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Abstract: Background and Objectives: Pulmonary complications are a leading cause of morbidity after
cardiac surgery. The aim of this study was to develop models to predict postoperative lung dysfunc-
tion and mortality. Materials and Methods: This was a single-center, observational, retrospective study.
We retrospectively analyzed the data of 11,285 adult patients who underwent all types of cardiac
surgery from 2003 to 2015. We developed logistic predictive models for in-hospital mortality, postop-
erative pulmonary complications occurring in the intensive care unit, and postoperative non-invasive
mechanical ventilation when clinically indicated. Results: In the “preoperative model” predictors for
mortality were advanced age (p < 0.001), New York Heart Association (NYHA) class (p < 0.001) and
emergent surgery (p = 0.036); predictors for non-invasive mechanical ventilation were advanced age
(p < 0.001), low ejection fraction (p = 0.023), higher body mass index (p < 0.001) and preoperative renal
failure (p = 0.043); predictors for postoperative pulmonary complications were preoperative chronic
obstructive pulmonary disease (p = 0.007), preoperative kidney injury (p < 0.001) and NYHA class
(p = 0.033). In the “surgery model” predictors for mortality were intraoperative inotropes (p = 0.003)
and intraoperative intra-aortic balloon pump (p < 0.001), which also predicted the incidence of post-
operative pulmonary complications. There were no specific variables in the surgery model predicting
the use of non-invasive mechanical ventilation. In the “intensive care unit model”, predictors for
mortality were postoperative kidney injury (p < 0.001), tracheostomy (p < 0.001), inotropes (p = 0.029)
and PaO2/FiO2 ratio at discharge (p = 0.028); predictors for non-invasive mechanical ventilation were
kidney injury (p < 0.001), inotropes (p < 0.001), blood transfusions (p < 0.001) and PaO2/FiO2 ratio at
the discharge (p < 0.001). Conclusions: In this retrospective study, we identified the preoperative, in-
traoperative and postoperative characteristics associated with mortality and complications following
cardiac surgery.
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1. Background

Although some scores are available to quantify the risk of mortality and morbidity
after cardiac surgery [1–3], it is still a problematic issue in the context of clinical decision
making. In particular, postoperative pulmonary complications (PPC; complete definition
in Supplementary Materials S1) are still a leading cause of morbidity after cardiac surgery,
requiring longer hospital and intensive care unit (ICU) stay [4], higher mortality and
increased costs [5–10].

Various factors, including inflammatory response following cardiopulmonary bypass,
transfusions, the suspension of mechanical ventilation and blood flow through pulmonary
circulation during cardiopulmonary bypass, myocardial damage and hyperoxia can all
contribute to post-cardiac surgery lung injury [11–15]. Moreover, many risk factors for
lung dysfunction and prolonged mechanical ventilation after cardiac surgery have been
identified. These include preoperative variables (age, sex, cardiovascular risk factors,
chronic lung disease, chronic kidney disease and coexisting endocarditis), intraoperative
variables (type of surgery, pump time, intervention time, transfusions and bleeding) and
postoperative variables (inotrope dependency and cardiogenic shock) [16–23]. Pulmonary
damage has also been associated with the need for non-invasive mechanical ventilation
(NIMV), re-intubation, and readmission to the ICU [24,25].

Regarding the complexity of the variables involved in the development of pulmonary
complications, help could be obtained from machine learning. Machine learning plays a
crucial role in medical research, revolutionizing the way healthcare professionals analyze
vast amounts of complex data and make informed decisions. By utilizing powerful algo-
rithms and statistical models, machine learning algorithms can uncover patterns, trends,
and correlations in medical data that would be challenging for humans to detect. This tech-
nology enables researchers to develop predictive models for disease diagnosis, prognosis,
and treatment outcomes, thereby empowering personalized medicine [26]. Additionally,
they aid in medical image analysis and in diagnostic algorithms, enhancing the accuracy
and speed of diagnoses [27,28]. The continuous integration of machine learning in medical
research has the potential to advance our understanding of diseases, improve patient care,
and ultimately transform the field of healthcare.

The PaO2/FiO2 ratio is a widely used and helpful tool, particularly in non-cardiac
surgery, for the assessment of lung injury according to the Berlin criteria [23,29,30]. How-
ever, few studies have investigated the predictive power of this parameter in cardiac
surgery [7]. Moreover, predictive models with strong clinical implications for perioperative
care are still lacking [10], especially for cardiac surgery and in the ICU.

The aim of this study was to investigate the predictive factors of three distinct end-
points. Our primary endpoint was in-hospital mortality, with our secondary endpoints
being the need for NIMV after ICU discharge and the occurrence of PPC after cardiac
surgery.

