increased bone
mass, consistent with previous reports indicating that ZGP improves OP. Furthermore,
the ZGP and ED-71 combination exhibited the strongest effect in improving bone mass,
stronger than ZGP or ED-71 alone. As an effective therapeutic agent for DOP [32,50], ED-71
enhanced the therapeutic effect of ZGP to increase bone mass and promote new bone
formation in patients with DOP. Hypercalcemia is the most widespread complication of
ED-71 [51]. Studies have also shown that ZGP treatment significantly increased serum
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calcium levels in rats [49]. Meanwhile, the same trend of increase in serum calcium levels
was observed during ZGP and ED-71 treatment in our study. We found that the increase in
the blood calcium level was more pronounced in the ZGP + ED-71 group, so serum calcium
concentration should be monitored during clinical treatment.

The osteoblastic differentiation ability in patients with DOP is weakened in a high-
glucose microenvironment [12], while the differentiation ability of osteoclasts is upregu-
lated [52]. Current strategies used to treat DOP include osteogenic differentiation promotion
of osteoblasts to increase bone mass in these patients [53]. Targeted osteogenic differentia-
tion is a powerful treatment approach for T2DM. In this study, ALP, RUNX2, and COL-1
levels in the tibial metaphysis increased after administering ZGP or ED-71 to diabetic
mice. The ZGP and ED-71 combination further increased the expression levels of these
factors. In vitro experiments showed similar results, with the ZGP and ED-71 combination
decreasing the blocking function exerted by the high glucose concentration on osteoblast
differentiation. Increased ALP levels suggested enhanced osteoblast differentiation and
increased osteogenesis [54]. The change in RUNX2 level indicated changes in osteoblast
differentiation and mineralization [55]. OCN, a noncollagenous protein, is vital in bone
matrix mineralization [56]. COL-1 is a marker of osteoblast differentiation and matura-
tion [57]. ED-71 exerted a protective effect on osteoblasts when treating T2DM. Combined
with exendin-4, it promoted M2 macrophage polarization and induced osteogenic differen-
tiation of BMSCs in diabetic mice [32], consistent with our findings. ED-71 also upregulated
osteoblast differentiation by improving osteoglycin secretion from myoblasts [58]. ZGP
mitigated OP by enhancing osteogenic differentiation of the BMSCs [21]. This medication
significantly promoted mineralized nodule formation and increased ALP and COL-1 ex-
pression to modulate the osteogenic differentiation of BMSCs in OVX rats [21]. We revealed
for the first time that the ZGP and ED-71 combination could regulate osteogenic differentia-
tion in a hyperglycemic state. Our results also showed that the ZGP and ED-71 combination
significantly decreased the number of TRAP-positive osteoclasts and the expression of
MMP-9, an enzyme secreted by osteoclasts, suggesting that the combined treatment could
inhibit the osteoclasts and bone resorption in DOP. Our study illustrated that the combined
treatment increased bone mass and attenuated the osteoporotic imbalance between bone
formation and resorption by promoting osteoblasts and inhibiting osteoclasts. This com-
bined therapy might be an effective treatment alternative for patients with DOP. In addition,
while this study focused on osteoblasts, the effects of ZGP and ED-71 on osteoclasts will be
explored in future research.

When exploring the mechanism, we focused on the PI3K–AKT pathway. PI3K is a
crucial lipoprotein kinase controlling the proliferation, survival, and movement of cells
after ligand activation [59], while AKT is a direct downstream target of PI3K [60]. The
PI3K–AKT signaling pathway is crucial to osteoblast survival and differentiation [61].
Dexamethasone inhibits osteoblast differentiation in a PI3K–AKT-dependent manner [62].
PI3K–AKT is also related to OP, and it has been predicted to possess a crucial function in
DOP pathogenesis [63]. According to our results, the ZGP and ED-71 promoted P-PI3K and
P-AKT expression, suggesting that both could activate the PI3K–AKT signaling pathway.
Importantly, they exhibited a better function when administered together. AVD could
promote the PI3K–AKT signaling pathway in osteoblasts in a high-glucose state to affect
autophagy [64]. ED-71 upregulated the PI3K–AKT signaling pathway in macrophages and
promoted M2 polarization [32]. Currently, reports on the relationship between ZGP and
the PI3K–AKT signaling pathway are lacking. Our results demonstrated the synergistic
function of ZGP and ED-71 in activating the PI3K–AKT signaling pathway and osteoblast
differentiation in a high-glucose state. This function was inhibited after blocking the
PI3K–AKT signal with specific inhibitors. P-AKT expression was also reduced after using
the PI3K inhibitor, demonstrating that AKT acts as a downstream signal for PI3K, consistent
with previous research [53]. The PI3K–AKT signaling pathway has been suggested as an
effective OP therapeutic target [60,65]. Our results indicated that ZGP and ED-71 could
synergistically affect T2DOP by upregulating the PI3K–AKT signaling pathway. The
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PI3K–AKT signaling pathway was reported to be related to osteoclast differentiation [65].
The ZGP and ED-71 combination may affect the osteoclasts through this signaling pathway;
however, further studies are still needed.

5. Conclusions

In our study, the ZGP and ED-71 combination reduced the blood glucose level, pro-
moted osteoblast differentiation, inhibited osteoclasts, and increased bone mass in diabetic
mice by regulating the PI3K–AKT signaling pathway. The superior therapeutic function
of the ZGP and ED-71 combination lays a foundation for exploring a new clinical therapy
for DOP. This combination treatment is expected to be effective in promoting bone health,
decreasing levels of blood glucose, and reducing fracture risk in patients with DOP.
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