2. Materials and Methods

This was a single-center, observational, retrospective study that took place at a uni-
versity hospital in Italy from 2003 to 2015, following the ethical guidelines of the 1975
Declaration of Helsinki [31]. We retrospectively analyzed clinical and administrative data.
Following approval from the Ethics Committee of the San Raffaele IRCCS Scientific Insti-
tute (114/INT/2015, approval date 29 October 2015), 11,285 consecutive adult patients,
with American Society of Anesthesiologists (ASA) physical status class II or higher, who
had undergone open-heart surgery with or without cardiopulmonary by-pass and with or
without aortic cross-clamping, were included in this study. Specifically, we extracted infor-
mation from a large database that included all patients who were admitted to the cardiac
surgery department. We included all available information concerning potential pulmonary
complications and mortality after cardiac surgery, including preoperative, intraoperative,
and postoperative data.
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At our center, patients undergoing anesthesia of any kind routinely give informed
written consent, which includes eventual inclusion in retrospective research studies. Given
the retrospective nature of the study, the Ethics Committee accepted this standard consent
as being sufficient and did not request a specific informed-consent form. Every patient
included in our study gave informed consent to use these clinical data for research purposes.
Every type of surgical intervention was included in this study. All patients underwent
a pre-defined protocol for perioperative management. They were all premedicated with
morphine and managed with balanced general anesthesia, either volatile anesthetics or
total intravenous anesthesia, as preferred by the clinician. Intraoperative ventilation was
set as follows: tidal volume of 8 mL/kg of ideal body weight with positive end-expiratory
pressure at a minimum level of 5 cmH2O applied to all patients unless contraindicated
(dynamic overinflation, hemodynamic instability, etc.). The respiratory rate was titrated
to maintain normocapnia. A single alveolar recruitment maneuver was applied after
cardiopulmonary bypass. Following surgery, patients were kept unconscious until they
were hemodynamically stable and weaned with pressure support ventilation. Details
on the routine perioperative management carried out at the center are summarized in
Supplementary Materials S2 [17,32,33]. Since potentially predictive variables are observable
at different moments during a patient’s clinical course, we built a first model for each
endpoint considering only those variables available upon hospital admission (“preoperative
model”), and a second model regarding variables available at the time of surgery (“surgery
model”). A third model was created after surgery, including variables available during ICU
stay (“ICU model”). This approach aimed to provide clinically applicable prognostic tools
throughout the various stages of each patient’s clinical course.

The primary outcome of this study was in-hospital mortality. We studied the need for
NIMV after ICU discharge and the occurrence of PPC after cardiac surgery as secondary
outcomes.

2.1. Statistical Analysis

Statistical analysis was carried out using the dedicated software Stata 11.1 (Copyright
2009 Stata Corp. LP, Stata Corp, 4905 Lakeway Drive, College Station, Texas 77845, USA).
Categorical variables are reported as numbers (percentages). Continuous variables are
reported as mean ± SD. Their normal distribution was confirmed by both the Shapiro–Wilk
W test for normality and the Kolmogorov–Smirnov tests of the equality of distribution.

We developed three logistic predictive models for in-hospital mortality (as a dichoto-
mous variable): a first model (“preoperative model”) where the variable selection was
applied only to variables available at the time of hospital admission, a second model
(“surgery model”) that also considered variables that become available at the time of
surgery, and a third model (“ICU model”) considering variables available upon ICU ad-
mission. We similarly developed three logistic predictive models indicating the need for
postoperative NIMV (as a dichotomous variable). Moreover, we developed two logistic
predictive models (“preoperative model” and “surgery model”) for the occurrence of any
PPC in the ICU (as a dichotomous variable). Variable selection was performed with a
stepwise method with a probability to enter 0.10 and a probability to exit 0.20.

Model accuracy was compared by generating non-parametric ROC curves for each
model and comparing their AUROC with the algorithm proposed by DeLong ER et al. [34].
We reported AUROCs as AUROC (95% CI). Model calibration was assessed by reporting
the intercept (“calibration-in-the-large”) and slope of the relevant calibration plots [34].
Marginal predictions were used for the calculation of overall validation measures.

Since the PaO2/FiO2 ratio entered our final predictive models both for in-hospital
mortality and NIMV use given its widespread use as a predictor thereof, we studied the
relevant ROC curves to report the PaO2/FiO2 cutoff value that maximizes sensitivity and
specificity.

Our series covers a wide time span, so the year of surgery was considered a random
effect variable and the previously mentioned analysis models that were were studied as
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mixed logistic regression models. The difference between mixed and logistic regression
models was tested using the log-likelihood ratio test. The intra-cluster correlation coefficient
(ICC) was reported for each mixed-effect model. Random intercepts were omitted from
the prediction equation to provide risk estimates for “an average” year, which would be
clinically useful when addressing prediction for years, but were not in our sample.

Moreover, given the large number of cases in our series, we split the series into a
training set and a test set. The previously mentioned models were obtained from the
training set and were thereafter tested on the test set. The training set was obtained by
selecting cases from our original series with a Bernoulli process (random selection without
replacement) with 0.66 probability; this generated a training set containing 7448 cases. The
test set consisted of the 3837 cases not selected in the training set. The AUROC of the
models applied to the test sets was reported together with their 95% CI and compared with
the corresponding training test AUROCs using the Chi-square test.

In the variable selection process, variables with p < 0.20 were considered possible
predictors for the multivariate model. When developing the final model, p < 0.05 was
considered significant. The interaction was checked, and linearity in the logit was verified
using the fractional polynomial method. Figure 1 shows the time points involved in the
development of the predictive models.
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Figure 1. The timelines summarize the pathway of patients undergoing cardiac surgery, with a focus
on the variables showing the statistical significance of the major endpoints of this study. List of
abbreviations. NYHA: New York Heart Association; EF: ejection fraction; BMI: body mass index;
COPD: chronic obstructive pulmonary disease; IABP: intra-aortic balloon pump; AKI: acute kidney
injury; P/F: PaO2/FiO2 ratio; NIMV: non-invasive mechanical ventilation; PPCs: postoperative
pulmonary complications.

In reporting the final models, odds ratios are shown as OR (95% CI). We calculated
the best probability cutoff value for each model built with the training set (the cutoff value
maximizing sensitivity and specificity) and provided the relevant sensitivity, specificity,
positive and negative predicted values, and percentage of correctly classified cases. Under
the definition of NIMV, we included all the techniques that involved the application of
positive pressure using a face mask or helmet, mostly including continuous positive airway
pressure (CPAP) and pressure-supported ventilation with positive end-expiratory pressure.
The main indication for CPAP was a hypoxemic respiratory failure of any origin. The main
indication for pressure-supported NIMV was respiratory acidosis.
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2.2. Sample Size Calculation

Given the retrospective nature of our study, no formal prior sample size evaluation
was performed. Nevertheless, in building our logistic regression models, we respected
the rule derived from simulation studies [35] stating that a minimum of 10 events per
parameter are needed to avoid problems of overestimated or underestimated variances.
Although this rule might be too stringent a requirement [36], as far as we know there is no
compelling evidence to discard it.

3. Results

Our study population included 11,285 cases, which are presented in Tables 1 and 2,
both globally, and divided between the training and test sets. During the same study
period, a total of 14,267 patients underwent cardiac surgery at our center. However, as we
were unable to obtain complete information on 2982 patients, so we decided to exclude
them from the study.

Table 1. Description of the baseline data of the study population (N = 11,285). Data are expressed as
mean ± standard deviation or number (percentage). Preoperative chronic obstructive pulmonary
disease (COPD) was defined according to clinical criteria (patients were considered to be affected by
COPD if they were prescribed inhalation bronchodilators, corticosteroids or other drugs labeled for
COPD therapy by a pneumologist or the family physician, even without obtaining confirmation from
preoperative instrumental data) at the time of hospital admission.

Variable Training Set (7448 (66%) Cases) Test Set (3837 (34%) Cases)

Age, yrs 67.98 ± 14.00 67.59 ± 13.98

Male sex, n (%) 4394 (59%) 2302 (60%)

BMI, kg/m2 25.45 ± 3.97 25.46 ± 3.00

Preoperative EF, % 56.23 ± 9.00 56.19 ± 9.99

NYHA class > II, n (%) (28.20%) 1082 (28.20%)

Preoperative comorbidities

COPD, n (%) 476 (6.39%) 252 (6.56%)

Hypertension, n (%) 3706 (49.75%) 2003 (52.19%)

Type II Diabetes, n (%) 779 (10.46%) 426 (11.10%)

Preoperative creatinine, mg/dL 0.98 ± 0.68 0.98 ± 0.66

Chronic renal failure, n (%) 1418 (19%) 789 (20%)

Peripheral vasculopathy, n (%) 1089 (14.63%) 518 (13.50%)

Smoking habits, n (%) 1,279,504 (17.17%) 653 (17.01%)

Stroke, n (%) (6.76%) 279 (7.27%)

Timing of surgery

Emergency or urgency, n (%) 63 (0.85%) 32 (0.85%)

Planned, n (%) 7385 (99.15%) 3805 (99.15%)

Type of surgery

Valvular surgery, n (%) 2944 (39.53%) 1535 (39.99%)

Coronary surgery, n (%) 991 (13.30%) 476 (12.42%)

Ascending aorta aneurysm surgery, n (%) 236 (3.17%) 106 (2.77%)

Other surgical procedures, n (%) 343 (4.60%) 172 (4.48%)

Combined surgery (two or more
procedures), n (%) 2934 (39.40%) 1548 (40.35%)

BMI—body mass index; EF—ejection fraction; COPD—chronic obstructive pulmonary disease.
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Table 2. Description of the baseline data of the study population (N = 11,285). Data are expressed as
mean ± standard deviation or number (percentage). Preoperative chronic obstructive pulmonary
disease (COPD) was defined according to clinical criteria (patients were considered to be affected by
COPD if they were prescribed inhalation bronchodilators, corticosteroids or other drugs labeled for
COPD therapy by a pneumologist or the family physician, even without obtaining confirmation from
preoperative instrumental data) at the time of hospital admission.

Variable Preoperative Value

Age, y 67.55 ± 13.97

Male sex, n (%) 9844 (87.2%)

Height, cm 169 ± 9

Weight, kg 73 ± 13

BMI, kg/m2 25.46 ± 3.95

Preoperative EF, % 56.41% ± 9.77

NYHA class > II, n (%)

Preoperative comorbidities

COPD, n (%) 920 (8.1%)

Hypertension, n (%) 7.248 (64.2%)

Type II Diabetes, n (%) 1.528 (13.5%)

Preoperative creatinine, mg/dL 0.98 ± 0.67

Chronic renal failure, n (%) 1161 (10.2%)

Peripheral vasculopathy, n (%) 2036 (18.0%)

Smoking habits, n (%) 2443 (21.6%)

Stroke, n (%) 989 (8.8%)

Timing of surgery

Emergency or urgency, n (%) 214 (1.9%)

Planned, n (%) 11,071 (98.1%)

Surgery type

Valvular surgery, n (%) 5178 (45.88%)

Coronary surgery, n (%) 1814 (16.07%)

Ascending aorta aneurysm surgery, n (%) 420 (3.71%)

Other surgical procedures, n (%) 999 (8.85%)

Combined surgery (two or more procedures), n
(%) 5564 (49.31%)

BMI—body mass index; EF—ejection fraction; COPD—chronic obstructive pulmonary disease.

The most frequent procedure (5564 cases (49.31%)) carried out was combined surgery
(coronary artery bypass graft + valvular procedure), followed by valvular surgery alone
(5178 cases (45.88%)). Coronary surgery alone was performed on 1814 patients (16.07%).
Aortic surgery was performed on 420 patients (3.71%). The remaining 999 patients (8.85%)
underwent other cardiac procedures, such as percutaneous surgery (Mitraclip® implanta-
tion), tumor exeresis, Maze procedure for atrial fibrillation or patent foramen ovale closure.
The PaO2/FiO2 ratio at ICU discharge was 292.6 ± 114.0, showing normal distribution.
Initially, the population’s mean age was 67.55 years ± 13.97. The mean body mass index
(BMI) was 25.46 kg/m2 ± 3.95. The mean preoperative ejection fraction was 56.41% ± 9.77.

Intraoperative inotropic support was necessary for 5339 patients (47.31%). Non-
invasive mechanical ventilation, considering both CPAP and pressure support ventilation,
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was prescribed for 658 patients (5.83%). Globally, a PPC was either diagnosed or treated
with NIMV in 821 patients (7.3%). The overall mortality was 2.1% (236 cases).

3.1. In-Hospital Mortality Predictive Models
3.1.1. Preoperative Model

Four variables predicted in-hospital mortality in the preoperative multivariate logistic
model (whole model p < 0.0001; Pseudo R2 = 0.10): age, ejection fraction (EF), NYHA class,
and elective vs. emergency procedure. When the year of the procedure was considered
a random effect, the resulting mixed effect model did not differ from the corresponding
logistic regression model (likelihood ratio test p = 1.000; ICC < 0.01). Table 3 shows a
version of the models where we set the year of surgery as a random intercept.

This model’s AUROC was 0.81 (95% CI = 0.76–0.85).
The probability cutoff value maximizing sensitivity and specificity was 0.014, yielding

70.37% sensitivity, 72.44% specificity, 3.58% PPV (precision), 99.41% NPV and 72.41%
correctly classified cases.

When the model was applied to the test set, its AUROC was 0.79 (95% CI = 0.75–0.83),
which did not differ from the training test (p = 0.6685). The relevant calibration plot
exhibited calibration-in-the-large = 0.0024 and calibration slope = 0.7065.

3.1.2. Surgery Model

Five variables predicted in-hospital mortality in the surgery multivariate logistic
model (whole model p < 0.0001; Pseudo R2 = 0.18): the use of inotropic drugs, the use of an
intra-aortic balloon pump (IABP), age, NYHA class, and elective vs. emergency procedure.
When the year of the procedure was considered a random effect, the resulting mixed effect
model did not differ from the corresponding logistic regression model (likelihood ratio test
p = 0.32; ICC = 0.02). Nevertheless, Table 3 shows the model where the year of surgery was
a random intercept.

This model’s AUROC was 0.86 (95% CI = 0.82–0.89).
The probability cutoff value maximizing sensitivity and specificity was 0.016, yielding

78.00% sensitivity, 75.26% specificity, 4.92% PPV (precision), 99.52% NPV and 75.31%
correctly classified cases.

When the model was applied to the test set, its AUROC was 0.85 (95% CI = 0.82–0.89):
this did not differ from the training test (p = 0.7417), which was significantly higher than
the corresponding test preoperative model’s AUROC (p = 0.0005). The relevant calibration
plot exhibited calibration-in-the-large = 0.0057 and calibration slope = 0.8643 (Figure 2).

3.1.3. ICU Model

Six variables predicted in-hospital mortality in the ICU multivariate logistic model
(whole model p < 0.0001; Pseudo R2 = 0.26): peak serum creatinine value in the ICU,
tracheostomy, use of inotropic drugs, NYHA class, age, and PaO2/FiO2 at ICU discharge.
When the year of the procedure was considered a random effect, the resulting mixed-effect
model did not differ from the corresponding logistic regression model (likelihood ratio test
p = 1.000; ICC = 0.11). Nevertheless, Table 3 shows the model where the year of surgery
was a random intercept.

This model’s AUROC was 0.90 (95% CI = 0.87–0.94).
The probability cutoff value maximizing sensitivity and specificity was 0.010, yielding

80.77% sensitivity, 80.59% specificity, 3.54% PPV (precision), 99.79% NPV and 80.59%
correctly classified cases.

When the model was applied to the test set, its AUROC was 0.89 (95% CI = 0.84–0.93),
which did not differ from the training test’s (p = 0.4390), but was significantly higher than
the corresponding test surgery model’s AUROC (p = 0.0061). The relevant calibration plot
exhibited calibration-in-the-large = 0.0021 and calibration slope = 0.8443 (Figure 2).
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Table 3. Results of the logistic regression models.

Models for Mortality Models for NIMV Models for PPC

Preoperative
models

Predictive Variable Odds Ratio 95% CI p-Value Predictive Variable Odds Ratio 95% CI p-Value Predictive Variable Odds Ratio 95% CI p-Value

Age 1.05 1.02–1.08 <0.001 Age 1.04 1.02–1.06 <0.001 COPD 2.63 1.31–5.28 0.007

Preoperative EF 0.97 0.95–0.99 0.011 Preoperative EF 0.97 0.96–1.00 0.023 Creatinine 1.48 1.19–1.83 <0.001

NYHA class 2.97 1.63–5.41 <0.001 BMI 1.10 1.05–1.15 <0.001 EF 0.97 0.95–0.99 0.004

Elective surgery 0.29 0.90–0.91 0.036 Preoperative
Creatinine 1.26 1.01–1.58 0.043 NYHA class 1.81 1.05–3.14 0.033

Random effect
variable SD SE p Random effect

variable SD SE p Random effect
variable SD SE p

Year of surgery <0.001 0.37 1.000 Year of surgery 0.53 0.18 <0.001 Year of surgery 0.28 0.20 0.176

Surgery
models

Predictive Variable Odds Ratio 95% CI p-Value Predictive Variable Odds Ratio 95% CI p-Value Predictive Variable Odds Ratio 95% CI p-Value

Inotropes in the
operating room 3.09 1.45–6.6 0.003 Age 1.04 1.02–1.06 <0.001 Inotropes in the

operating room 2.79 1.38–5.64 0.004

IABP in the
operating room 3.91 1.90–8.04 <0.001 Preoperative EF 0.97 0.96–1.00 0.023 IABP in the operating

room 2.64 1.02–6.81 0.045

Age 1.06 1.03–1.10 <0.001 BMI 1.10 1.05–1.15 <0.001 COPD 3.74 1.64–8.51 0.002

NYHA class 2.35 1.24–4.47 0.009 Preoperative
Creatinine 1.26 1.01–1.58 0.043 Preoperative

creatinine 1.39 1.07–1.81 0.014

Elective surgery 0.22 0.08–0.65 0.006

Random effect
variable SD SE p Random effect

variable SD SE p Random effect
variable SD SE p

Year of surgery 0.24 0.30 0.320 Year of surgery 0.53 0.18 <0.001 Year of surgery 0.53 0.25 1.329

ICU models

Predictive Variable Odds Ratio 95% CI p-Value Predictive Variable Odds Ratio 95% CI p-Value

Creatinine peak 1.50 1.24–1.82 <0.001 Creatinine peak 1.35 1.21–1.51 <0.001

Tracheostomy 18.08 7.14–45.76 <0.001 Inotropes 1.60 1.25–2.04 <0.001

Inotropes in the
ICU in the ICU 2.52 1.01–5.77 0.029 P/F 0.99 0.991–0.993 <0.001

NYHA class 2.79 1.35–5.78 0.006 Blood transfusion 2.41 1.87–3.13 <0.001

Age 1.08 1.03–1.12 <0.001 BMI 1.07 1.05–1.11 <0.001

P/F ratio 0.1 0.99–0.1 0.028

Random effect
variable SD SE p Random effect

variable SD SE p

Year of surgery <0.001 0.44 1.000 Year of surgery 0.83 0.18 <0.001

List of abbreviations used: CI: confidence interval; SD: standard deviation; SE: standard error; EF: ejection fraction; NYHA: New York Heart Association; BMI: body mass index; COPD:
chronic obstructive pulmonary disease; IABP: intra-aortic balloon pump; ICU: intensive care unit; P/F: PaO2/FiO2 ratio at the discharge from the ICU.
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Figure 2. Comparison between predictive models and ROC curves. The first figure (top left) shows
the comparison between the preoperative model (blue line) and the surgery model (red line) for
mortality, outlining an increase in the ROC area from the first to the second model. The second
figure (top right) shows a further increase in the ROC area between the surgery model for mortality
(blue line) and the ICU model (red line). The third figure (bottom left) shows the ROC curve
comparison between the preoperative (blue line) and surgery (red line) model for the development
of postoperative pulmonary complications. Finally, the fourth figure (bottom right) shows the ROC
curve comparison between the preoperative/surgery model (blue line) for the application of NIMV
in the ward and the ICU model (red line). List of abbreviations. ICU: intensive care unit; PPCs:
postoperative pulmonary complications; NIMV: non-invasive mechanical ventilation.

3.2. Postoperative NIMV Predictive Models
3.2.1. Preoperative/Surgery Model

No variable with data available after surgery entered a multivariate model, hence the
“Preoperative” and “Surgery” multivariate logistic models for NIMV use did not differ
from one another.

Four variables predicted NIMV use in the preoperative/surgery multivariate logistic
model (whole model p < 0.0001; Pseudo R2 = 0.05): age, EF, BMI and preoperative serum
creatinine. When the year of the procedure was considered a random effect, the resulting
mixed effect model differed from the corresponding logistic regression model (likelihood
ratio test p = 0.0002; ICC = 0.08). Table 3 shows the model where the year of surgery was a
random intercept.

This model’s AUROC was 0.71 (95% CI = 0.67–0.75).
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The probability cutoff value maximizing sensitivity and specificity was 0.025, yielding
66.02% sensitivity, 64.40% specificity, 4.32% PPV (precision), 98.73% NPV and 64.44%
correctly classified cases.

When the model was applied to the test set, its AUROC was 0.71 (95% CI = 0.67–0.75),
which did not differ from the training test (p = 0.8687). The relevant calibration plot
exhibited calibration-in-the-large = 0.0057 and calibration slope = 0.8643.

3.2.2. ICU Model

Four variables predicted NIMV use after the discharge from the ICU multivariate
logistic model (whole model p < 0.0001; Pseudo R2 = 0.13): peak serum creatinine in the
ICU, inotropic drug use, PaO2/FiO2 ratio at ICU discharge, the use of blood products and
BMI. When the year of the procedure was considered a random effect, the resulting mixed
effect model (both intercept and slope) differed from the corresponding logistic regression
model (likelihood ratio test p < 0.001; ICC = 0.17). Table 3 shows the model, where the year
of surgery was a random intercept.

This model’s AUROC was 0.81 (95% CI = 0.77–0.85).
The probability cutoff value maximizing sensitivity and specificity was 0.048, yielding

71.72% sensitivity, 71.87% specificity, 10.91% PPV (precision), 98.14% NPV and 71.86%
correctly classified cases.

When the model was applied to the test set, its AUROC was 0.79 (95% CI = 0.77–0.81),
which did not differ from the training test (p = 0.3966) but was significantly higher than
the corresponding test surgery model’s AUROC (p < 0.0001). The relevant calibration plot
exhibited calibration-in-the-large = 0.0063 and calibration slope = 0.8814 (Figure 2).

3.3. Postoperative Pulmonary Complication Predictive Model
3.3.1. Preoperative Model

Four variables predicted PPC in the preoperative multivariate logistic model (whole
model p < 0.00001; Pseudo R2 = 0.06): chronic obstructive pulmonary disease (COPD),
preoperative serum creatinine, EF and NYHA class. When the year of the procedure
was considered a random effect, the resulting mixed effect model did not differ from the
corresponding logistic regression model (likelihood ratio test p = 0.1767; ICC = 0.06). Table 3
shows the model, where the year of surgery was a random intercept.

This model’s AUROC was 0.70 (95% CI = 0.62–0.78).
The probability cutoff value maximizing sensitivity and specificity was 0.013, yielding

62.16% sensitivity, 62.11% specificity, 2.45% PPV (precision), 99.07% NPV and 62.11%
correctly classified cases.

When the model was applied to the test set, its AUROC was 0.69 (95% CI = 0.61–0.76),
which did not differ from the training test (p = 0.9299). The relevant calibration plot
exhibited calibration-in-the-large = 0.0059 and calibration slope = 0.5278.

3.3.2. Surgery Model

Four variables predicted PPC in the surgery multivariate logistic model (whole model
p < 0.0001; Pseudo R2 = 0.088): the use of inotropic drugs, the use of IABP, COPD and
preoperative serum creatinine. When the year of the procedure was considered a random
effect, the resulting mixed effect model (both intercept and slope) differed from the corre-
sponding logistic regression model (likelihood ratio test p = 0.0275; ICC = 0.08). Table 3
shows the model, where the year of surgery was a random intercept.

This model’s AUROC was 0.70 (95% CI = 0.62–0.78).
The probability cutoff value maximizing sensitivity and specificity was 0.016, yielding

72.50% sensitivity, 65.25% specificity, 2.95% PPV (precision), 99.39% NPV and 65.35%
correctly classified cases.

When the model was applied to the test set, its AUROC was 0.68 (95% CI = 0.60–0.76),
which did not differ from the training test’s AUROC (p = 0.3478) but was not signifi-
cantly different from the corresponding test preoperative model’s AUROC (p = 0.4467).
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The relevant calibration plot exhibited calibration-in-the-large = −0.0006 and calibration
slope = 1.1434 (Figure 2).

3.4. ROC Curve Analysis of the PaO2/FiO2 Ratio

A ROC curve was developed using the PaO2/FiO2 ratio at ICU discharge and the
incidence of NIMV use during hospital stay. The PaO2/FiO2 ratio value, maximizing
sensitivity and specificity was 239 mmHg. At this point in the curve, sensitivity was 66.53%
while specificity was 66.06%. Correct classification occurred in 66.51% of cases. Figure 3
shows the ROC curve we developed.
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Figure 3. The ROC curve for the PaO2/FiO2 ratio and the incidence of post-operative non-invasive
mechanical ventilation. The PaO2/FiO2 ratio value that maximizes sensitivity and specificity is
239 mmHg. The sensitivity was 66.53%, while the specificity was 66.06%.

The outcome data of the whole population are summarized in Table 4.
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Table 4. Study outcomes in the ICU for the study population. The values are expressed as n (%),
median interquartile range where appropriate.

Outcome Incidence

Overall mortality, n (%) 236 (2.1%)

Postoperative pulmonary complications, n (%) 213 (1.9%)

Postoperative pulmonary complications (including the
use of NIMV), n (%) 821 (7.3%)

Need for NIMV before hospital discharge, n (%) 609 (5.4%)

Re-intubation, n (%) 97 (0.86%)

Inotropes, n (%) 3809 (33.75%)

Intra-aortic balloon pump, n (%) 395 (3.5%)

Blood products, n (%) 2834 (18%)

Renal replacement therapy, n (%) 175 (1.55%)

VA-ECMO support, n (%) 12 (0.1%)

Septic shock, (%) 56 (0.5%)

Length of ICU stay, days 1 (1–3)

Length of hospital stay, days 6 (5–8)
List of abbreviations: NIMV: Non-invasive mechanical ventilation, ECMO: extracorporeal membrane oxygenation,
ICU: intensive care unit.

4. Discussion

We investigated the potential predictive factors for mortality, NIMV use, and PPC
occurrence after cardiac surgery in a large adult population based on pre-operative, intra-
operative and post-operative variables (Table 3).

Our three models offer a comprehensive view of the journey of patients undergoing
cardiac surgery from preoperative evaluation up to ICU discharge, with a stepwise use of
new variables. This approach is different from the other models available in the literature.
The robustness of the underlying statistics might offer clinicians a powerful tool for the
prediction of complications in the context of cardiac surgery.

The risk factors we underlined need to be taken into consideration during clinical
decision-making, and patients at high risk of postoperative pulmonary dysfunction might
benefit from a specific protocol for intraoperative and postoperative optimization, ICU
discharge, respiratory chest physiotherapy and NIMV in the ward. It might also help
decide the optimal timing for ICU discharge. Delayed discharge can lead to healthcare-
related infections and is globally associated with a worse outcome [22] and increased costs.
Premature discharge, however, might result in the need for readmission to the ICU, which
can also be very harmful [25].

The literature describes numerous models for calculating mortality and morbidity in
patients undergoing cardiac surgery, the most important being the EUROSCORE II and
STS scores [37,38]. However, there are some limitations regarding their use, such as the
small number of surgical cases included in the STS score [1] or the deteriorated prediction
of higher-risk tertiles in EUROSCORE II [2].It is important, therefore, to continue searching
for new models to guarantee a more patient-centered tailored approach. Indeed, our model
is the first to be dynamic; new variables can be added that modify the prediction of risk
regarding mortality and morbidity as patients progress from the preoperative phase to the
operative phase, and finally to the postoperative phase. Of the other scores concerning PPC
with extensive validation, the ARISCAT score [7] and the LAS VEGAS score [3] require
mentioning. The peculiarity of these scores is that they are general and thus applicable to
every kind of anesthesia. On the other hand, they do not focus on specificities for cardiac
surgery, which we aimed to include in our study.
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Another interesting point of the secondary analysis concerns the PaO2/FiO2 ratio
at ICU discharge. The ROC curve we developed found a cutoff point maximizing the
sensitivity and specificity of the PaO2/FiO2 ratio at 239. This information might help
clinicians distinguish between those patients with sub-optimal gas exchange that require
respiratory support and those who do not.

Other studies have investigated post-cardiac surgery pulmonary complications and the
predictive value of the PaO2/FiO2 ratio. A prospective observational trial on 2725 consecu-
tive cardiac surgery patients [24] identified lower PaO2/FiO2 ratio values in non-survivors
compared with survivors and highlighted the importance of this parameter in predicting
a worse postoperative outcome. Another smaller observational trial identified several
risk factors for a reduced PaO2/FiO2 ratio during the postoperative period, including age,
obesity, reduced cardiac function, emergency surgery, high creatinine levels, and inotropic
support [7].

We also identified factors associated with the need for NIMV and the incidence
of PPC. We confirmed the data provided by a retrospective trial [19] regarding obesity
and postoperative hypoxia, defining preoperative BMI as a predictor for postoperative
NIMV and a reduced PaO2/FiO2 ratio at ICU discharge. A smaller observational trial [18]
identified BMI as an important risk factor, with findings similar to ours concerning the
intraoperative risk factors for difficult respiratory management, concentrating on prolonged
mechanical ventilation in the ICU. Finally, a recent study on 145 adult cardiac surgery
patients showed a correlation between lower PaO2/FiO2 ratios and length of hospital and
ICU stay [39].

The importance of our data is represented by a larger sample size compared with
previous studies, the robustness of our statistical analysis, and the step-by-step inclusion
of preoperative, intraoperative, and postoperative factors in a manner closely related to
a clinical practice model, which might prove useful to identify high-risk patients that
could benefit from closer monitoring and observation. Moreover, the need for NIMV
and the presence of PPC following cardiac surgery have never been examined using a
comprehensive predictive model. Finally, we were able to provide a new cutoff for the
PaO2/FiO2 ratio evaluation in routine clinical activity.

The main limitation of the present study is that it was a retrospective analysis. We
were unable to collect all the necessary data from each of the included patients, as many of
the source documents were 12 years old, and it was at times difficult to obtain the correct
information. Due to the stepwise selection, the global sample size was numerically inferior
to the initial sample size. We acknowledge that the overall incidence of PPCs, even if
grouped with the application of NIMV, is quite low compared with the incidence reported
in the literature [40].

We acknowledge that some random error may still be present in data coming from
different years and multiple sources, but we are confident that the high number of patients
analyzed and the robustness of the models we developed can overcome this limitation.
Moreover, in the context of a large sample size, we recognize that the exclusion of 2982
patients might have introduced a selection bias that we were unable to quantify or eliminate.

One methodological limitation is the definition of the PPCs used, which is not the
most recent provided by Abbott et al. [41]. Moreover, we do not have data regarding the
number of patients treated with NIMV or CPAP before surgery, which might have slightly
altered our main results.

Another important limitation is that anesthesia and surgical techniques have changed
over the years, and we are aware that what we did in 2003 may not be the same as what
we are doing nowadays. Risk factors such as preoperative conditions, intraoperative
inotropes, mechanical support, postoperative infections, etc. are ever-present problems.
The management and understanding of high-risk patients and complications might have
changed, but the disease pathophysiology with its risk factors and predictors most probably
has not.
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5. Conclusions

Our results demonstrated that a lower PaO2/FiO2 ratio was linked to an increased
risk of in-hospital mortality following cardiac surgery. This indicates that compromised
oxygenation levels, as indicated by a lower ratio, can be a significant factor in determining
the prognosis and survival of patients undergoing cardiac procedures.

Overall, our study highlights the importance of the PaO2/FiO2 ratio as a valuable
predictive tool for assessing the risk of pulmonary complications, the need for non-invasive
mechanical ventilation, and hospital mortality in patients undergoing cardiac surgery.
These findings provide healthcare professionals with valuable insights into risk stratifi-
cation and individualized patient management, ultimately leading to improved clinical
decision-making and better outcomes for cardiac surgery patients.
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